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Abstract

The human brain undergoes rapid and dynamic development early in life. Assessment of brain growth patterns
relevant to neurological disorders and disease requires a normative population model of growth and variability in order
to evaluate deviation from typical development. In this paper, we focus on maturation of brain white matter as shown
in diffusion tensor MRI (DT-MRI), measured by fractional anisotropy (FA), mean diffusivity (MD), as well as axial and
radial diffusivities (AD, RD). We present a novel methodology to model temporal changes of white matter diffusion
from longitudinal DT-MRI data taken at discrete time points. Our proposed framework combines nonlinear modeling
of trajectories of individual subjects, population analysis, and testing for regional differences in growth pattern. We
first perform deformable mapping of longitudinal DT-MRI of healthy infants imaged at birth, 1 year, and 2 years of
age, into a common unbiased atlas. An existing template of labeled white matter regions is registered to this atlas
to define anatomical regions of interest. Diffusivity properties of these regions, presented over time, serve as input
to the longitudinal characterization of changes. We use non-linear mixed effect (NLME) modeling where temporal
change is described by the Gompertz function. The Gompertz growth function uses intuitive parameters related to
delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions
related to quantitative analysis of growth patterns. Results suggest that our proposed framework provides descriptive
and quantitative information on growth trajectories that can be interpreted by clinicians using natural language terms
that describe growth. Statistical analysis of regional differences between anatomical regions which are known to mature
differently demonstrates the potential of the proposed method for quantitative assessment of brain growth and differences
thereof. This will eventually lead to a prediction of white matter diffusion properties and associated cognitive development
at later stages given imaging data at early stages.
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1. Introduction

Improved understanding of typical brain development
during infancy, an interval characterized by rapid sculpt-
ing, organization and vulnerability to exogenous influ-
ences, is of a great importance both for clinical and scien-
tific research. Many neurobehavioral disorders have their
origins during neurodevelopment (Huppi, 2008; Gilmore
et al., 2010). Establishing a normative model of early
brain development is a critical step to understanding the
timing and potential mechanisms of atypical development
and how intervention might alter such trajectories and im-
prove developmental outcomes (Als et al., 2004; Marsh
et al., 2008). Once normative models are available, they
can inform research and practice concerning children at
risk for neurodevelopmental disorders and may eventu-
ally lead to earlier and improved diagnosis and treatment.
Longitudinal trajectory-based studies provide a better un-
derstanding of human brain development compared to

cross-sectional studies (Karmiloff-Smith, 2010). In cross-
sectional data, calculation of the average trajectory may
not be representative for the growth patterns of individual
subjects as this approach is inherently insensitive to indi-
vidual developmental differences and cohort effects (Gog-
tay et al., 2004). Cross-sectional analysis might falsely re-
port magnitude of changes over time or may fail to detect
changes (Casey et al., 2005).

Growth modeling from longitudinal data, on the other
hand, makes use of sets of individual temporal trajectories
which results in significantly improved models of growth
and growth variability, as longitudinal studies can differen-
tiate between cohort and age effects (Diggle et al., 2002).

Previous imaging studies of early brain development
have substantially contributed to our current understand-
ing of brain development. Some of the studies considered
size or shape differences (Knickmeyer et al., 2008; Huppi,
2008; Xue et al., 2007; Xu et al., 2008), others have looked
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at changes of contrast in MRI (Sadeghi et al., 2010) or
diffusion parameters in DTI (Huppi et al., 1998; Mukher-
jee et al., 2002; Hermoye et al., 2006; Gao et al., 2009;
Sadeghi et al., 2012; Geng et al., 2012). However, most
of these studies are based on cross-sectional data or chil-
dren older than 2 years (Mukherjee et al., 2002; Hermoye
et al., 2006; Dubois et al., 2008; Gao et al., 2009; Faria
et al., 2010). In this study we focus on developing lon-
gitudinal models spanning birth to about two years of
age. The models are based on the parameters obtained
from diffusion tensor imaging (DTI). DTI-derived diffu-
sivity parameters provide relevant information about the
maturation of the underlying tissue as they assess water
content (Huppi, 2008). These measurements are a possi-
ble reflection of axonal density and/or degree of myelina-
tion (Song et al., 2002; Neil et al., 1998) which correlate
with cognitive functions (Dubois et al., 2006) and early de-
velopmental outcomes (Als et al., 2004; Ment et al., 2009;
Wolff et al., 2012). In this study we focus on fractional
anisotropy (FA), mean diffusivity (MD), radial (RD) and
axial diffusivity (AD) to explain brain maturation and to
gain a better understanding of white matter development.
Driven by earlier findings that myelination follows a non-
linear spatio-temporal pattern (Dubois et al., 2008), our
goal is to capture these changes in terms of the parameters
of the Gompertz function which provides an intuitive pa-
rameterization representing delay, growth, and asymptotic
values for each region.

