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Abstract

The objective of this work was to develop a theoretical and computational framework to
apply the finite element method to anisotropic, viscoelastic soft tissues. The quasilinear
viscoelastic (QLV) theory provided the basis for the development. To allow efficient and
easy computational implementation, a discrete spectrum approximation was developed for
the QLV relaxation function. This approximation provided a graphical means to fit experi-
mental data with an exponential series. A transversely isotropic hyperelastic material model
developed for ligaments and tendons was used for the elastic response. The viscoelastic
material model was implemented in a general-purpose, nonlinear finite element program.
Test problems were analyzed to assess the performance of the discrete spectrum approxi-
mation and the accuracy of the finite element implementation. Results indicated that the
formulation can reproduce the anisotropy and time-dependent material behavior observed in
soft tissues. Application of the formulation to the analysis of the human femur-medial col-
lateral ligament-tibia complex demonstrated the ability of the formulation to analyze large

three-dimensional problems in the mechanics of biological joints.

Introduction

Recent advances in computational mechanics and computer hardware have provided the
biomechanics community with the tools to develop large-scale finite element models of bi-
ological joints. Models of this nature offer the ability to predict soft tissue stresses, joint
contact forces, and joint kinematics for externally applied loads and displacements. Three-
dimensional constitutive laws for the soft tissues are necessary for the development of these
models. In particular, because ligaments and tendons have inherently three-dimensional
geometry and can transfer forces to other soft and hard tissues, they require an explicit
three-dimensional representation.

The time- and rate-dependent material behavior of soft tissues has been well-documented
and quantified in the literature over the past 20 years. This has included ligaments [Woo et al., 1981],
tendons [Johnson et al., 1994, Pradas and Calleja, 1990], articular cartilage [Setton et al., 1993,
Woo et al., 1980], heart and skeletal muscle [Best et al., 1994, Pinto and Patitucci, 1980)]
and cell membranes [Duszyk et al., 1989]. This behavior can arise from fluid flow in or out

of the tissue, from inherent viscoelasticity of the solid phase, or from viscous interactions



between tissue components or phases [Mak, 1986]. A theory of quasilinear viscoelasticity
(QLV) has been proposed by Fung and is widely used in the field of biomechanics to de-
scribe soft tissue viscoelastic behavior [Fung, 1981]. The basis of the theory is that 1) the
stress at a given time can be described by a convolution integral representation, separating
the elastic response and the relaxation function, and 2) that the relaxation function has a
continuous spectrum. This representation has successfully described and predicted exper-
imental data. For instance, using the QLV theory, Johnson et al. [Johnson et al., 1994]
showed that the viscoelastic properties of human patellar tendon from both young and old
donors could be described. Studies such as these have restricted the experimental testing to
achieve one-dimensional test situations.

To use the QLV theory for the description or prediction of soft tissue material response
in three dimensions, an appropriate three-dimensional elastic response function must be se-
lected. Often the framework of hyperelasticity has been used to dictate the choice of this ten-
sor function based on considerations of material symmetry [Fung, 1981, Guccione et al., 1991,
Humphrey and Yin, 1987, Spencer, 1984, Weiss et al., 1995a, Weiss, 1995]. Because bio-
logical soft tissues often contain of one or more families of reinforcing fibers (collagen
or elastin), the tissues exhibit an anisotropic elastic response. Humphrey used this ap-
proach, selecting a transversely isotropic elastic strain energy to describe and predict the
material response of cardiac muscle [Humphrey and Yin, 1987]. There have been numerous
elastic constitutive laws proposed for representing the quasistatic behavior of soft tissues,
however only a handful have allowed for three-dimensional, anisotropic material behav-
ior (i.e., [Guccione et al., 1991, Horowitz et al., 1988, Humphrey et al., 1990, Lanir, 1983,
Weiss, 1995]. Researchers have yet to develop a finite element implementation that allows
the analysis of viscoelastic soft tissues with an anisotropic elastic response. This is necessary
to accurately simulate the material behavior of soft tissues in a finite element context.

