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Abstract. This paper presents a framework for modeling growth trajec-
tories and determining significant regional differences in growth pattern
characteristics applied to longitudinal neuroimaging data. We use non-
linear mixed effect modeling where temporal change is modeled by the
Gompertz function. The Gompertz function uses intuitive parameters
related to delay, rate of change, and expected asymptotic value; all de-
scriptive measures which can answer clinical questions related to growth.
Our proposed framework combines nonlinear modeling of individual tra-
jectories, population analysis, and testing for regional differences. We
apply this framework to the study of early maturation in white matter
regions as measured with diffusion tensor imaging (DTI). Regional dif-
ferences between anatomical regions of interest that are known to mature
differently are analyzed and quantified. Although our framework can be
applied to any image-derived measurements, we show statistical tests for
axial diffusivity (AD) and radial diffusivity (RD) measurements as these
are known to be sensitive to degree of myelination and axonal structur-
ing. Experiments with image data from a large ongoing clinical study
show that our framework provide descriptive, quantitative information
on growth trajectories that can be directly interpreted by clinicians. To
our knowledge, this is the first statistical analysis of growth functions to
explain the trajectory of early brain maturation.

1 Introduction

Longitudinal imaging studies with repeated scans per subjects require appropri-
ate analysis procedures that take into account the special nature of such study
designs. These include correlation due to repeated measures, often with unbal-
anced spacing due to acquisitions at different time points and missing data at
certain time points. Early development is characterized by large initial growth
that flattens off, which favors nonlinear growth modeling. Typical clinical ques-
tions are addressing growth trajectory characterizations such as delayed or ad-
vanced growth, accelerated or slowed growth, or the question if groups can reach
the same level of maturation if they have a delayed start.



Diffusion Tensor Imaging (DTI) provides a unique opportunity to assess the
tissue structure of brain white matter in vivo, and has great potential to pro-
vide insight into early development. Previous studies have mostly focused on
morphometry changes such as volume of gray and white matter, cortical thick-
ness, and shape [7, 4, 13, 12]. There is also considerable research on DTI, however
these are cross sectional studies and/or studies on children older than 2 years
[1, 2]. The human brain undergoes the most significant change in the first and
to a lesser extent in the second year, and studies of changes in white matter
diffusivity that can be linked to cognitive development will be crucial to pro-
vide a better understanding of early growth. While longitudinal DTI of infants
covering the few years of life are becoming available, analysis methodologies for
assessing longitudinal changes of individuals and populations, to our knowledge,
are not available. In this study, we focus on developing longitudinal models for
diffusion parameters which are obtained from repeated scans of children imaged
at 2 weeks, 1 year and at 2 years of age. DTI indices have been shown to provide
relevant information about brain maturation and the underlying tissue changes
as they indicate water content and myelination [4]. In this study, we focus on
axial and radial diffusivity (AD and RD) as opposed to fractional anisotropy
(FA) as FA is not a good indicator of myelination [6]. Describing and analyzing
the non-linear changes of white matter are difficult as regions in the brain begin
to mature at different times, with different rates [1]. We quantify these differ-
ences using Gompertz functions [3] that provide an intuitive parametrization
representing delay, growth, and saturation rate in each region.

In contrast to previous studies, we analyze growth trajectories based on an
explicit growth function and a nonlinear mixed effect modeling scheme [10]. Dif-
fusion changes are modeled in a hierarchical fashion, with the global population
trend as a fixed effect and individual trends as random effects. Mixed effect
models are well suited for longitudinal data, where each time series constitutes
an individual curve. Classical statistical approaches assume each observation is
independent with equal distribution, which are not appropriate for repeated mea-
sures. We apply our framework to compare a set of white matter regions that are
known to have different growth patterns and myelinate at different time periods.
Quantitative analysis of these regions will provide further insight into brain mat-
uration process and allow us to predict subject-specific growth trajectories with
the potential of detecting pathological brain development related to brain dis-
orders. We show that the statistical quantitative analysis results in parameters
that use the clinician’s vocabulary for assessment of growth trajectories.

2 Method

Non-linear Mixed Effects Modeling: We use a non-linear mixed effects
(NLME) model to analyze the longitudinal DTI data. Compared to current
statistical analysis on DTI which uses least-squares curve fitting, this is a true
longitudinal model that can have unbalanced temporal data. The model can
admit variable numbers of temporal observations in each subject; a significant
advantage in real clinical data that often has missing observations. Also, the



model is robust to outliers as it accounts for the variabilities within individuals.
In this subsection, we present a review of the non-linear mixed effects model.
We will present our approach for analyzing longitudinal DTI data using NLME
in the next subsection.