In contrast to previous studies, we use an explicit growth
function (the Gompertz function) and a nonlinear mixed
effect modeling scheme (Pinheiro and Bates, 2000). In
a nonlinear mixed effects model, the diffusion parameters
are modeled in a hierarchical fashion, with fixed-effect rep-
resenting the overall population trend, and random effect
associated with each individual. Nonlinear mixed effect
models are suited for longitudinal data where each sub-
jects has repeated scans with the possibility of missing
data points and uneven spacing between scans of all the
individuals in the group. Unlike most previous studies
of early brain development, we make use of longitudinal
imaging where each subject is imaged repeatedly over the
first few years of life. This enables a more accurate char-
acterization of developmental pattern (Giedd et al., 1999).
Nonlinear mixed effect model provides a direct way of es-
timating individual trajectories along with longitudinally
derived typical developmental curves as illustrated in Fig-
ure 2. This leads to the characterization of a normative
model for healthy developmental patterns and estimation
of personalized, individual trajectories of growth, which
is a property that will be desirable for comparison and
diagnostic assessment of individual subjects.

We apply our analysis framework to a set of white mater
regions that are known to have different patterns of growth
to establish normative developmental patterns for each re-
gion. Quantitative analysis of diffusion changes in these
regions provide further insight into brain maturation pro-
cess and will enable prediction of subject-specific growth

Table 1: Distribution of scans across different time points. N indi-
cates the number of subjects with the associated temporal pattern.

Available scans N
Neonate scan only 2
1 year scan only 0
2 year scan only 0
Neonate + 1 year scan 10
Neonate + 2 year scan 2
1 year + 2 year scan 3
Neonate + 1 year + 2 year scan 9

trajectory with the potential of detecting pathological de-
viation related to brain disorders.

2. Materials and Methods

2.1. Subjects

This study was approved by the Institutional Review
Board of the University of North Carolina School of
Medicine. Children analyzed in this study are controls
in an ongoing longitudinal study of early brain develop-
ment in high risk children (Geng et al., 2012). A total of
26 control subjects were selected for this study. Scans of
these subjects were obtained at around two-weeks, 1 year
and 2 years. Four of the subjects had sub-optimal scans at
1 year that were removed, but their scans for other time
points were kept. In total, we used 59 datasets, the tem-
poral distribution of scan data is shown in table 1. To
ensure maximal success rate of scanning, all subjects were
fed, swaddled and fitted with ear protection. All subjects
were scanned without sedation during their natural sleep.

2.2. Image Acquisition and Data Processing

All images were acquired using a 3T Allegra head-only
MR system using a single shot echo-planar spin echo dif-
fusion tensor imaging sequence with the following param-
eters: TR=5200 ms, TE=73 ms, slice thickness of 2 mm
and in-plane resolution of 2x2 mm2. One image without
diffusion gradients (b=0) along with 6 gradient directions
with a b-value of 1000 mm3/s were acquired. The se-
quence was repeated 5 times for improved single-to-noise
ratio. All DWIs were checked and corrected for motion
artifacts using the DTIChecker tool 1. Tensor maps were
calculated for each DTI scan using weighted least squares
tensor estimation on the images that have been averaged
over sequence repeats (Salvador et al., 2005). T2-weighted
structural images were obtained using turbo spin echo se-
quence with TR= 7 s, TE=15 and 90 ms, slice thickness
of 1.95 mm and in-plane resolution of 1.25 x1.25 mm2.
T2W and baseline DWI of all the subjects’ scans were
skull stripped using Brain Extraction Tool (BET) (Smith,
2002).

1http://www.ia.unc.edu/dev/download/dtichecker
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Due to significant contrast changes in early brain de-
velopment, we utilized two registration frameworks: one
for intra-subject and inter-modality registration, and the
other for inter-subject registration. For inter-subject regis-
tration, we applied the unbiased atlas building framework
of Joshi et al. (Joshi et al., 2004) based on the Large Defor-
mation Diffeomorphic Metric Mapping (LDDMM) (Miller
et al., 2002) to the set of T2W images of scans at year 1 to
obtain spatial mappings between all subjects through the
estimated atlas coordinate system. Intra-subject registra-
tion was performed by IRTK software 2 All time points
of each subject are registered to the unbiased atlas via
linear and non-linear transformations, first by mapping
these images to the year 1 scan and then cascading the
two transformations for a mapping to the atlas. Details
on the registration methods and parameters are summa-
rized in Appendix A. The tensors are registered to the at-
las using transformations obtained by registering the DTI
baseline (B0) images to T2W images. Tensors are resam-
pled using finite strain reorientation and Riemannian in-
terpolation (Alexander et al., 2001; Pennec et al., 2006;
Fletcher and Joshi, 2007). After all the images are trans-
formed into the atlas space, the tensors are averaged using
the log-Euclidean method to produce a tensor atlas (Ar-
signy et al., 2006). In this study, we extract the mean,
axial, radial diffusivity, and fractional anisotropy features
from the registered tensors, MD = λ1+λ2+λ3