A number of basic and applied research questions can be answered using a computational
simulation of soft tissue viscoelastic material behavior. For instance, tissue viscoelasticity
plays a critical role in the response of biological joints to high-rate loading or impact scenarios.
The stiffening effect of the viscoelastic phase and large pointwise variations in strain rate can
greatly influence soft tissue stresses. Also, there has been recent experimental work that has
shown the importance of solid-phase viscoelasticity in the mechanics of biphasic materials

[Setton et al., 1993]. The integration of solid phase viscoelasticity into biphasic constitutive



models follows directly by substituting the appropriate time-varying stress representation for
the solid material properties, as is done in standard solid viscoelasticity [Mak, 1986]. This
approach can provide new insight into the structural significance of the solid phase in bearing
transient loads to the soft tissues. Closed-form solutions to these and many other problems
of interest are intractable because of complex geometry and boundary/initial conditions,
geometric and material nonlinearities. The finite element method addresses these issues.

Despite the importance of viscoelastic soft tissue behavior in biomechanics research, a
finite element implementation for the QLV theory is not available. The most troublesome
difficulty in constructing such an implementation is that information must be saved at every
computational timestep in order to compute the stress response at the current timestep.
The computer storage requirements for this type of approach are prohibitive. This is a
direct result of the continuous relaxation spectrum used in the convolution representation
for the QLV theory. Additionally, there have been few finite element implementations of
an anisotropic hyperelastic constitutive models [Guccione et al., 1991, Horowitz et al., 1988,
Weiss et al., 1995a).

To allow for the large-scale simulation of anisotropic viscoelastic soft tissue behavior,
an accurate and efficient finite element implementation is necessary. The objective of this
work was to develop a theoretical and computational framework for modeling viscoelastic
soft tissues that accommodated anisotropic material symmetry. This was pursued using
the finite element method, a discrete spectrum approximation to the theory of quasilinear

viscoelasticity, and a transversely isotropic elastic response function.

Methods

The methods are divided into four distinct sections - “Theoretical Background, “Discrete
Spectrum Approximation”, “Transversely Isotropic Elastic Response”, and “Finite Element
Implementation”. The latter three represent original theoretical and methodological results.
The final section of the Methods, “Test Problems”, describes analyses that were conducted
to assess the performance of the discrete spectrum approximation and the accuracy and

efficiency of the finite element formulation.



Theoretical Background

Following standard notational conventions [Spencer, 1984], X is chosen to represent the
position of a particle in the reference configuration, while x represents the particle in the

deformed (current) configuration. The deformation gradient, F, is defined as

F(X) := 0x/0X. (1)
The right Cauchy-Green deformation tensor is then

C := FTF. (2)

The QLV theory assumes that the 2nd Piola-Kirchhoff stress S(¢) can be written as the
convolution of a relaxation function G(t) with an elastic response function S° (Note that
in general, the scalar-valued relaxation function could be replaced by a 4th-order tensor to
produce direction-dependent relaxation phenomena). The elastic response S° will be chosen
to correspond to a transversely isotropic hyperelastic constitutive model recently proposed
for fiber-reinforced soft tissues, to be discussed shortly [Weiss, 1994, Weiss, 1995]. If the
motion starts at ¢ = 0 and the stress and strain are zero prior to this time,

S(t) = /Ot G(i—s) ddS:ds. (3)

Fung proposed a continuous relaxation function adapted from [Neubert, 1963] to describe

the behavior of biological soft tissues:
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where E) (%) is the exponential integral function,

G(t) (4)
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The stiffness (real part of the complex modulus) for the QLV relaxation kernel given by (4)
is [Fung, 1981]
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while the damping (imaginary part of the complex modulus) is given by

) (6)
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Both the stiffness and damping are unitless.

The relaxation function (4) has a smooth, linear decrease from short to long relaxation
times (Figure 1A). The stiffness (6) increases with increasing frequency, while the damping
(7) is relatively constant over a wide range of frequencies [Tschoegl, 1989] (Figure 1B). This
yields a hysteresis loop that is relatively insensitive to strain rate over several decades, a
feature often observed for soft tissues. The three viscoelastic material coefficients, 7,, 72,
and ¢, are determined from appropriate experiments.

