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Abstract

Current approaches for estimating the cardinality of
XML queries are applicable to a static scenario wherein
the underlying XML data does not change subsequent to
the collection of statistics on the repository. However, in
practice, many XML-based applications are dynamic and
involve frequent updates to the data. In this paper, we inves-
tigate efficient strategies for incrementally maintaining sta-
tistical summaries as and when updates are applied to the
data. Specifically, we propose algorithms that handle both
the addition of new documents as well as random insertions
in the existing document trees. We also show, through a de-
tailed performance evaluation, that our incremental tech-
niques are significantly faster than the naive recomputation
approach; and that estimation accuracy can be maintained
even with a fixed memory budget.

1. Introduction

The database community has invested substantial re-
search in recent years on developing systems for the effi-
cient storage and querying of XML data. A component
that is essential to the success of such systems is the re-
sult estimator, which estimates the cardinalities of the re-
sults of user queries [9]. These cardinalities serve as in-
puts in many aspects of XML data management systems:
from cost-based storage design and query optimization, to
providing users with early feedback about the expected out-
come of their queries and the associated computational ef-
fort.

Several techniques for estimating XML query cardi-
nalities have appeared in the recent literature, including
[1, 5, 13, 14, 20, 21, 27]. These proposals differ in many
aspects, from the summary data structures used to the class
of supported queries. An especially important distinction is
in terms of the meta-data associated with the documents –
while most of the proposals focus on schemaless semistruc-
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tured data, the StatiX system [9] leverages the schema in-
formation to improve the quality of the statistics as well as
reduce the storage overheads.

Statistics Maintenance. A common lacuna of the above-
mentioned proposals is that they primarily address statistics
production, but not the equally important issue of statis-
tics maintenance. This is a critical shortcoming since many
XML applications are dynamic and frequently update the
underlying XML data. In the absence of statistics mainte-
nance, the cardinality estimates could go completely hay-
wire due to the lack of correspondence between the original
statistics and the current database contents. Further, while
updates to XML documents may be typically expected to
be “appends”, as in the case of a data warehouse, it is also
possible to have applications that insert, modify, or delete
at random locations within the existing document. For ex-
ample, an XML workflow application that keeps track of
customer purchase orders may dynamically update book-
keeping information about the status of the order as it navi-
gates through the order-processing cycle.

Periodically recomputing the statistics from scratch on
the updated documents is an obvious choice to cater to the
XML update problem. But since recomputation requires the
whole document to be parsed, it can be prohibitively expen-
sive [17] if recomputations occur frequently, especially for
large documents. This is especially problematic for statis-
tics collection techniques that make multiple passes over the
data (e.g., [20]). Further, if recomputations are not ade-
quately timed, stale statistical summaries may lead to un-
acceptable estimation errors. We argue the case here that
it is preferable to incrementally update the XML statistics
and to use recomputation only as a comparatively infrequent
backup mechanism.

Technical Challenges. In this paper, we present new tech-
niques to incrementally update XML statistical summaries
in parallel with the receipt of document updates. We as-
sume that a detailed accurate summary of the data, cre-
ated at the document loading time, is initially made avail-
able, and then, as and when updates are received, this
summary is also correspondingly updated. Specifically,



given an initial document D and its summary S, and a
stream of updates U = U1, U2, . . . , Um comprising of
inserts, deletes or modifications, the goal is to efficiently
and incrementally create summaries, S1, S2, . . . , Sm, such
that the accuracy of these summaries are comparable to
those obtained with a recomputed-from-scratch summary
S1

R, S2
R, . . . , Sm

R . Moreover, this should be achieved within
a fixed memory budget (that is, the incremental approach
has the same resource constraints as recomputation).

Incremental maintenance of data statistics per se is not
a new issue to the database community, having been pre-
viously addressed in the context of relational database sys-
tems (see e.g., [11]). However, what is novel in the XML
context is that statistics about both structure and value have
to be maintained. That is, while in an RDBMS, there is
no difference, as far as the statistics go, between the inser-
tion of a tuple in the middle of a relation or the appending
of the same tuple at the end, the location of the update is
always an issue in XML. Secondly, the size of the update
in an RDBMS can only be either a single tuple or a set of
tuples. But, in an XML environment, the update could be
an arbitrarily complex XML fragment, or sets of fragments.
For example, the update could require inserting sub-trees at
various locations in the original document. Thus, maintain-
ing accurate statistics for XML databases poses a fresh set
of problems as compared to those tackled in prior systems.

The IMAX Technique. Our solution to the XML statistics
maintenance problem is an algorithm called IMAX (Incre-
mental MAintenance of XML statistics), which we present
in detail in the remainder of this paper. IMAX is built
around the recently-proposed StatiX framework [9], which
not only produces concise and accurate summaries for XML
documents, but also has several features that make it attrac-
tive in a dynamic scenario. For example, StatiX captures or-
der information among the elements in a document through
the document schema and its numbering scheme (see Sec-
tion 2 for details). This information makes it possible to
estimate the location of updates — a key step in IMAX. In
addition, its use of histograms to uniformly capture struc-
tural and value skew simplifies adjusting summaries to fixed
memory budgets, and also permits the re-use of well-known
techniques for incremental histogram maintenance.