3 , AD = λ1,

RD = λ2+λ3

2 and FA =
√

1
2

√
(λ1−λ2)2+(λ1−λ3)2+(λ2−λ3)2√

λ2
1+λ

2
2+λ

2
3

where λi are the eigenvalues of the tensor sorted from
largest to smallest. Figure 1 shows an overview of our
method and analysis workflow.

2.3. Nonlinear Mixed Effects Model

In this subsection, we describe the nonlinear mixed ef-
fects model used to analyze the longitudinal DTI data.
Compared to a nonlinear least squares (NLS) method, a
nonlinear mixed effects (NLME) model does not assume
that the sample data points are independent and identi-
cally distributed, rather it assumes that there is correlation
across repeated measurements. Also, the average trend es-
timated based on the mixed effect model is an average of
individual trajectories rather than a least squares fit to
the individual data points. This results in better repre-
sentation of trajectories in the population as illustrated in
Figure 2.

2.3.1. Model Formulation

In the mixed effects model, the observed data is a com-
bination of fixed effects which are parameters associated

2http://www.doc.ic.ac.uk/~dr/software, using affine and non-
linear registration method of (Rueckert et al., 1999) using normalized
mutual information as the image match metric (Studholme et al.,
1999) that appears robust to changing contrast properties in early
brain development.
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Figure 2: Population growth models, represented as black curves, ob-
tained using nonlinear least squares (NLS) in a cross-sectional fashion
(left) and nonlinear mixed effect modeling (NLME) via longitudinal
analysis (right). Colored points represent data observations, and col-
ored curves represent the individual growth trajectories. Note that
given the same data points, cross-sectional analysis provides a very
different result than longitudinal analysis.

with the entire population or a sub-population, and ran-
dom effects which are parameters associated to an individ-
ual. In the nonlinear mixed effect models, some or all the
parameters appear nonlinearly in the model. We use the
NLME model proposed by (Lindstrom and Bates, 1990)
where each individual’s observation is modeled as:

yij = f(φi, tij) + eij i = 1, · · · ,M ; j = 1, · · · , ni
(1)

where i indexes the individual subjects and j indexes the
time points, M is the number of individuals, ni is the num-
ber of observations on the ith individual, f is a nonlinear
function of the covariate vector (time) tij and parameter
vector φij , and eij ∼ N(0, σ2) is an i.i.d. error term. The
parameter vector can vary among individuals by writing
φi as

φi = Aiβ +Bibi bi ∼ N(0,Ψ) (2)

β is a p-vector of fixed effects, and bi is a q-vector of
random effects associated with individual i with variance-
covariance Ψ. Ai and Bi are identity matrices for our
study.

The function f can be any nonlinear function. Since
early brain development is characterized by rapid initial
development which slows down in later years, it is prefer-
able to use growth functions which reflect these properties.
One such growth function is the Gompertz function which
can be written as:

y = asymptote exp(−delay exp(−speed t)). (3)

The effects of varying the three parameters asymptote,
delay and speed of the Gompertz function are shown in
Figure 3, for a function that decreases as time progresses.

To use the Gompertz function in the nonlinear mixed
effect model, we apply the following formulation where
the Gompertz function is parameterized as y = f(φ, t) =
φ1 exp{−φ2φ3t}, where φ1 denotes asymptote, φ2 is delay,
and φ3 is exp(−speed). Combining the nonlinear mixed
effect model with the Gompertz function, each observation
can be represented as follows:
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Figure 1: Overview of the proposed longitudinal DTI region based analysis.
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Figure 3: Effect of varying the three parameters of the Gompertz
function. The red curve shows the reference curve where parameters
are held fixed. Left to right: The dashed blue curves show the effect
of increasing values of β1, β2, and β3 associated with asymptote,
delay and speed, respectively.

yij = f(φi, tij) + eij = φ1i exp{−φ2iφ3itij}+ eij (4)

where the mixed effects are φi = [φ1i φ2i φ3i]
T = β + bi,

the fixed effects are β = [β1 β2 β3]T , and the random
effects for each subject i are bi = [b1i b2i 0]T . We set
one of the random effects to zero to reduce the number of
random effects in the model. As we only have a maximum
of three time points per subject, including an additional
random effect may cause the matrix Ψ to be rank-deficient
(singular) and thus create problems in the estimation of
the parameters.