In an implicitly integrated finite element code using an incremental solution strategy, the
solution is known at time ¢, and the task is to determine the solution at ¢ + At using an
iterative (Newton) method [Bathe, 1982]. The stress at time ¢ + At can be written as the

sum of two integrals:

t dse t+At dse
S(t+Al) = /G(t-l—At—s)—ds-l—/ G(t+ At —5) 2 ds. (8)
0 ds ¢ ds
The second term in (8) can be rewritten using the Mean Value Theorem:
t+At € € t+At
/ Gi+ai—s) g = B (f)/ Gt + Al — s)ds, (9)
t ds ds Ji
where € € [t,t + At]. Approximating dS°®/ds with a central difference rule,
t+A1 e t+A1 e . _ G
/ G(t-l—At—s)dids = / G(t+ At —s)ds [”“St] (10)
t ds ¢ At

The right-hand side of (10) can be evaluated exactly at time ¢ + At provided that the stress
S° is available from the last timestep. The central difference approximation is second-order
accurate. However, the evaluation of the first integral in (8) requires S¢ from all previous
times. This requires storage for a symmetric 2nd order tensor at each integration point,
for each element, at each previous timestep. For even the smallest problems, these storage
requirements are prohibitive. Additionally, a uniform approach to integrate the first integral
over time is not available. The accuracy of any such integration scheme would be highly

dependent on the timestep size. These problems are addressed below.

Discrete Spectrum Approximation

If the reduced relaxation function G (t — s) is an exponential, a recurrence relation can be

exploited to evaluate the first integral in (8). Specifically, consider the case when

G(t) = Ciexp(-t/v). (11)



The first integral in (8) becomes

e

/ Crexp (—(t+ At —s) /v) ddi (12)
= exp( / Cirexp(—(t—3s)/v) ddi ds

= exp(— At/l/)

Note that only the stress S (¢) from the last timestep is needed to evaluate the integral.

To use this framework for Fung’s reduced relaxation function, an exponential series ap-
proximation to (4) was developed. A log plot of (4) shows a linear transition region between
short and long times (Figure 1A). A series of exponentials with equal spectral strengths and
relaxation times spread one decade apart provides such qualitative behavior [Tschoegl, 1989].

Based on this observation, the following approximation to (4) was made:

Gt = G. +Cj\f; Zexp (t/100+0)) (13)

where G. is the equilibrium modulus, Gy is the initial modulus, Ny is the span of the
transition region in decades, and 10% is the lowest discernible relaxation time. The span of
the transition region is chosen so that it includes the nonlinear curve sections on each end of
the central, linear region, as shown in Figure 1A. This ensures that the transition regions will
be represented accurately in the discrete spectrum approximation. All required coefficients
Ge, Go, Ng and Iy can be determined graphically from a log plot of G (¢), as in Figure 1A.
With (13) chosen for the relaxation function, the viscoelastic 2nd Piola-Kirchoff stress at

time t + At can be written as:

t+At Na e
S(t+At) = / (Ge —I-KZeXp(t-l-At—s/l/I)) de (S)ds (14)
0 o s
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K = N, 41 and vy = 10°7°, (16)
and the history variables H; (each a symmetric 2nd order tensor) are defined as:
t dSe (s
H;, = /0 exp (— (t —s) /vi) ds( )ds. (17)



Now the tensor quantities S°(¢) and S° (¢ + At) can be computed at time ¢ + A?, as can all
other scalar quantities. Only the H; must be stored from the last timestep.

In addition to the stress S°(¢ + At), the fourth order elasticity tensor C (t + At) is
needed to form the stiffness matrix for the finite element solution procedure [Bathe, 1982].
C is defined as:
0S (t + At)
dC (t + At)’
where C (t 4+ At) is the right Cauchy-Green deformation tensor at time (¢ + At). Using the
above definition with (15) and noting that only S° (¢ + At) depends on C (t + At),

Cit+At) = 2 (18)

Ci+Al) = [Ge + KIZ_:O (1= exzt(/_wm/”’))] 22%6((512:)). (19)
_ [Ge + K fj (1= exzt(/_wm/”’))] Co(t+Ab). (20)

Here, C° (¢ 4 At) is the “time-zero” elasticity tensor. Thus the modification of the stiffness
to extend the elastic case to viscoelasticity involves only multiplying the components of C°

by a scalar quantity.

Transversely Isotropic Elastic Response

The discrete spectrum approximation for the QLV kernel and the approach for its finite ele-
ment implementation can accommodate any elastic response. A particular elastic response
was chosen for implementation to represent incompressible, transversely isotropic soft tis-
sues, and is described below. Further details of the development and implementation of this
constitutive model can be found in [Weiss, 1994, Weiss et al., 1995a, Weiss, 1995].