In the mixed effects model, the observed data is assumed to be a combination
of both fixed effects, parameters associated with the entire population or at least
within a sub-population, and random effects that are specific to an individual
drawn at random. In non-linear mixed effects models, some or all of the fixed and
random effects parameters present nonlinear responses. This makes nonlinear
mixed effects model a natural and common choice for longitudinal data. We use
the NLME model proposed by Lindstrom and Bates [8] which is a hierarchical
model, where the jth observation on the ith individual is modeled as:

yij = f(φi, tij) + eij i = 1, · · · ,M ; j = 1, · · · , ni (1)

where M is the number of individuals, ni is the number of observations on the
ith individual, f is a nonlinear function of the covariate vector tij and parameter
vector φij , and eij ∼ N(0, σ2) is an i.i.d. error term. The parameter vector can
vary among individuals. This is incorporated into the model by writing φi as

φi = Aiβ +Bibi bi ∼ N(0, Ψ) (2)

β is a p-vector of fixed effects, and bi is a q-vector of random effects associated
with individual i with variance-covariance Ψ . Ai and Bi are design matrices.
Regional Analysis of Longitudinal DTI Patterns: We perform quantitative
analysis on a population of longitudinal DTI data within anatomical regions.
We model DTI features as non-linear mixed effects, which combines regional
population trends and individual subject trends. For this section, we assume
that DT MR images have been registered to a standard reference space.

The primary goal for our analysis of growth trajectories is to determine
whether patterns of growth are different among different regions, and if we can
provide a descriptive, intuitive parametrization for each region that can be com-
pared to other regions of brain. As the human brain undergoes rapid changes
in the first year of development and slows considerably in later years, we model
early development patterns in DTI using the Gompertz function. Specifically,
we model temporal growth for an individual i, time points tij , and region r
by nonlinear mixed effect model of Gompertz function that is parametrized by
asymptote φr1, delay φr2, and rate of change φr3 for a given region r:

yrij = f(φri , tij) + eij = φr1i exp{−φr2iφr3i
tij}+ eij (3)

where the mixed effects are φri = [φr1i φ
r
2i φ

r
3i]
T = βr + bi, the fixed effects

for region r are βr = [βr1 βr2 βr3 ]T , and the random effects for each subject
i are bi = [b1i b2i b3i]

T . In this model, p and q are same size vectors, and the
design matrices A and B are identity. We note that an alternative representation
for Gompertz function is y = asymptote exp(−delay exp(−speed t)) where
speed = − log β3, thus higher β3 implies lower speed.
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Fig. 1. Effect of varying the parameters of the Gompertz functions. The red curve show
the reference curve that is held fixed. Left to right: the dashed blue curves show the
effect of increasing values of β1, β2, and β3 respectively. β1 represents the asymptote,
β2 represents the delay, and speed is represented by − log β3.

The parameter φri combines the fixed effects of each region denoted by βr

that represents mean values of parameter φi in the population with random
effect which denotes individual variation from the mean. The parametrization
intuitively splits temporal changes as delay, growth and saturation (Fig. 1).

We obtain mixed effect model parameters using maximum likelihood estima-
tion (MLE) on the marginal density of the respones y:

p(y|β, Ψ, σ2) =

∫
p(y, |β, b, Ψ, σ2)p(b)db

There is generally no closed form solution, so we use the approximation method
proposed by Lindstrom and Bates [8], using the nlme function in R4, to obtain
model parameters, β, b, Ψ ,σ. Once all the model parameters are estimated, we
can conduct hypothesis testing and determine the significant modes of longitu-
dinal changes in terms of asymptote, delay, and speed between regions. With

N number of regions, we accomplish this through N(N−1)
2 pairwise fitting of

nonlinear mixed effect model and test for fixed effect significance through t-test;
corrected for multiple comparisons using Bonferroni correction. The parameters
that are found to be significant can then be interpreted as the distinguishing
feature between the longitudinal patterns of the two regions. For example, if
the parameter βr2 is found to be significantly different for two regions then the
longitudinal growth for one region is delayed compared to the other.

3 Results and Conclusions

Validation on Synthetic Data: We use randomly generated synthetic longitu-
dinal data to ensure our analysis methodology can capture underlying differences
as presented in the synthetic data. Random data representing two regions is gen-
erated, and we verify that the overall trend of the subjects and each subject’s
specific growth trajectory matches the known ground truth. It is also important
that the Gompertz parameters are verified to be significantly different between
the two regions, matching the synthetic model. Synthetic random longitudinal
data are generated following equation 3 where Ψ = diag(0.0016, 0.0004, .000004)

4 http://r-project.org
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Truth R1 Estimated R1 Truth R2 Estimated R2 p-value
β1 1 1.003 1 1.003 0.49
β2 -2 -1.986 -2 -1.987 .96
β3 .989 .990 .992 .993 < 0.001

Fig. 2. Example of randomly generated synthetic longitudinal data for two different
regions colored blue (R1) and red (R2). Top to bottom: varying β1 between two regions,
varying β2 between two regions, and varying β3 between two regions. The significance
values obtained from pairwise testing of different regions are shown on the right.