2.3.2. Model Estimation

Different methods have been proposed to estimate the
parameters as shown in equation 4. Since random effects
are unobserved quantities, we use the marginal density
of responses y to obtain the parameters of the nonlinear
mixed effects model. The following maximum likelihood
estimation is performed to obtain the parameters of equa-
tion 4:

yi : p(yi|β,Ψ, σ2) =

∫
p(yi, |β, bi,Ψ, σ2)p(bi)dbi. (5)

Due to nonlinearity presented in the random effects of
function f , there is generally no closed form solution to the
integral. Here, we use the estimation method proposed by
(Lindstrom and Bates, 1990) using the nlme package (Pin-
heiro et al., 2012) in R3 to obtain the model parameters.
This algorithm iterates between two steps: a penalized
nonlinear least square step and a linear mixed effects step
until convergence.

2.3.3. Inference and Predictions

Under the linear mixed effects approximation, the dis-
tribution of maximum likelihood estimators β̂ of the fixed
effect is:

β̂ ∼ N

β, σ2

[
M∑
i=1

X̂Σ−1
i X̂i

]−1
 (6)

3http://r-project.org

where Σi = I + Ẑi∆
−1∆−T ẐTi , X̂i = ∂fi

∂βT |β̂,b̂i , Ẑi =
∂fi
∂bTi
|β̂,b̂i , and ∆ is the precision factor such that Ψ−1 =

σ−2∆T∆ (Pinheiro and Bates, 2000).

Knowing fixed parameters β̂ and its sampling distribu-
tion, it is straightforward to conduct hypothesis testing
among different regions or between healthy and/or at-risk
populations. We can also obtain individual growth trajec-
tories based on the estimated random effects for each in-
dividual. For example, the individual response for subject
i is ŷi = f(β+ bi, t), and the population growth trajectory
is estimated when random effects are set to their mean
value, 0, resulting in ŷ = f(β, t).

2.4. Regional Analysis of Longitudinal Data Using NLME

We use the nonlinear mixed effects to model the longi-
tudinal DTI data within anatomical regions and perform
hypothesis testing between trajectories of these regions.
Maps of these anatomical regions were developed and dis-
seminated by (Mori et al., 2008), and mapped to our un-
biased atlas via linear followed by nonlinear b-spline reg-
istration (Rueckert et al., 1999). We select 13 anatomical
regions in the atlas space as shown in Figure 4. In this
study, left and right regions of anatomical locations are
combined, giving total of eight regions. Future studies on
lateralization of growth differences will analyze left and
right regions separately. The labeling of regions in the at-
las space allows automatic partitioning of each subjects’
scans into the different anatomical regions. We then esti-
mate growth trajectories for these regions using the NLME
model (Lindstrom and Bates, 1990) described previously.
The mixed parameters are the asymptote φ1, delay φ2 and
speed φ3 of the Gompertz function for each region, which
requires a slight modification to equation 4 to account for
regions:

yrij = f(φri, tij) + eij = φ1ri exp{−φ2riφ3ritij}+ eij . (7)

We then conduct hypothesis testing between pairs of re-
gions to determine modes of longitudinal changes in terms
of the Gompertz growth parameters. With N number of

regions, we perform N(N−1)
2 pairwise fitting of nonlinear

mixed effect modeling. The significant parameters are de-
termined through t-tests, corrected for multiple compar-
isons by Bonferroni correction. The parameters that are
found to be significant between two pairs of regions can
be interpreted as the distinguishing feature between the
longitudinal trajectories of these regions.

3. Results

We applied our framework to longitudinal pediatric DTI
data of 26 subjects. In total, we selected 13 regions in the
unbiased atlas as shown in Figure 4. The regions are as
follows: anterior limb of internal capsule (right and left;
ALIC), posterior limb of internal capsule (right and left;
PLIC), Genu, body of corpus callosum (BCC), splenium
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Figure 5: Plots of diffusivity measures (FA, MD, AD and RD) versus age, shown for 26 control subjects and eight regions. Colors indicate
different regions (purple: ALIC, light green: ExCap, brown: Genu, blue: PLIC, dark green: PTR, red: RLIC, yellow: Sp, orange: BCC), solid
lines connect the mean of each region. In all the regions, FA increases with age, whereas MD, RD and AD decrease with age. Interestingly,
each region develops in a distinctly different temporal pattern.