An important extension that we make to the StatiX
framework is the use of two-dimensional value histograms
(instead of the originally proposed 1D histograms) to cap-
ture the correspondence between the node ids and their val-
ues. Not only does the use of 2D histograms improve car-
dinality estimation in StatiX, but is also a key factor in the
effectiveness of IMAX. An empirical evaluation of IMAX
(with both 1D as well as 2D histograms) over a variety
of XML documents and update streams demonstrates that
IMAX provides, at a marginal run-time cost, accuracy com-
parable to the brute-force recomputation approach, even

with a fixed memory budget.

2. Overview of StatiX

In this section, we provide background material on the
StatiX framework. StatiX uses the document schema to
specify which statistics to gather – specifically, statistics are
gathered for the types defined in a given schema. This has
several benefits, notably: a standard validating parser (e.g.,
Xerces [28]) can be used to gather the statistics as the doc-
ument is parsed, amortizing the cost of statistics collection;
and the granularity of statistics can be easily tuned for a
given application by adding type definitions for relevant el-
ements and by applying schema transformations (see [9] for
details).

The successful validation of an XML document against
a given schema results in the assignment of types (defined
in the schema) to the nodes in the document [24]. StatiX
leverages this information to build the statistical summaries.
Intuitively, as the document is validated, StatiX keeps track
of the number of occurrences of each type, and how the
instances of a given type are distributed over the instances
of its parent type(s).

Statistics gathering proceeds as follows. Each type de-
fined in the schema is associated with a unique type id. As a
document is parsed and occurrences of a given type are en-
countered, a new sequential node id is assigned to each oc-
currence. The concatenation of type id and node id uniquely
identifies a given node in the document tree. Note that the
order of occurrence of the type in the document determines
the order in which node ids are assigned. For each type
defined in the schema, StatiX has an associated parent set.
Since validation is performed in a top-down fashion, and
a parent is always processed before its children, for each
type instance encountered, the id of the parent node is incre-
mentally added to the parent set of the corresponding child
type. This information is later summarized in a structural
histogram, which supports cardinality estimation for each
edge in the XML Schema type graph.

Assigning contiguous ids to a given type is critical to
building accurate and concise histograms—the use of non-
contiguous ids may result in large gaps within buckets as
well as betweeen buckets. Since equi-depth histograms re-
sult in significantly smaller estimation errors as compared
to equi-width histograms [19], we have implemented the
former in StatiX. Besides structural information, StatiX
also captures value distributions at the leaf-node level using
value histograms. While structural histograms are unique
to the XML context, value histograms are commonly used
in traditional relational storage systems.

An example of an XML schema and a possible StatiX
summary corresponding to this schema is shown in Fig-
ure 1. The schema describes a database which contains in-



<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="IMDB" type="Imdb"/>
<xsd:complexType name="Imdb">

<xsd:sequence>
<xsd:element name="SHOW" type="Show"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Show">

<xsd:sequence>
<xsd:element name="TITLE" type="xsd:string"/>
<xsd:element name="YEAR" type="Year"/>
<xsd:choice>

<xsd:element name="MOVIE">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="BOXOFFICE" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="TV" type="Tv"/>

</xsd:choice>
<xsd:element name="AKA" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="REVIEW" type="Review"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:simpleType name="Year">

<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1900"/>
<xsd:maxInclusive value="2000"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Tv">

<xsd:sequence>
<xsd:element name="SEASONS" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Review">

<xsd:sequence>
<xsd:element name="RATING" type="xsd:string"/>
<xsd:element name="COMMENT" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

DEFINE STAT Show {
CARDINALITY { 5 }
ID_DOMAIN { 1 TO 6 } }

DEFINE STAT Review {
CARDINALITY { 16 }
ID_DOMAIN { 1 TO 17 }
PARENT HISTOGRAM Show {

BUCKET NUMBER { 2 }
BUCKETS {

FROM 1 TO 4 COUNT 10,
FROM 4 TO 6 COUNT 6 } } }

DEFINE STAT Tv {
CARDINALITY { 2 }
ID_DOMAIN { 1 TO 6 }
PARENT HISTOGRAM Show {

BUCKET NUMBER { 1 }
BUCKETS {

FROM 1 TO 6 COUNT 2 } } }

DEFINE STAT Year {
VALUE_DOMAIN { 1990 TO 2001 }
NUM_DISTINCT {5}
BUCKET NUMBER { 2 }
BUCKETS {

FROM 1990 TO 1994 COUNT 3,
FROM 1994 TO 2001 COUNT 2 } }

(a) (b)

Figure 1. IMDB schema and the corresponding StatiX summary

formation about shows. A show can be either a movie or a
TV show; has a title and year of release; and may contain
zero or more reviews, and zero or more alternative titles
(i.e., AKA). The summary contains statistical information
about all types defined in the schema. For each complex
type, it records the type cardinality, i.e., the number of oc-
currences of that type in the document; its id range; and its
parent histogram. For example, the type Review has cardi-
nality 16; ids ranging from 1 to 161; and a parent histogram
corresponding to Show, which indicates that there are 10
instances of REVIEW under SHOWs with ids from 1 to 3 and
6 instances under SHOWs with ids from 4 to 5. Simple types,
that correspond to elements with atomic content, are associ-
ated with value histograms. For example, the type Year has
a value histogram indicating that there are 3 occurrences of
Year with values between 1990 and 1993, and 2 occurrences
with values between 1994 and 2000.

Estimating Query Cardinality in StatiX. StatiX estimates
the cardinality of XML queries using histogram multiplica-
tion. Since path queries are expressed in terms of element

1In StatiX summaries, intervals are left-closed and right-open.