and σ2 = 0.000001. Values for four time points of three subjects are generated
while keeping some of the fixed parameters, β, the same in the two regions.
We then vary one of the fixed parameters, and test for significant differences
between two regions. Fig. 2 summarizes our experimental results. The results
demonstrate that our approach can detect significant discriminatory features of
growth patterns in a pair of regions in terms of the Gompertz asymptote, delay
and speed parameters.
Analysis of Clinical Data: We perform analysis on a set of repeated scans of
eight healthy subjects scanned at approximately 2 weeks, 1 year and 2 years of
age. The images include T2W and DTI. We apply the unbiased atlas building
framework by Joshi et al. [5] to the set of T2W images at 1 year to obtain
spatial mappings between each subject through the estimated atlas. Scans of
other time points of each subject are registered to this atlas via linear and
nonlinear transformations. Tensor maps are calculated for each DTI scan, and
are registered to the atlas using transformations obtained by registering the
DTI baseline (B0) images to T2W images. In this study, we extract the axial and
radial diffusivity features from the registered tensors, AD = λ1 and RD = λ2+λ3

2
where λi are the sorted eigenvalues of the tensor.

For regional analysis, we select four anatomical regions in the unbiased at-
las that are known to mature in distinctly different patterns and determine the
characteristics of these differences. Since all DT images are registered to a com-
mon coordinate space, regions determined in this space can be automatically
transferred to each individual image. We use regions defined by Mori et al. [9]
that were registered to our unbiased atlas and modified through binary erosion
for improved accuracy. The selection of regions in the atlas space allows auto-
matic partitioning of the subjects’ scans into different anatomical regions. Fig. 3
shows the estimated individual and population growth trajectories of AD and RD
indices for Anterior and Posterior Limb of Internal Capsule (ALIC and PLIC re-
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Fig. 3. Individual (dashed lines) and population curves (solid lines) for selected regions.
Left: ALIC (blue) compared to PLIC (red). Right: Splenium (blue) compared to PLIC
(red). Horizontal axis is age (since birth) in days.

spectively), and Splenium. The ALIC to PLIC comparison clearly demonstrates
that PLIC has lower RD at birth due to initial myelination, but ALIC reaches
the same level at 2 years. However, there were no significant differences in AD
measurements between ALIC and PLIC, which may hint to the fact that RD is
a better discriminatory factor for myelination compared to AD. Splenium also is
not myelinated at birth, but then rapidly matures as it’s shown in the RD plot.

Fig. 4 shows a summary of pairwise comparisons of Genu, Splenium, ALIC,
and PLIC. We characterize the differences in an intuitive way using Gompertz
asymptote, delay and speed parameters. Our findings confirm the temporal se-
quence of myelination of these selected regions provided by Rutherford et al. [11].
Conclusions: This paper presents a statistical methodology for characterizing
longitudinal patterns of tissue properties in white matter regions. Our approach
provides characterizations of the significant discriminating features of growth
patterns, within a pair of regions, in terms of the Gompertz asymptote, delay,
and speed parameters. The characterization using the Gompertz parameters pro-
vides an intuitive description of longitudinal trends, with potential for analyzing
biological progression due to neurodevelopment or aging. This is in contrast to
current modeling and analysis of DTI in early brain development where testing
for regional or group differences does not directly reveal the type and nature
of the difference. We have shown experimental results on the analysis of lon-
gitudinal DTI patterns in early development, where we performed quantitative
comparisons and determine significant differences of growth patterns in certain
anatomical white matter regions. Statistics on our growth function parameters
provide a natural description of growth that can be easily interpreted in clinical
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Fig. 4. Result of pairwise testing of different white matter regions, shown in the diag-
onal. Lower triangular: Gompertz parameters with significant differences (p < 0.001).
Upper triangular: blue curves represent the population trajectory for a region denoted
by the rows, and red curves represent growth trajectories of the population for re-
gions denoted by the columns. Rows alternate between AD and RD values. When
β1 : R1 > R2, expected value of axial and radial diffusivity for R1 is higher than
R2 after early development. When β2 : R1 > R2, region R2 is delayed in maturation
compared to R1. β3 : R1 > R2 indicates accelerated growth for R2 compared to R1 as
speed is − log β3.



studies, and they also confirm previous findings on neurodevelopment. The anal-
ysis can be extended to arbitrary number of regions, and can be performed on
other diffusion invariants such as fractional anisotropy (FA) or mean diffusivity
(MD), or even tissue features extracted from structural MRI. Future research
is necessary towards a nonlinear mixed effect modeling of multi-variate growth
functions following a strategy described in [12], for example. In addition, we
plan to use models obtained from healthy subjects as normative data for com-
parison with predicted white matter changes in developmental disorders.
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