(Sp), external capsule (right and left; ExCap), retrolen-
ticular part of internal capsule (right and left; RLIC), and
posterior thalamic radiation which includes optic radiation
(right and left; PTR). The right and left of each anatom-
ical region were combined giving a total of eight regions.
Figure 5 plots the average FA, MD, RD, and AD of each
region for each subject. In all the regions, FA increases
with age, whereas MD, RD and AD decrease with age.
Interestingly, each region develops in a distinctly different
temporal pattern.

Paired t-tests of growth trajectories were performed for
all combination of pairs of regions for all the diffusion pa-
rameters. The results of all pairwise comparisons can be
found in Table 3 in Appendix B. Differences in parameters
β1 and β2 were significant between most pairwise compar-
isons among diffusion parameters, whereas β3 was only
significant in a few regions: genu, splenium, and body of
corpus callosum, and mostly when considering the RD or
MD measurements. Genu was the only structure that was
significantly different than all the other regions in the β3
parameter of RD and MD. This region decreased in MD
and RD at slower rate compared to all the other regions.
We didn’t find any pattern that was consistent among dif-
ferent parameters and different measurements since each
parameter measures a different aspect of growth. Inter-
estingly, we noticed some pairwise comparisons with sig-
nificant differences in β1 parameter between AD and RD

trajectories, but no differences in MD (ALIC vs. PLIC,
Genu vs. ExCap). This happens when reverse temporal
patterns are seen for AD and RD, suggesting that anal-
ysis of AD and RD may reveal much better insight into
maturation than MD alone.

In this section, we focus on PLIC/ALIC, body of corpus
callosum (BCC), and splenium comparisons as examples
of commissural and projection fibers. These regions are
known to have distinctive maturation pattern and axonal
density. The PLIC is one of the structures that shows early
myelination, while ALIC shows later maturation compared
to PLIC as is shown in higher FA, and lower RD and MD.
Figure 6 shows the population and individual trajectories
of FA, MD, RD and AD as modeled by Nonlinear Mixed
Effect for ALIC/PLIC. As expected, the PLIC shows a
higher FA compared to ALIC at birth mainly explained
by lower RD. After about 800 days both regions have the
same MD and similar FA and RD values. However, the
ALIC shows a higher AD compared to PLIC, possibly in-
dicating a different structuring of this tract region. The
delay parameter of the Gompertz function β2 was signifi-
cantly different between ALIC and PLIC for FA, MD, and
RD measurements, an indication of later development of
ALIC compared to PLIC. Also, the asymptote β1 was sig-
nificantly different for FA, RD and AD.

The body of the corpus callosum (BCC) and splenium
(Sp) are known to have very limited myelination at birth
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Figure 6: Population and individual growth trajectories for PLIC and ALIC regions. Thicker curves illustrate the average growth trajectories,
and individual trajectories are shown via the red and blue functions of individual subjects for ALIC and PLIC, respectively. Gompertz
parameters with statistically significant differences are: FA: β1**, β2**, MD: β2**, RD: β1**, β2**, AD: β1*, where * denotes p < 0.05, **
denotes p < 0.01 and where β1, β2 and β3 represent asymptote, delay and speed.

200 400 600 800

0
.0

0
.2

0
.4

0
.6

0
.8

Age (days)

F
A

200 400 600 800

0
.0

0
0
5

0
.0

0
1
5

Age (days)

M
D

 (
m

m
2

s
)

BCC  (population)

Sp  (population)

BCC  (individual)

Sp  (individual)

200 400 600 800

0
.0

0
0
5

0
.0

0
1
5

Age (days)

R
D

 (
m

m
2

s
)

200 400 600 800

0
.0

0
0
5

0
.0

0
1
5

Age (days)

A
D

 (
m

m
2

s
)

Figure 7: Population and individual growth trajectories for the body of the corpus callosum (BCC, blue) and the splenium (Sp, red). Thick
curves are the average growth trajectories. Gompertz parameters with significant differences are: FA: β1**, β2**, MD: β2**, RD: β1**, β2**,
AD: β1*, where * denotes p < 0.05, ** denotes p < 0.01 and where β1, β2 and β3 represent asymptote, delay and speed, respectively.
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Figure 8: PLIC (blue) compared to three other regions. Left column: ALIC (red), middle column splenium (red) and right column BCC
(red). Solid curves are the estimated growth trajectories, the 95% confidence interval of the curves are shown as shaded regions. The dashed
lines show the 95% predicted intervals for each region. Gompertz parameters with statistically significant differences are the following: ALIC
vs. PLIC: FA: β1**, β2**, RD: β1**, β2**, AD: β1*. PLIC vs. Sp: FA: β2**, RD: β2*, AD: β1**,β2*. PLIC vs. BCC: FA: β1**,β2**, RD:
β1*, where * p < 0.05, ** p < 0.01, and β1, β2 and β3 represent asymptote, delay and speed, respectively.

but higher axonal density compared to ALIC and PLIC,
and the splenium shows earlier myelination compared to
BCC (Rutherford, 2002). Figure 7 shows population and
individual growth trajectories for the body of the corpus
callosum and splenium. The splenium shows higher FA at
birth and also throughout the first two years, while RD is
about same at birth, but diverges at two years. Reverse
patterns are seen for AD and RD at about two years, which
causes MD to be about the same. All three parameters of
the Gompertz function for RD were significantly differ-
ent between BCC and Splenium, suggesting that RD may
capture early maturation patterns more sensitively than
the other measures. The asymptote parameter was sig-
nificantly different among all the measurements between
these two regions.