CardY ear = σ<1992 (Year) 1.5
KeyShow = distribute CardY ear into id range of Show [1-6: 1.5)
CardReview = freq (parentHist(Review) 1 KeyShow) ≈ 5

Table 1. Cardinality Computation in StatiX

(tag) names, and StatiX collects statistics for types, the tags
in the query are first mapped to the corresponding types;
and then the structural and value histograms corresponding
to the tags in the path are multiplied. If a structural his-
togram is not available for a given tag, uniform-distribution
is assumed for that tag. Note that value-based joins across
different paths are also supported. As an example, con-
sider the following query asking for all Reviews of Shows
made before 1992, on data corresponding to the schema in
Figure 1:

Query 1: //SHOW[YEAR < "1992"]/REVIEW

Here, the mapping of element names to types is straightfor-
ward, and in order to compute the query cardinality, we per-
form the computations outlined in Table 1. From the third
row, we conclude that the cardinality of the query (that is,
the number of Reviews) is approximately 5.



Tuning the Accuracy of StatiX Summaries. The accu-
racy of the StatiX summaries can be tuned by: (i) increas-
ing/decreasing the number of buckets in the histograms;
and/or by (ii) adjusting the granularity of the statistics col-
lection. The latter option is feasible due to the type-based
statistics gathering of StatiX. Although the types defined in
an XML Schema do not appear in the document, they can
be used during validation as annotations to document nodes.
Thus, by modifying the type-structure of an XML Schema
without altering the tag-structure, it is possible to generate
many equivalent schemas that validate the same set of docu-
ments [3]. Armed with these transformations, we can gather
different granularity statistics (coarser or finer) as required
by a given application.

3. Issues in Updating StatiX Summaries

The previous section highlighted the main components
of a StatiX summary, namely, (i) the schema, and (ii) struc-
tural and value histograms. We now discuss the steps re-
quired to incrementally update StatiX summaries.

Given an update query, it is important to know both how
many updates will be applied and also where they will be
applied. The importance of knowing the location of the in-
sertions stems from the fact that structural histograms cap-
ture the relative distribution of children with respect to their
parents. Hence, if the correct ids of the inserted components
can be computed, the appropriate buckets of the histogram
can be updated. In the case of XML updates there is always
an implicit location component to the update. For example,
consider the following insertion (using the syntax of [12]):

update
insert <REVIEW>

<RATING>Top drawer stuff!</RATING>
</REVIEW>

into //SHOW[TITLE="The sixth sense"]

Here, the path expression: //SHOW[TITLE="The sixth

sense"] describes the particular Show at which the update
applies. Inherently, there is an ordinal associated with this
SHOW, which is critical in updating the summary. Moreover,
the ordinal of SHOW determines the ordinal of the other el-
ements in the update fragment. For example, for the above
update query, in the parent histogram of Review, the count
of the bucket which contains the Show id of “The sixth
sense” needs to be incremented; and based on where the
review is added, the parent histogram of Rating also needs
to be updated. Note that if titles are unique, there is a single
location in the document which is updated with the given
REVIEW fragment. However, an update can also be applied
to a set of locations. For example, the following query in-
serts a new AGE sub-element into all movies and TV shows
made prior to 1930:

update
insert <AGE> Golden Oldie ! </AGE>
into //SHOW[YEAR < "1930"]

Location and cardinality estimation. It is possible to rely
on the actual update operation to determine the number and
location of updates—the database can provide this infor-
mation to the estimator module. Recall, however, that the
accuracy of estimation and the conciseness of summaries
achieved by StatiX are largely due to contiguous node ids
which both capture the order among elements and are ef-
fectively summarized by histograms. While such a num-
bering scheme is effective for StatiX, it may not be suit-
able for the backend database—using a contiguous node id
scheme at the backend could lead to unacceptable update
performance, since it may require a large number of ele-
ments to be renumbered [6, 23, 26]. Therefore, instead of
relying on a translation mechanism between the contiguous
node id scheme required by StatiX and the many possible id
schemes at the backend, we make update maintenance self-
sufficient by estimating both the cardinality and location of
the updates.

Updates to structure and value histograms. Another im-
portant difference to note in the case of updating StatiX
summaries is the nature of the histograms being updated.
Previously proposed techniques for histogram maintenance
(e.g., [11]) were designed for value histograms, not struc-
tural histograms. There are important differences between a
structural histogram and a value histogram. First, there is no
sanctity to the values in a structural histogram—structural
histograms are based on node ids, but the specific value of
the node id is not relevant as long as the histogram cor-
rectly captures the parent-child distribution. For example,
it does not make a difference whether a sequence of Shows
is numbered from 1 to 10 or from 100 to 110, as long as
the parent histograms of its children use the same values.
Second, the term “insertion” in the case of value histograms
and structural histograms take on different meanings. In
the case of insertion into a value histogram, the count of
the corresponding value is updated. However, in the case
of structural histograms, a “new” value is inserted and the
subsequent values renumbered. For example, if a new SHOW

is inserted between SHOW 2 and SHOW 3, the id of the new
SHOW is set to 3, and the ids of the subsequent shows are
incremented. Thus, the domain of the values in a structural
histogram continuously changes, and this change in ordinals
affects the bucket boundaries of all the parent histograms for
the children of type Show.