A unit vector field a® in the undeformed configuration is used to describe the local
fiber direction, and the strain energy is required to depend on this vector. By standard
arguments [Marsden and Hughes, 1983, the strain energy is then an isotropic function of C
and a°. When the material undergoes deformation, a®(X) will deform with the body. After
deformation, the fiber direction may be described by a unit vector field a(x(X)). In general

the fibers will also undergo length change. The fiber stretch, A, is then
da = F.a° (21)

where F is the deformation gradient tensor. A material with the above symmetry is trans-

versely isotropic.



The elastic response of the tissue was assumed to arise from the resistance of the collagen
fiber family, the ground substance matrix, and their interaction. Further, it was assumed
that the ground substance, or matrix, was isotropic. Finally, the composite structure was
assumed incompressible because of the large amount of trapped water in the tissue. With

these assumptions, the strain energy can be written as:
W = Fi(h, L)+ F(\) + F3(h, 12, ) (22)

The function F; represents the material response of the isotropic ground substance matrix,
F, represents the contribution from the collagen fiber family, and F3 is the contribution
from interactions between the fibers and matrix, such as a shear coupling. I; and I, are the
standard invariants of the right Cauchy-Green deformation tensor and are the complete set

of invariants associated with incompressible isotropic material behavior:
1
L = 4C, L= [(trC)* — t2C?]. (23)

The dependence on A arises directly from the reinforcing fiber family.
For a hyperelastic material, the 2nd Piola-Kirchhoff stress is derived from W. The stress

for an incompressible hyperelastic material with strain energy given by (22) is

1
S¢ = 28812; = 2{(W] +11W2)1—WQC} + XWAa()@aO-I-pC_l. (24)
For (22), the following identifications can be made in (24):
0Fy, O0F; 0Fy, O0F; 0F, O0F;
M= e tan M T e ten, M T e T (25)

Equation (22) generalizes many constitutive equations that have been successfully used in
the past to describe biological soft tissues such as cardiac muscle [Choung and Fung, 1986,
Horowitz et al., 1988, Humphrey et al., 1990, Humphrey and Yin, 1987].

A simplified form of the function (22) was chosen for the elastic response in the QLV
implementation. The intent was to demonstrate the characteristics of the strain energy
function without including the interaction term F3, for which experimental data are not
currently available. The Mooney-Rivlin model [Mooney, 1940] was used for the matrix:

C] 02

Several observations about the mechanical behavior of collagen fibers were incorporated

into the form for F,. First, collagen does not support a significant compressive load, and
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structures that are composed of mostly collagen will tend to buckle under very small com-
pressive forces. Second, the tensile stress-stretch relation for ligaments and tendons can be
well-approximated by an exponential in the toe region and subsequently by a line. These

observations led to the following choice for the strain energy derivatives of the collagen fibers:

Wy = 0, A<,
Wy = Cs(exp(Ca(A=1))=1), 1 <A<\, (27)
Wy = CsA+Cs, A> N

Here, A* is the stretch at which the collagen fibers are straightened, (5 scales the exponential
stresses, Cy 1s the rate of collagen fiber uncrimping, and Cj is the modulus of the straightened
collagen. The y-intercept of the linear region, (e, was determined from the condition that

the stress is C° continuous at \*:
Ce = C3 (exp (C4 ()\* — 1)) — 1) — 05)\* (28)

This transversely isotropic elastic response function has been successfully used to describe
and predict the quasistatic response of human fascia lata, both along and transverse to the

collagen fiber direction [Weiss, 1994, Weiss, 1995].

Finite Element Implementation

The finite element implementation of the transversely isotropic constitutive model described
above was extended to quasilinear viscoelasticity to allow computational simulation of anisotropic
viscoelastic material behavior. This was performed using the general-purpose nonlinear finite
element code, NIKE3D, developed and maintained at Lawrence Livermore National Labora-
tory [Maker et al., 1990]. For speed of computation, the formulation was based on the three-
dimensional eight-node hexahedral element. Following Simo and Taylor, separate interpola-
tion for the displacement, pressure and dilation were used on the element level to avoid “lock-
ing” for nearly and fully incompressible material behavior [Simo et al., 1985]. Eight-point
Gaussian quadrature was used to evaluate integrals involving the incremental displacements
and element geometry, while integral involving the pressure and dilation were evaluated at
the element center. Since the integrals involving pressure and dilation could be expressed
in terms of the incremental displacements on an element, these variables were eliminated at

the element level, yielding a “generalized displacement” approach [Weiss et al., 1995a]. For



the case of fully incompressible behavior, the method of augmented Lagrangians was used
to enforce the constraint to a user-specified accuracy [Simo and Taylor, 1991].