Figure 8 shows FA, RD and AD of PLIC (shown in
blue) compared to other three regions ALIC, BCC, and
Sp (shown in red). In this figure, solid lines are the av-
erage estimated growth trajectories for each region, the
shaded regions are the 95% confidence interval of these
average curves. Monte Carlo simulation was used to gen-
erate 1000 curves based on the approximate distribution

of the maximum likelihood estimates of fixed effects. The
95% range of these curves are calculated pointwise to ob-
tain the confidence interval. The dashed lines show the
95% predicted interval which is also calculated based on
the Monte Carlo simulation of 1000 curves based on the
approximate distribution of both fixed effects and random
effects.

The splenium shows a high RD at birth relative to PLIC,
by about 800 days however, both regions have approxi-
mately the same RD value as shown in Figure 8 . The
splenium has very limited myelination at birth, while the
PLIC is known to have a higher level of myelination at
this time of development. These facts are evident in the
difference in RD at birth between splenium and PLIC. At
age two, however, the splenium shows approximately the
same RD value, indicating that it catches up with PLIC.

The values of Gompertz parameters for all the regions
and all diffusivity measures are shown in Figure 9. Each re-
gion shows a distinct pattern of development as is depicted
by the β1, β2, and β3 parameters of Gompertz function.
As indicated in Sec. 2.3.1 the parameters β1, β2 and β3
represent asymptote, delay and speed, respectively. When
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White matter anatomical structures
Anterior limb of internal capsule ALIC
Posterior limb of internal capsule PLIC
Retrolenticular part of the internal capsule RLIC
Posterior thalamic radiation PTR
Genu of Corpus Callosum Genu
Splenium of Corpus Callosum Sp
Body of Corpus Callosum BCC
External Capsule ExCap

Figure 4: White matter anatomical labels that are used for regional
analysis. Labels are overlaid on the FA (Fractional Anisotropy) map
of the reference space that is the population atlas.

β1 : RA > RB , the expected value of diffusion parame-
ters for region A is higher than region B at year 2. When
β2 : |RA| > |RB |, region RB matures earlier compared
to RA. The scenario β3 : RA > RB indicates accelerated
growth for RB compared to RA. Note that the delay pa-
rameter is negative for RD, AD and MD measurements
as these values decrease during early brain development,
where as the delay parameter is positive for FA as frac-
tional anisotropy increases during this time period.

4. Discussion

Assessment of brain growth patterns in these regions re-
veals a nonlinear pattern of maturation with considerable
regional variation as shown in previous studies (Mukherjee
et al., 2001; Hermoye et al., 2006; Schneider et al., 2004).
In agreement with previous studies, increased FA and de-
creased MD, AD, RD were observed within all the white
matter regions during this period (Forbes et al., 2002;
Mukherjee et al., 2001; Schneider et al., 2004; Zhang et al.,
2005). This longitudinal pediatric study supports a rapid
change during the first 12 month followed by slower mat-
uration during the second year similar to previous stud-
ies (Hermoye et al., 2006; Geng et al., 2012). Our study,

in addition to supporting earlier cross-sectional reports on
negative correlation between age and diffusion parameters,
provides greater statistical power to examine nonlinear
pattern of maturation in various white matter regions.

Beyond the analysis of FA and MD measurements, in
this study we included RD and AD analysis of these white
matter regions. The regional comparisons of white matter
regions indicates that individual AD and RD carry im-
portant information which may not be found in the MD
diffusivity measures. The relationship of AD/RD and FA
is complex and nonlinear, but our data suggest that mod-
eling FA, AD, RD as time trajectories provides more in-
formation than only FA as illustrated in Figures 6 and 7.

For example, FA of splenium and PLIC are approxi-
mately the same values at birth, yet we know that the
splenium is not myelinated at birth, and we see the signif-
icant differences of RD between these regions. The high
FA value of the splenium at birth may be due to its high
density of axons. This discussion of FA for PLIC and
splenium clearly reflects that FA is not necessarily a good
indicator for the degree of myelination and may be greatly
influenced by axonal density particular to this develop-
mental interval (LaMantia and Rakic, 1990). In contrast,
the similarity of FA trajectories for PLIC and splenium,
for which we see very different AD and RD patterns and
thus different tensor shapes, illustrates that interpretation
of FA with respect to myelination and structural integrity
is difficult, and that the additional AD and RD measures
provide richer information.