4. The IMAX Algorithm

In this section we introduce our techniques for maintain-
ing statistics in an XML document in the presence of in-
sertions and deletions of tree fragments. We restrict our
attention to the class of updates where the location of the
update is determined through branching path expressions in



the query. The general format of such a branching path ex-
pression is /t1[b1]/t2[b2]/.../tn[bn], where ti is the tag and
bi is a path expression which may contain value and struc-
tural predicates. In the sequel, we use Ti to denote the type
corresponding to the tag ti.

A high-level description of IMAX is provided in Algo-
rithm 1. It consists of three main steps: location estimation;
id estimation; and summary update. These steps are de-
scribed in detail in the remainder of this section.

Algorithm 1 IMAX Algorithm
1: Input: Summary S , Update U = (c, u)

{S is the initial summary; U is divided into condition c, and
u, the update fragment}

2: Estimate the location of update using c and S
3: Estimate the ids of update fragment u using S
4: Update S

4.1. Estimating the Location of the Update

Given the branching path predicate for the update loca-
tion, IMAX needs to estimate the cardinality of these up-
dates, as well as the ids of the nodes where the update
takes place. Estimating the location of the update is closely
tied to the cardinality estimation. Initially, each type can
be thought of as having a trivial one-bucket key histogram
whose end points are the range of ids of the type, and whose
frequency is the cardinality of the type. As we explain be-
low, we utilize this key histogram and the parent histogram
associated with each type to perform cardinality and loca-
tion estimates. A high-level description of the procedure is
shown in Algorithm 2.

This procedure operates in three stages: (i) compute
the key distribution and parent-key distribution for each of
the tis in the presence of predicates individually (lines 3
through 8); (ii) use these individual distributions to com-
pute the overall key distribution of the complete query (lines
9 through 12); and finally (iii) estimate the cardinality and
the location of the updates (lines 13,14).

There are three basic operations – histogram multiplica-
tion (lines 5 and 10), finding the key distribution (line 6),
and finding the parent key distribution (line 7). Histogram
multiplication is a well-known operation to find the join es-
timate given two histograms. Below, we describe the other
two operations in more detail.

Key distribution. Note that when two histograms are mul-
tiplied, one of the histograms is the key histogram having
values which occur exactly once. However, the join distri-
bution gives the total number of tuples in the result – that is,
the values in the key histogram may occur multiple times
in the result. From this join histogram, we need to deter-
mine which distribution of keys occurs in the join (line 6).

Algorithm 2 Location and Cardinality Estimation for the
Update

1: Input: c, H
{c is the path expression identifying the location}
{H is the set of histograms (value and structure) for all types
corresponding to the elements in c}

2: let c = /t1[b1]/t2[b2]/t3[b3]/.../tn[bn]
{ti is the tag (correspondingly, its type is Ti)}

3: for all i ∈ 1 to n do
4: Bi = result distribution of bi

5: Ji = Bi 1 keyHist(Ti)
6: keyHist(Ti) = key distribution of Ti based on Ji

7: parentHist(Ti) = compute distribution based on
keyHist(Ti)

8: end for
9: for all i ∈ 1 to n − 1 do

10: Ji = keyHist(Ti) 1 parentHist(Ti+1)
11: keyHist(Ti+1) = distribute freq(Ji) into keyHist(Ti+1)
12: end for

{Cardinality of the update}
13: card = frequency (Jn)

{We now compute the location ids}
14: locations = randomly choose card ids from the buckets of

keyHist(Tn) in proportion to their frequency

Algorithm 3 Estimating Ids
1: Input: parentHistchild, idparent

2: Output: idchild

{The parent histogram of the child element and the id of the
parent are the inputs}

3: idchild = 0
4: Bk ∈ parentHistchild such that idparent ∈ Bk

5: for all i ∈ 1 to k − 1 do
6: idchild + = frequency of Bi

7: end for
8: idchild + = bfreq(Bk)/range(Bk)∗

(idparent − lowerbound(Bk))c

The fact that keys are unique can be used to compute this
distribution as follows: (i) initially, construct a key distri-
bution histogram K by dividing the key histogram into the
same number of buckets as the join histogram and in which
the frequency of each bucket is the same as its range, (ii)
for corresponding buckets ji in the join histogram and ki

in the key distribution histogram, if frequency of ji is less
than the frequency of ki, change the frequency of ki to that
of ji. The resulting histogram is the statistically determined
distribution of keys in the join. This histogram is used to
compute the parent key distribution described next.

Parent key distribution. An important observation in
the case of structural histograms is that the node ids
(keys) and parent ids have a strong correspondence with
each other – that is, if nodeid1 > nodeid2, then
parentid(nodeid1) >= parentid(nodeid2). The parent
histogram is a summarization of this correspondence, as il-
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Figure 2. Node and Parent ids have a Correspondence

lustrated in Figure 2.
As another example, consider the case where the par-

ent histogram of Review (with respect to Show) is [1-4:

10; 4-6: 6]. The multi-bucket key histogram of Review
would then be [1-11: 10; 11-17: 6]. Conversely, sup-
pose Review has now been “filtered” through a value predi-
cate (say, Reviews with Rating > 6) leading to the following
key histogram for Review: [1-11: 5; 11-17: 3]. The cor-
responding distribution in the parent histogram of Review is
now: [1-4: 5; 4-6: 3]. The new parent histogram is then
used to compute the cardinality and join distribution of the
result (lines 9 to 12).