For the fiber direction vector field a® in the elastic response (Equation 24), the local
collagen direction was defined either based on global vector or local element geometry. In
the latter method, the local collagen fiber direction at each element integration point was
based on the edge orientation of the element. The local element “i”, “3” or “k” direction was

chosen based on a flag in the input deck. The element edge direction defining curves from

the tibial to femoral insertions was chosen as the fiber direction for the analyses.

Test Problems

To assess the performance of the discrete spectrum approximation and the accuracy and
efficiency of the finite element formulation, a series of numerical tests were carried out.
Except where indicated, the coefficients for the QLV relaxation function were taken from
[Woo et al., 1981] (Table 1B), while the coefficients for the transversely isotropic elastic re-
sponse were taken from [Weiss, 1994, Weiss, 1995] (Table 1A). All computations were carried
out on a Silicon Graphics Power Indigo2 workstation.

One-Element Test. To verify the implementation, illustrate the characteristics of
the anisotropic elastic response, and show the viscoelastic behavior, the response of a single
element to equibiaxial stretch followed by stress relaxation was examined. Because the
equibiaxial stretch state represented a homogeneous deformation, only a single element was
needed to reproduce the deformation state exactly. The stretch directions were chosen to
be along and transverse to the collagen fiber direction. The following material coefficients
were used to illustrate the large-deformation behavior of the model and its salient features:
Cy = 10.0 KPa, C; = 10.0 KPa, C5 = 0.7 KPa, C4y = 10.0, C's = 1100.0 KPa, A* = 1.6. The
discrete series approximation of the coefficients in Table 1B were used for the viscoelastic
response (Table 1C). The single element was elongated from 0 to 100% from ¢ = 0 seconds to
t = 1 seconds. The elongation was held constant and the stress relaxed until ¢ = 3 seconds.

Modeling of Ligament Cyclic Stress Relaxation. To simulate the cyclic subfailure
tensile test that is used by soft tissue researchers to precondition samples before failure
testing, a block of 125 elements (5x5x5) was assigned the material properties in Table 1 and
subjected to cyclic loading via applied displacement boundary conditions. The mesh was

stretched from 0 to 3% strain over a 5 second time interval, followed by cyclic stretching from
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1.5 - 3.0% strain at a rate of 0.1 Hz. The timestepping algorithm was adjusted to ensure
that a solution was obtained at each peak and valley in the applied strain profile.

Finite Element Model of Human Medial Collateral Ligament (MCL). To illus-
trate the performance of the visco-hyperelastic material model in a large-scale finite element
problem, a model of the human femur-MCL-tibia complex was constructed for simulation
of valgus rotational loading. Polygonal surfaces of the distal femur, proximal tibia and su-
perficial MCL were obtained from a commercial supplier (Viewpoint Datalabs, Orem, UT).
The polygon data were imported into a commercial block-structured mesh generator (XYZ
Scientific Applications, Livermore, CA). Hexahedral block-structured meshes of the three
structures were constructed by projecting the element faces onto the polygonal surfaces. The
final computational mesh consisted of 6,000, 1,296 and 400 8-noded hexahedral elements for
the femur, tibia and MCL, respectively.

To illustrate the rate-dependence of the soft tissue stresses, analyses were carried out
using both the hyperelastic and visco-hyperelastic materials. For the hyperelastic material
case, coefficients in Table 1A were used. For the viscoelastic material case, coefficients
in Tables 1A and 1C were used. To decrease the computational expense, the bones were
represented using a rigid material model [Maker, 1994], reducing the number of degrees of
freedom to six for each rigid body. These degrees of freedom consisted of three translations
and three rotations with respect to coordinate systems embedded within the bones.