Modeling the nonlinear growth changes of white matter
by the Gompertz function and inclusion of AD and RD to
the analysis provides a more detailed and comprehensive
picture of the changes within these white matter regions.
Compared to previous studies of linear fitting with loga-
rithm of age (Lobel et al., 2009; Faria et al., 2010; Chen
et al., 2011) we fit the nonlinear growth curves (Gompertz
function) to the diffusion data and actual age, this en-
ables the parameterization of the trajectories in terms of
asymptote, delay and speed and models nonlinear tempo-
ral changes with improved accuracy. Based on our find-
ing, the delay parameter of the Gompertz function, β2
of RD seems to be closest related to myelination process
if we compare results to what is known from the liter-
ature. Looking at RD and β2 delay parameter of the
Gompertz function as is shown in Figure 9, we see a good
correspondence with previous radiology findings, such as
in (Rutherford, 2002). In fact, RD has been considered
to be in correspondence with histological changes in de-
myelination (Song et al., 2002). Table 2 compares our
findings versus existing knowledge from radiology litera-
ture, which indicates development of PLIC prior to ALIC,
and splenium prior to genu which is also consistent with
previous histological findings (Brody et al., 1987; Kinney
et al., 1988).

Our framework is designed not only to provide quali-
tative comparisons, but to give researchers and clinicians
quantitative parameters and a statistical testing scheme.

9



-0.199055357

-1.2

-0.9

-0.6

-0.3

0

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

RD - β2 parameter

0.992

0.994

0.996

0.997

0.999

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

RD - β3 parameter

-0.6

-0.45

-0.3

-0.15

0

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

MD - β2 parameter

0.992

0.994

0.996

0.997

0.999

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

MD - β3 parameter

0

0.2

0.4

0.6

0.8

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

FA - β2 parameter

0.991

0.993

0.995

0.996

0.998

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

FA - β3 parameter

0.992

0.994

0.996

0.997

0.999

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

AD - β3 parameter

-0.3

-0.225

-0.15

-0.075

0

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

AD - β2 parameter

0

0.0005

0.0010

0.0015

0.0020

PTR ExCap PLIC ALIC  BCC RLIC Sp Genu

AD - β1 parameter

0

0.0002

0.0004

0.0005

0.0007

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

RD - β1 parameter

0

0.0003

0.0005

0.0008

0.0010

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

MD - β1 parameter

0

0.2

0.4

0.6

0.8

PTR ExCap PLIC ALIC BCC RLIC Sp Genu

FA - β1 parameter

Figure 9: Gompertz parameters RD, AD, MD and FA, from top to bottom. Left to right: β1 is the asymptote parameter of the Gompertz
function (blue), β2 is the delay parameter (green), and β3 is related to the speed (purple). The delay parameter is negative for RD, AD,
and RD as the estimated model represents a decreasing Gompertz function, whereas the FA delay parameters are positive since FA values
increase during development. When β1 : RA > RB , the expected value of diffusion parameters for region A is higher than region B at year 2.
When β2 : |RA| > |RB |, region RB matures earlier compared to RA. β3 : RA > RB indicates accelerated growth for RB compared to RA.
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Table 2: Relative order of appearance of myelin from term to 2 years

Distribution of myelin as seen in Estimated based on

T1W and T2W by Rutherforld RD delay parameter β2

PLIC and optic radiation PLIC, PTR and ExCap

ALIC ALIC and BCC

Not available RLIC

Splenium Splenium

Genu Genu

Moreover, the method includes modeling of growth tra-
jectories of individuals, resulting in personalized profiles.
This property will be crucial for efforts to improve predic-
tion and diagnosis for individuals, as well as partition-
ing groups of subjects according to subtypes and sub-
tle variations in early developmental trajectories. Mod-
els which assume invariance or linearity between neurobe-
havioral markers are apt to miss crucial shifts in develop-
ment (Shaw et al., 2006; Thomas et al., 2009). The ability
of the present framework to capture the dynamic prop-
erties of inter- and intra-individual development has the
potential to substantially improve clinical applications of
developmental neuroimaging.