Choosing the ids. By performing the steps in Algorithm 2,
we get the key distribution of the result of the query (that is,
tn, shown in line 2). Computing the actual location ids is
now a matter of choosing the ids from this key histogram.
The ids are chosen from the buckets of the key histogram
in proportion to their counts. For example, suppose the
final key distribution of Review is: [1-11: 5; 11-17: 3].
We randomly choose 5 Review ids from 1 to 11 and 3 ids
from 11 to 17—these choices comprise the statistically de-
termined Review ids where the updates take place.

4.2. Estimating the Ids of the Update Fragment

Once the location of the update is determined, we next
need to estimate the ids of the elements in the update frag-
ment. In the case of insertions, the update fragment is ex-
plicitly given in the query. The number of elements being
inserted is known, while the ids of these elements have to
be estimated. But, in the case of deletions, only the root
of the subtree to be deleted is given, so the number as well
as the ids of the deleted elements in the subtree need to be
estimated.

In order to estimate the ids of the update fragment, we
use the parent histogram which summarizes the correspon-
dence between parent and child ids (Figure 2).

Estimating ids for insertions. Algorithm 3 describes how
the parent histogram is used to estimate the id of a child
fragment. The algorithm outputs a single child id. If there
are multiple children in the update with the same tag, then
a set of contiguous ids are assigned beginning from the es-

timated id of the first child (as determined by Algorithm 3).

Estimating ids for deletions. In the case of deletions, only
the root node of the subtree to be deleted is given. The
elements in this subtree have to be first determined from
the schema. Since the id of the root node of the deletion
is known, Algorithm 3 can be used to estimate the id of
the child. In addition, the frequency of the child can be
estimated from Bk (line 4 in Algorithm 3) through dividing
the frequency of Bk by the range of Bk.

4.3. Updating the Summary
The relevant parent histograms in the summary need to

be updated by either inserting new ids or deleting them.
This includes not only the parent histograms of the types
in the update fragment, but also the children of these types
which may not be present in the update fragment. How-
ever, a large number of insertions or deletions to the his-
togram may make it inaccurate. For example, if new docu-
ments are appended continuously, then clearly, only the last
bucket of a histogram is updated each time with new ids.
Therefore, while the last bucket keeps accumulating counts
eventually making it inaccurate, the remaining buckets re-
tain their original counts. One strategy to approximately
maintain the equi-depth histogram is to periodically redis-
tribute the bucket counts by splitting a bucket once its count
reaches a threshold occupancy T into two new buckets and
then simultaneously merging a pair of buckets whose com-
bined count is less than T [11]. If more than one such
pair exists, then the pair whose combined frequency is the
least is chosen. If such a pair of split-merge operations can-
not be performed, then either the histogram is recomputed
from the base data, or, only the split is performed and the
number of buckets is increased. We utilize the former ap-
proach since our aim is to work within the originally allo-
cated memory budget.

Algorithm 4 highlights the main steps in inserting a new
value into a parent histogram. The input to the algorithm is
the pair (id, f ). Note that the id in this case is the id of the
parent, while the histogram being updated is the parent his-
togram of the child. The pair (id, f ) indicates the number
of times, f , the given child occurs under the given parent
with id id. Steps 4 to 8 perform a shift operation to indicate
the insertion of a new id – this is equivalent to renumbering
the previous ordinals of the elements due to the insertion of
a new one. Steps 9 to 16 determine whether only a reorga-
nization will suffice or whether a complete recomputation
from the base data needs to take place.

For deletions, instead of ids being “inserted”, the ids
need to be deleted. Similar issues also arise for deletions
– that is, a single bucket may have a very small count com-
pared to the others, affecting its equi-depthness. The strate-
gies outlined for insertions can be easily modified to handle
deletions as well.



Algorithm 4 Insertion of a new id into a parent histogram
1: Input: Histogram : H , Update : (id, f), Threshold : T

{H is the histogram to be updated}
{(id, f) is the update consisting of new (id, frequency) pair}
{T is threshold occupancy at which a bucket is split}

2: Bk ∈ H such that id ∈ Bk

{Update the frequency of the bucket}
3: Bk.frequency + = f

{Update bucket’s upper limit to reflect insertion of new id}
4: Bk.hi = Bk.hi + 1

{n is the number of buckets in H}
{Update the boundaries of remaining buckets}

5: for all i ∈ k + 1 to n do
6: Bi.lo = Bi.lo + 1
7: Bi.hi = Bi.hi + 1
8: end for
9: if Bk.frequency >= T then

10: found = find Bi, Bi+1 in H such that Bi.frequency +
Bi+1.frequency < T

11: if found then
12: REORGANIZE H merging Bi, Bi+1 and splitting Bk

13: else
14: RECOMPUTE H from base data
15: end if
16: end if

4.4. Improved Location Estimation

A potential limitation in the current location estimation
process (Section 4.1), is the use of single dimensional his-
tograms for values. The problem stems from the fact that no
correspondence between the occurrence of a value and the
id of the node at which it occurs is stored as in the case of
structural histograms. Consequently, we have to make the
independence assumption when computing the distribution
of the nodes containing particular values – that is, distribute
the estimated cardinality into the parent histogram in pro-
portion to the bucket counts.