The motion of each bone was controlled by the six degrees of freedom for each bone via
load curves, specifying their value as a function of time. An incremental-iterative solution
strategy was used [Bathe, 1982]. Using the knee joint coordinate system described by Grood
and Suntay [Grood and Suntay, 1983], the tibia was held fixed while all but the varus-valgus
rotation were fixed for the femur. To allow attachment of the MCL ends to the bones without
conformity of the finite element mesh, the last row of elements on each end of the MCL was
specified to be the same (rigid) material as the bone to which it attached.

Frictionless sliding interfaces were used to model the MCL-femur and MCL-tibia con-
tact [Hallquist et al., 1985]. The contact constraint was enforced using a standard penalty
implementation. Contact surface penalties were chosen so that the maximum penetration
distance would not exceed 0.2 mm at any point on the contact surfaces during the analysis.

The MCL was first tensioned to a level of 3% strain using a previously described method-

ology [Weiss et al., 1995b]. The procedure allows the specification of the initial stretch along
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the fiber direction () as a function of time for each element in the mesh. The initial stretch
data was specified via a load curve. For the viscoelastic material case, the stress in the
MCL was then allowed to relax. For both material cases, the knee was subjected to a valgus
rotation of 5 degrees. This value was chosen based on in vivo studies that have shown the
human knee can tolerate 5 degrees valgus rotation without failure while tibial axial rotation
is constrained [Mills and Hull, 1991]. The valgus rotation was applied at a rate of 50 de-
grees/second. Automatic timestepping strategy and a quasi-Newton nonlinear solver were
used [Bathe, 1982, Maker et al., 1990]. The linear system consisted of 126,259 degrees of

freedom, but was reduced to 2,377 after the condensation procedure for the rigid elements.

Results

Discrete Spectrum Approximation

Comparing the relaxation function G(t) computed from the continuous spectrum (4) and
the discrete series approximation (13), excellent agreement was obtained using parameters
determined graphically from the time plot of (4) (Figure 1A, R* = 0.986). The real and
imaginary parts of the complex modulus for both the continuous and discrete spectra were
computed and plotted as a function of frequency (Figure 1B). Again, good agreement was
achieved. This illustrates that the simple graphical method of determining the coefficients
for the discrete relaxation spectrum provides a quick and accurate means of fitting the

continuous spectrum with an exponential series.

Finite Element Implementation

Because up to six relaxation terms were used in the finite element implementation, additional
storage was required for the stress contribution from each term, requiring (6 terms) x (6 stress
components) x (8 integration points) = 288 additional words of storage for each element for
only the last timestep. The use of the recurrence relation bypassed the need to allocate this
much storage for every past timestep. Additionally, the integration of the viscoelastic stress
terms in equation (8) were easily implemented using the recurrence relationship illustrate
for the one-exponential relaxation function by equation (13). The elasticity tensor needed
to form the stiffness matrix was formed directly from the existing time-zero elasticity tensor,

as shown in equation (20). Because implementation of the elasticity tensor is often the most
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difficult part of adding new material models, this fact offered a significant savings in effort

from a programming standpoint.

Test Problems

One-Element Test. Several important features of the anisotropic viscoelastic model
were illustrated by this test problem of equibiaxial extension (Figure 2). The stresses along
the collagen fiber direction are much larger than those transverse to the fiber direction,
as expected for a fiber-reinforced composite. Further, the characteristic “toe region” corre-
sponding to uncrimping of the collagen fibrils, followed by a linear region, are easily identified
in Figure 2A. In contrast, the stress-strain behavior in the transverse direction is relatively
linear with increasing time up to ¢t = 1. The peak viscoelastic stresses are larger than the
elastic stresses. This is a direct result of the stiffening of the material with strain rate, which
is predicted by the QLV model. The viscoelastic stresses begin to decay from their peak
values at ¢ > 1, showing the characteristic relaxation associated with viscoelastic behavior.
During the entire simulation, fully incompressible material behavior was maintained using
the augmented Lagrangian method.

Modeling of Ligament Cyclic Stress Relaxation. The resulting stress response
were plotted as a function of time for the simulated cyclic test (Figure 3A). The peak and
valley stresses were 83% and 44% of their initial values by the last cyle, and the data were
very similar qualitatively to that obtained from typical preconditioning tests on ligamen-
tous tissues. The changes in stress-strain behavior were most easily seen by examining the
hysteresis curves (Figure 3B). The amount of energy lost during each cycle (area under the
loading-unloading curve) decreased with increasing cycle number. The loading-unloading
curves shifted downward with increasing cycle number.