There are some limitations to our proposed frame-
work. Our analysis depends on accurate image registra-
tion among all the subjects and time points. Early brain
development is characterized by a rapid change of con-
trast and size of the brain, which makes registration a
challenging task. However, in this study we decided to use
ROI defined regions which we expect to be more robust
to misregistration compared to voxel-based analysis, and
these regions are located more interiorly where we expect
less registration problems. Nonetheless, improved spatial
registration will potentially improve the accuracy of the
model. Another limitation is that the statistical analysis
is based on the log-likelihood of nonlinear mixed effects
modeling, which does not have a closed form solution. We
have used a linear mixed effect approximation, so greater
care should be taken when doing hypothesis testing with
the estimated parameters.

In the future, we plan to extend our method to tract-
based regions with modeling along the tract changes. We
also plan to extend the model to multivariate growth func-
tion similar to (Xu et al., 2008) and include a much larger
set of regions for analysis.

5. Conclusions

We have presented a framework for the processing of
longitudinal images in order to characterize longitudinal
development of white matter regions at both the individ-
ual and group level. By utilizing nonlinear mixed effects
modeling, we jointly estimate the population trajectory
along with each individual trajectories. Gompertz param-
eterization of diffusion changes provides an intuitive pa-
rameterization of growth trajectory in terms of asymptote,

delay and speed. This provides a description of longitudi-
nal changes with potential for detecting deviations from a
typical growth trajectory sensitive to multiple neurodevel-
opmental phenomena. We have also presented a method
for making inference about regional differences in diffu-
sion properties known to vary by microstructural proper-
ties and developmental course (Dubois et al., 2008; Kin-
ney et al., 1988; LaMantia and Rakic, 1990; Lebel and
Beaulieu, 2011). This is in contrast to standard modeling
and analysis of testing for group or regional differences as
it reveals the type, timing, and nature of differences. The
proposed analysis can be extended to an arbitrary num-
ber of regions, and applied to other measurement such as
structural MRI.

As discussed in the previous section, the present study
clearly illustrate that studying FA alone as an indicator of
white matter maturation or integrity insufficiently char-
acterizes structural properties of white matter and may
produce misleading results as regions with very different
axonal density and differing degrees of myelination may
show similar FA values. We suggest that in addition to
FA, studies should include statistical analysis of AD and
RD, which provide important additional information to
better explain FA measures. In regard to early matura-
tion, we demonstrate that the radial diffusivity (RD) mea-
sure and the delay parameter β2 of the Gompertz function
seem to be the best combination to describe early brain
maturation. We will further explore this in applying our
framework to DTI of infants with developmental delay and
myelination storage disorders such as Krabbe’s disease.
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Appendix A. Summary of Registration Parameters

Intra-subject and inter-modality registration

We use the IRTK software (Rueckert et al., 1999) to per-
form intra-subject and inter-modality registration. The
registration method is a multi-scale approach using B-
spline transformation, where we use the normalized mu-
tual information image match metric. We use three dif-
ferent scales and discretize the image intensity histograms
into 64 bins. In this study, the B-spline transforms are
parametrized using 14 x 14 x 14 control points.

Inter-subject registration

We construct an unbiased atlas (Joshi et al., 2004)
and the associated inter-subject registration using the
Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) (Miller et al., 2002) that minimizes the following
objective function:

argmin
v:φt=vt(φ)

1

σ2

∑
i

||Ī − Ii ◦ φ−1
i ||

2
L2 +

∑
i

∫ T

t=o

||vit||2v (8)

where Ī is the image atlas, Ii is the image of subject i,
φi is the mapping relating subject i to the atlas that is

parametrized using the velocity vi. Regularity of the map-
ping φ is enforced by minimizing

||vt||2v =< Lv, v >,L = α∇2 + β∇+ γI

where L is the Navier-Stokes operator. In this study, we
use α = .01, β = .01, γ = .001, and σ = 1.

Appendix B. Summary of p-values of pairwise com-
parisons

Table 3 provides the result of pairwise testing of all white
matter regions and all the diffusivity measurements.
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Table 3: Results of pairwise testing of all white matter regions and all diffusivity measures. Gompertz parameters with significant differences
are denoted by * for p < .05 and ** for p < 0.01. Non significant parameters are indicated by “ns”.

Alic Plic Genu BCC Sp ExCap Rlic PTR
Alic FA β∗∗

1 , β∗∗
2 β∗∗

1 β∗∗
1 β∗∗

1 β∗∗
1 ns β∗∗

2

MD NA β∗∗
2 β∗∗

2 ,β∗∗
3 β∗∗

1 β∗∗
1 ,β∗∗

2 β∗∗
1 β∗∗

1 ,β∗
2 β∗∗

1 ,β∗∗
2

RD β∗∗
1 ,β∗∗

2 β∗∗
1 ,β∗∗

2 ,β∗∗
3 β∗∗

1 β∗∗
2 β∗∗

1 ,β∗∗
2 β∗∗

1 β∗
1 ,β

∗∗
2

AD β∗
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