In order to overcome this limitation, we propose the use
of 2D histograms to explicitly capture the correspondence
between values and the corresponding node ids. Note that
since 2D histograms require more space, the budget for
value histograms must be increased to improve the accu-
racy. However, as we show in Section 5, the advantages of
using 2D histograms are substantial. Moreover, the use of
these histograms benefits StatiX as well: since it removes
the independence assumption, higher accuracy can be ob-
tained for queries that involve value-based predicates.

We use the algorithm proposed in [15] to build equi-
depth 2D histograms. A split-merge strategy is also used
to maintain the 2D histograms. However, unlike the strat-
egy described in Section 4.3, merge pairs are always chosen
such that the bucket boundaries in one of the axes matches;
and the axis on which the merging takes place is chosen
beforehand, as described in [22].

5. Experimental Evaluation

We have carried out a detailed evaluation of the IMAX
approach on synthetically generated IMDB data and also
on a subset of DBLP data available from [7]. All experi-
ments were performed on a Compaq ES45 dual-processor
machine with 1.25 GHz and 16 GB memory. For ease
of presentation, we classify the types of insertions into: (i)
Append only, and (ii) Random insertions.

Memory Budget. The memory budget for the summary
depends on the number of types in the schema and the num-
ber of buckets allocated for structural histograms and value
histograms. All experiments in this section were performed
with a minimum of 5 buckets for each structural histogram
and 100 buckets for each value histogram – translating to
about 5KB of memory, and a maximum of 30 structural his-
togram buckets and 500 value histogram buckets – translat-
ing to about 23 KB of memory.

Threshold Factor. The reorganization threshold of his-
togram Hi is set as Ti = t ∗ fi where fi is the equi-depth
bucket frequency of histogram Hi, and t is a user-specified
threshold factor. In our experiments, the threshold factor
was set to 2.5.

Metrics. Our primary performance metric is to compare
how close the IMAX incrementally-generated summary is
with respect to the computed-from-scratch StatiX summary.
For each affected histogram, this is quantitatively captured
by µmse defined as follows:

µmse(IMAX) =
�

N

i=1
(EstStatiX−EstIMAX)2

totalCardinality

where i = 1 to N covers the total range of values in the
histogram, EstStatiX is the estimate of value i from the
histogram computed by StatiX, and EstIMAX is the esti-
mate computed from IMAX. The totalCardinality refers
to the overall occupancy of the histogram.

To quantitatively establish that there is indeed a signifi-
cant difference between the updated document and the orig-
inal document, we also compute µmse between the cur-
rently computed-from-scratch summary and the original
summary (i.e., before any updates were received), as shown
below:

µmse(ORIGINAL) =
�

N

i=1
(EstStatiX−EstORIGINAL)2

totalCardinality

While the above metrics measure the accuracy of IMAX
in the face of significant updates, our next metric aims to
measure its efficiency. This is done by tracking the number
of recomputations-from-scratch incurred by IMAX during
its maintenance process. This metric, called RECOMP ,
is defined as the number of recomputations divided by
the total number of insertions into the histograms, that is,
RECOMP = r

I
where r is the number of recomputa-

tions and I is the total number of histogram insertions.
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RECOMP can be calculated on a per-type basis or over
all types in the insertions.

In addition, we also present the cardinality estimation
accuracy for both IMAX and StatiX by computing the rel-
ative error for a query workload. We tabulate the average
time per update for IMAX and the recompute-from-scratch
StatiX and discuss these results in Section 5.3.

5.1. Append-Only Updates

Append-only updates occur in warehouse scenarios,
where new documents are continuously being added. The
main complexity in append-only updates is in the reorga-
nization of the histograms since appends occur at the root
of the document. For the IMDB dataset, new Shows were
appended.

Results. The µmse values for two types: Review and Aka
are shown in Figure 3 for the IMDB database. Note that
the histograms correspond to the parent histograms of these
types 2. In this graph, the number associated with each algo-
rithm in the legend (10 in Review(10,IMAX)) refers to the
number of structural histogram buckets. Note that the num-
ber of value histogram buckets is not an issue here, since
the location condition does not involve a value predicate.

The first point to note in Figure 3 is that the µmse val-
ues (which are shown on a log-scale) for IMAX are very
low, especially when compared with the µmse values for the
original histogram—in fact, there is close to two orders of
magnitude difference in their quality. This clearly indicates
that (a) there is a substantial change between the original
document and the updated document, and (b) IMAX is able
to track these changes rather well.

Next, the efficiency aspect is captured in the RECOMP
numbers shown in Table 2, which show that only a very

2We use the phrase “histogram of type x” to mean the parent histogram
of that type in the rest of the section.

Type No. of Insertions RECOMP, t = 2.5

Show 5000 0
Review 170123 0.008%
Aka 9798 0.12%
Tv 2461 0.28%
Movie 2539 0.27%
Year 5000 0.02%
TOTAL 189921 0.01%

Table 2. IMDB: RECOMP with Appends

small fraction of recomputations are required to support the
IMAX incremental maintenance strategy.

Similar results were obtained for the DBLP dataset and
are not shown here due to space limitations – they are avail-
able in [22].

5.2. Random Insertions

Turning our attention to random insertions, the most im-
portant component here is the location estimation. If a sin-
gle update query results in updates in multiple locations,
then the cardinality estimation also comes into play. We di-
vided insertions into two categories: (i) Unique insertions,
where a single update query results in insertion at a unique
location in the document, and (ii) Multiple insertions, where
a single update query results in insertions at multiple loca-
tions in the document.