Finite Element Model of Human Medial Collateral Ligament (MCL). The
solution for the elastic material properties was obtained in 5.6 minutes and 13 timesteps,
while the solution with viscoelastic properties took 10.8 minutes and 20 timesteps. The
additional timesteps needed to obtain a solution for the viscoelastic material is a result of
the increased material nonlinearity introduced by the time- and rate-dependent material
properties, dictating the use of a smaller time increment with the quasi-Newton solver. The
average per-step cost was 0.4 and 0.54 minutes for the elastic and viscoelastic cases, indicating

a small increase in cost from the additional floating point operations of the viscoelastic model.
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The magnitude of the reaction force across the MCL-femur and the MCL-tibia contact
surfaces was affected by the change in material properties. The total force across the MCL-
femur contact surface was 18.9 N for the elastic case and 57.2 N for the viscoelastic case.
The total force across the MCL-tibia contact surface was 16.7 N for the elastic case and
41.8 N for the viscoelastic case. The difference in the reaction forces for the femoral and
tibial contact surfaces are attributable to the different geometry of the bones in the contact
region and the manner in which the valgus rotation was applied. The differences between
the elastic and viscoelastic material cases are due to the stiffening effect in the viscoelastic
material.

The effective (von Mises) stress state in the MCL was much higher when the viscoelastic
material model was used (Figure 5), due to the stiffening effect at high loading rates. Average
stresses in the viscoelastic model were between 20 and 30 MPa. The large stresses at the

insertions were partly an artifact of the modeling strategy used to attach the ligament.

Discussion

This paper has developed the theoretical and computational methodology to study anisotropic
viscoelastic soft tissue behavior using the finite element method. Additionally, this material
behavior was implemented in a general-purpose finite element code and applied to several
test problems. The results of these test problems demonstrated the ability to accurately and
efficiently represent common soft tissue viscoelastic behavior, both in small- and large-scale
computational analyses.

This is the first finite element implementation of anisotropic visco-hyperelasticity. Many
other constitutive models have been proposed and used for three-dimensional anisotropic
soft tissue hyperelasticity. However, only a few implementations of these constitutive mod-
els are available for finite element computations [Guccione et al., 1991, Horowitz et al., 1988,
Weiss et al., 1995a]. Finite element methods for representing soft tissues as poroelastic have
been available for several years (i.e., [Suh et al., 1991]). The present work fills a gap between
anisotropic hyperelasticity and poroelasticity by allowing for anisotropic solid matrix vis-
coelasticity in a computational setting. The present implementation can accommodate any
elastic response. The one presently chosen is similar in form to those developed by Humphrey
and coworkers for cardiac tissue [Humphrey et al., 1990, Humphrey and Yin, 1987], in the

sense that both are based on a global invariant approach to anisotropy [Spencer, 1984]. How-
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ever, the presently used function incorporated the behavior attributed to the uncrimping of
collagen fibers. In this sense it is similar to microstructurally based approaches proposed
by Lanir and coworkers [Lanir, 1983, Lanir, 1980]. The present work provides a compromise
between a completely phenomenological constitutive model and a microstructural model.
The material coefficients for the collagen fibers have physical meaning, unlike a purely phe-
nomenological approach.

There are well-known problems when using an exponential series to approximate a contin-
uous function. The most common is that there are many combinations of exponentials that
can provide an equally good fit to any particular function. Consequently, although one may
identify particular exponentials with a specific relaxation mechanism within the material,
the lack of uniqueness makes the interpretation of the coefficients meaningless. However, the
discrete series was only used as an approximation for the actual continuous spectrum, which
was fitted directly to the experimental data. This allowed the use of the recursion relation
in (13). No physical meaning is attached to the coeflicients G, Go, Ny, and I,.