For IMDB, we generated an Actor database consisting
of information about actors. Each ACTOR subtree consists
of a NAME sub-element, and multiple PLAYED sub-elements.
Each PLAYED element may contain multiple EPISODE sub-
elements. We chose updates which reflected the addition of
new information regarding the actor’s acting history where
new shows in which he/she had acted in were inserted into
the database. The insertions were of the form:

update insert
<PLAYED>

<EPISODE>...</>
<EPISODE>...</>
....

</>
where /ACTOR[NAME="x"]

The number of Actors in the database was 1000 – that is
1000 unique values for the value predicate involving Name.
Note that this query has multiple levels of insertions where
the estimated id of Actor (from Algorithm 2) is used not
only to update the parent histogram of Played, but also to
estimate the id of Played (from Algorithm 3). This id in
turn is used to determine the ids of the multiple Episodes.

For the DBLP dataset, we chose a set of journal arti-
cles from 134 different journals. Each journal had articles
published in that journal in a separate subtree. The inser-
tions we chose reflects the addition of new articles into a
database segregated on the basis of journal names. Each
ARTICLE had multiple AUTHOR elements along with sev-
eral other relevant information such as URL, PUBLISHER,
YEAR, etc.



Additional Measures. Apart from the µmse and
RECOMP metrics defined earlier, we utilize two addi-
tional supporting measures here to help explain the results:

Location Estimation Accuracy: This metric measures the
effectiveness of the location estimation technique. It
compares the estimated location against the actual lo-
cation. The location estimation is deemed to be correct
if both the estimated as well as the actual location both
fall into the same histogram bucket. The location es-

timation accuracy is defined to be: LEA =
Lcorrect

Ltotal
where Lcorrect is the number of correctly estimated lo-
cations and Ltotal is the total number of locations.

µcount: µcount considers each histogram bucket and com-
putes the deviation of the frequency of the bucket from
the actual frequency normalized to the average bucket
count. This metric helps in highlighting where the in-
correct location estimations are being distributed.

The metric [11] is defined as:

µcount = β
N

√

1
β

∑β

i=1(fBi
− Bi.count)2

where N denotes the number of values, β denotes the
number of buckets, fBi

denotes the actual count of
bucket Bi and Bi.count denotes the current count of
bucket Bi.

Results. The location estimation accuracy for the IMDB
and the DBLP datasets under random insertions are shown
in Figures 4 and 5, respectively, as a function of the number
of value histogram buckets. Each graph shows the location
estimation accuracy in two cases: (i) when the structural
histogram contains only 5 buckets and, (ii) when it contains
contains 30 buckets. Further, both the 1D and 2D versions
of IMAX are presented in the graphs and we see that using
2D histograms clearly gives superior estimation accuracy
as compared to using 1D histograms. Note that in order to
compare only the location estimations, 2D histograms were
used for cardinality estimation in both cases. The equiv-
alent cardinality estimation for the 1D case would contain
only the square root of the number of buckets in the value
histogram. This is the tradeoff between the space utilized
and the accuracy.

The µmse metric for the type Played is shown in Figure
6 for both the original summary, as well as with the 1D
and 2D versions of IMAX. Note that, again, there is over
two orders of magnitude difference in accuracy between the
original summary and both versions of IMAX.

An interesting observation in Figure 6 is that the 2D ver-
sion of IMAX provides only marginal accuracy gains over
the 1D version. This is in spite of the fact that the 2D ver-
sion is far superior in terms of location estimation as com-
pared to the 1D version as shown in Figure 4. The reason is
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that the insertions are approximately uniformly distributed
over the whole document. So, what may not be the cor-
rectly estimated location for one insert may very well turn
out to be the correct location for some other insert, effec-
tively canceling out the effect of several wrong estimations.
This is clear from Figure 7 which plots the µcount metric
for Played. The µcount values of both the 1D and 2D cases
are close together here.

However, if we consider insertions where the locations
of the insertions are skewed, the benefits of using 2D his-
tograms become immediately apparent. Such insertions are
possible when, say, more recently added actors need to be
updated more frequently than others. Figure 8 shows the
µcount for such skewed insertions, and we observe nearly
an order of magnitude difference in the µcount values of the
1D and 2D versions. This demonstrates the benefits of using
2D histograms. Although not shown here due to space lim-
itations, the µmse metric for the 2D version showed signif-
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icant improvement over the 1D version. Similar behaviour
was observed in the DBLP data as well.

Moving on to the efficiency aspect of IMAX under ran-
dom insertions, the number of recomputations for both
DBLP and IMDB, with and without skewed insertions, are
shown in Tables 3 and 4, respectively. (The tables provide
the specific measures for only a subset of the types, but the
totals in the last line are across all types.)

Clearly, the number of recomputations required is a very
small fraction of the total number of insertions made in
the document. Note that the number of recomputations
can be further reduced by increasing the reorganization
threshold—trading off on the accuracy of the histograms.