The femur-MCL-tibia finite element model was designed to demonstrate the performance
and utility of the finite element implementation for a representative problem from joint
mechanics. Several assumptions made in the construction of this model could significantly
affect the computed stress response. It was assumed that the initial stretch distribution
in the MCL at 0 degrees knee flexion could be approximated by specifying a value of 3%
strain throughout the structure. It is well-known that the strain in knee ligaments changes
with joint orientation, and is never completely uniform, e.g. [Edwards et al., 1970]. Also, the
model used a crude representation of ligament insertions to bone. Because there was a sudden
transition from ligament material to bone in the model, the stresses near the insertions were
not reliable. However, based on St. Venant’s principle, the stresses away from the insertion
sites should still be accurate. An ongoing experimental study by the authors is examining
the initial stretch distribution in the MCL as a function of knee joint orientation, and these
data will be used in future modeling of the femur-MCL-tibia complex.

Recent work has reported that ligaments undergo some volume change during tensile
testing and do not behave as fully incompressible materials [Thielke et al., 1995]. This may
be a result of fluid exudation from the structure under loading. If the material is represented
as a poroelastic continuum composed of both solid and fluid phases, the solid component

could still be incompressible. The present implementation can accommodate both compress-
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ible material behavior by a simple modification of the function W to allow strain energy to
be generated via volume deformation. However, experimental measurement of this dilational
response 1s difficult and sufficient data are not presently available.

Although in the present implementation the entire 2nd Piola-Kirchhoff stress is assumed
to relax viscoelastically, it is just as easy to relax the deviatoric or dilational part of the
stress. Deviatoric stress relaxation is often utilized in the analysis of viscoelastic solids
when the relaxation mechanism appears to be independent of pressure. The idea of sepa-
rate viscoelastic behavior for the shear and bulk response for soft tissues has been touched
on by [Mak, 1986]. The presently developed theoretical and computational framework can

accommodate this alternative formulation with minimal modification.

Conclusions

The theoretical and computational framework for finite element implementation of incom-
pressible, transversely isotropic visco-hyperelasticity was developed and implemented. The
storage and computation requirements for the QLV model were minimized by the use of a
discrete spectrum approximation for the continuous relaxation spectrum. The elastic re-
sponse allowed for reinforcement from a single fiber family and was motivated based on
the observed material behavior of ligaments and tendons. Test problems were presented to
demonstrate the utility and accuracy of the implementation. The implementation is ideal
for finite element modeling of many biological soft tissues because it accommodates both
the anisotropic material properties and the viscoelasticity, the two main characteristics of
these materials. The transversely isotropic visco-hyperelastic material models provide an
excellent means to examine dynamic simulations of soft tissue and joint mechanics with the

finite element method.
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Table 1: Material Coefficients for A) Transversely Isotropic Elastic Response [Weiss, 1994,
Weiss et al., 1995], B) Continuous Relaxation Function [Woo et al., 1981], and C) Discrete
Series Approximation.

A)
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Figure 1: A) Reduced relaxation function G (t) given by the quasilinear viscoelastic function
(4) and the discrete spectrum approximation (13). Note that the function is normalized
to the time-zero value and thus is unitless. B) Real part (stiffness) and imaginary part
(damping) of the complex modulus given by the quasilinear viscoelastic function in (4),
and the discrete spectrum approximation in (13). Note that the stiffness and damping are
unitless - see equations (6) and (7). Coefficients for G (¢) are listed in Table 1A.
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Figure 2: One-element simulation of equibiaxial stretch to 100% elongation followed by
Curves illustrate both the elastic and viscoelastic material
cases. Data points represent computational times from the finite element code. A) stresses
along the collagen fiber direction. B) stresses transverse to the collagen fiber direction.

equibiaxial stress relaxation.
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Figure 3: Finite element modeling of stress relaxation using the discrete spectrum approx-
imation. Data points represent timestep intervals taken by the finite element code. A)
Computed stress response versus time. Changes in the hysteresis curve with increasing cycle
number are evident. B) Computed stress response versus applied strain. Note the decreases
in peak and valley stresses with increasing cycle number.
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Figure 4: Detail of a finite element model of the human femur-MCL-tibia complex. The
mesh was used with the visco-hyperelastic constitutive model to examine the stresses in the

MCL during knee flexion.
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Figure 5: Effective (von Mises) stress in the MCL at 5 degress valgus rotation using both the
hyperelastic (left) and visco-hyperelastic material models. The viscoelastic response resulted
in higher peak stresses as a result of the rate effects on the material effective stiffness.
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