Multiple Insertions. We consider here single update
queries which spawn multiple insertions. For example,
adding a comment “Arnold Rocks” for all films starring
Arnold Schwarzenegger, or adding information templates
for all shows satisfying certain criteria. We experimented
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with multiple-insertion updates on the article database of
DBLP. The update involved adding a LINK for a given au-
thor denoting his/her URL. Such an update would require
multiple insertions of the tag link depending on the num-
ber of articles authored by the author since the tag should
be added to each such occurrence. The DBLP document
contained a total of 1165 authors, each with at least 10 ar-
ticles spread over more than 17000 articles. We performed
insertions of the following form:

update insert <link> .. </> into
/dblp/article[author="x"]

As with the unique insertions, two sets of insertions were
performed: a set of skewed insertions with around 20% of
authors; and another set of insertions involving all authors.
Due to space limitations, we present only the µmse met-
ric for both cases in Figures 9 and 10, respectively. The
utility of 2D histograms is limited in the case of uniformly
distributed insertions, but provides considerable advantage



Type No. of RECOMP, t = 2.5 No. of RECOMP, t = 2.5

Insertions (Random) Insertions (Skewed)
(Random) (Skewed)

Played 10000 0.03% 2000 0.05%
Episode 104569 0.006% 20937 0.02%
TOTAL 124569 0.01% 24937 0.02%

Table 3. IMDB: RECOMP with Random and Skewed In-
sertions

Type No. of RECOMP, t = 2.5 No. of RECOMP, t = 2.5

Insertions (Random) Insertions (Skewed)
(Random) (Skewed)

ARTICLE 8000 0.02% 2000 0.05%
AUTHOR 14624 0.1% 3843 0.28%
TOTAL 88414 0.14% 22606 0.36%

Table 4. DBLP: RECOMP with Random and Skewed In-
sertions

when the insertions are skewed. No recomputations were
required in the case of skewed insertions, while a single re-
computation was performed when 2D histograms were used
in the case of random insertions.

5.3. Estimation Accuracy and Timing

The previous sub-sections dealt with the histogram accu-
racy (for a subset of histograms) and the number of recom-
putations required for various datasets. The results indi-
cated that IMAX is very accurate when it comes to tracking
the updates with a very small number of recomputations. In
order to get a “global” picture of the accuracy and efficiency
of IMAX, we briefly present numbers on the estimation ac-
curacy and timing.

Table 5 tabulates the average time per update for the dif-
ferent datasets. We see here that IMAX is at least an order
of magnitude faster than the recompute-from-scratch StatiX
even when the occasional recomputations required are taken
into account.

We then generated a query workload of around 300
queries with both branching path expressions without value
predicates (around 15% of the workload) as well as path
expressions with at least one and a maximum of two value
predicates for each of the datasets. For each query work-
load, we computed the relative error in estimation using
the IMAX summary as well as the recomputed-from-scratch
StatiX summary. These results are shown in Figure 11, and
indicate that the quality of the IMAX summary is almost as
good as that of the StatiX summary.

6. Related Work

The problem of updating XML documents has only re-
cently started to attract attention. Proposals for update lan-
guages have appeared in the literature [12, 23] as well as in
implementations of XQuery engines (e.g., Galax [10]). Fur-
ther, the problem of incrementally validating updated doc-
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Append (IMDB) Insert (IMDB) Multiple Inserts (DBLP)
IMAX 97 77 190
StatiX 8167 1437 5403

Table 5. Average Time per Update (in ms)

uments has been studied in [2, 4, 18]. There has also been
work on efficient labeling techniques for XML document
nodes which are subjected to updates [6, 26].

Several approaches have been proposed in the literature
for summarizing XML documents and estimating query car-
dinality [1, 5, 9, 13, 20, 21, 27]. They differ in many aspects,
notably: whether or not they use schema information; and
which queries they support. Whereas [1, 5, 13, 20, 21, 27]
deal with schemaless data, [9] uses schema information to
both improve the quality as well as reduce the size of sum-
maries. There is a wide variation in the classes of supported
queries, e.g., [1] only handles (non-branching) path expres-
sions in the document tree; [5] handles twig queries; and
[9] supports a significant subset of XQuery. Common to
all these proposals is the lack of support for efficiently (and
incrementally) updating the statistical summaries.

In [25], a new data structure – the “bloom histogram” –
is proposed to maintain simple path expressions in the pres-
ence of updates. Our work differs from [25] in two ways:
i) we use the schema in order to build and maintain the
summary, and ii) our summary can handle the estimation
of branching path expressions, whereas [25] is limited to
simple path expresssions.

Incremental maintenance of statistics has been addressed
in the context of relational database systems (for example,
[8, 16, 11], etc.). The novelty in the XML context is that
statistics must be maintained for both structure and values.

7. Conclusions

We introduced IMAX, a system which extends the
schema-based statistics framework of the StatiX approach



Figure 11. Relative Error for IMDB and DBLP Datasets

to incrementally handle updates to XML repositories. The
novel challenges in the design of IMAX included develop-
ing techniques for accurately estimating both the locations
and the sizes of updates, as well as for the maintenance of
structural histograms. To accurately estimate the location of
updates, we extended the StatiX model with 2D histograms
that capture the correspondence between the value of an el-
ement and its id. Although these histograms require more
space, they are only needed to capture value-key correla-
tions, i.e., they replace the 1D value histograms maintained
previously in StatiX.

Our experiments to evaluate the utility of IMAX covered
a variety of updates and datasets, and indicate that the accu-
racy of estimation from the updated statistics is very close
to that obtained from the expensive brute-force option of
re-computing the statistics from scratch. Further, these ben-
efits can be obtained quite efficiently, requiring only rare
recomputations of the summaries from the base data.

In closing, IMAX makes sustained and efficient query
processing feasible even in real-world XML environments
whose contents are dynamically changing, which may be-
come the norm in the coming years.
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