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Abstract Mathematical modelling of dynamical systems often yields partial differential
equations (PDEs) in time and space, which represent a conservation law possibly including
a source term. Uncertainties in physical parameters can be described by random variables.
To resolve the stochastic model, the Galerkin technique of the generalised polynomial chaos
results in a larger coupled system of PDEs. We consider a certain class of linear systems
of conservation laws, which exhibit a hyperbolic structure. Accordingly, we analyse the
hyperbolicity of the corresponding coupled system of linear conservation laws from the
polynomial chaos. Numerical results of two illustrative examples are presented.

Keywords Generalised polynomial chaos · Galerkin method · Random parameter ·
Conservation laws · Hyperbolic systems

1 Introduction

In this paper, we study the impact of uncertainty on linear conservation laws, which are
typically modelled as systems of hyperbolic partial differential equations (PDEs). Involved
physical parameters can exhibit uncertainties. Consequently, we substitute these parameters
by random variables corresponding to traditional distributions. The solution of the conser-
vation law becomes a random process in time and space. We are interested in properties of
the stochastic process like expected values and variances. Nevertheless, more sophisticated
data may be required.

On the one hand, the information of the stochastic model can be obtained by a quasi
Monte-Carlo simulation, for example. On the other hand, the concept of the generalised
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polynomial chaos (gPC) yields a representation of the random process, where a separation
in time-space-dependent coefficient functions and random-dependent basis polynomials is
achieved. The gPC methodology, first systematically proposed in [17], is an extension of the
seminal work of polynomial chaos by R. Ghanem, see [4]. It utilises orthogonal polynomials
to approximate random variables in random space. The computation of the unknown expan-
sion coefficient functions can be done either by stochastic collocation or by the solution of
a larger coupled system resulting from a stochastic Galerkin method, see [16]. Accordingly,
we obtain the desired information by the representation in the gPC. For an extensive review
of the methodology and numerical implementations, see [14, 15].

Though the gPC Galerkin approach has been applied to a large variety of problems, its
application to hyperbolic problems has been much less, largely due to the lack of theoretical
understanding of the resulting system of equations. Some recent work exist [2, 5, 8, 9], most
of which considered linear and scalar cases. The analysis becomes more sophisticated and
involved in case of systems of hyperbolic PDEs. It becomes more challenging for nonlinear
cases. An early attempt was made in [12] using gPC Galerkin technique, where the standard
orthogonal polynomials as well as more sophisticated sets of basis functions are employed
to facilitate the analysis.

In this article, we consider a certain class of linear systems of conservation laws. The
gPC approach based on the Galerkin method yields a larger coupled system of linear PDEs,
which itself represents a conservation law. We analyse the hyperbolicity of the larger sys-
tem provided that the original systems are hyperbolic. Thereby, we investigate if involved
matrices are real diagonalisable. A deeper understanding of this property is critical to the
design of effective numerical algorithms. And here we study extensively the cases of both
single random parameter and multiple random parameters. For example, an understanding
of hyperbolicity of the system is important.

The article is organised as follows. We introduce linear conservation laws with random
parameters in Sect. 2. The gPC approach is applied and results in a larger coupled system
via the Galerkin method. In Sect. 3, we examine the hyperbolicity of the larger system
of conservation laws. The case of a single random parameter as well as several random
parameters is discussed. In Sect. 4, we present numerical simulations of two test examples,
i.e., the wave equation and the linearised shallow water equations.

2 Problem Definition

A general nonlinear system of conservation laws in one space dimension reads

∂u
∂t

+ ∂

∂x
f(u,p) = 0,

where the function f : R
n × Q → R

n depends on the physical parameters p ∈ Q ⊆ R
q . Thus

the solution u : [t0, t1]× [x0, x1]× Q → R
n is also parameter-dependent. The corresponding

quasilinear formulation is given by

∂u
∂t

+ A(u,p)
∂u
∂x

= 0 with A = ∂f
∂u

.

Considering a solution u for a specific parameter tuple p ∈ Q, the system is called hyper-
bolic, if the Jacobian matrix A(u(t, x),p) ∈ R

n×n is real diagonalisable for all involved val-
ues u(t, x). A hyperbolic system is called strictly hyperbolic, if the eigenvalues are always
pairwise different.
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We investigate a linear system of conservation laws

∂u
∂t

+ A(p)
∂u
∂x

= 0 (2.1)

with parameter-dependent matrix A(p) ∈ R
n×n. Given a specific parameter tuple p ∈ Q, the

system is called hyperbolic if the matrix A(p) is real diagonalisable. Strictly hyperbolic sys-
tems are defined as above. We assume that the system (2.1) is hyperbolic for all parameters
within the relevant set Q.

Uncertainties in the parameters are modelled by independent random variables p = ξ(ω)

with respect to a probability space (�, A,P ). Let each random variable exhibit a clas-
sical distribution like uniform, beta, Gaussian, etc. Thus a probability density function
ρ : R

q → R exists, whose support is included in Q. Given a function f : Q → R depending
on the parameters, we denote the expected value (if exists) by

〈f (ξ)〉 :=
∫

�

f (ξ(ω)) dP (ω) =
∫

Rq

f (ξ)ρ(ξ) dξ .

We employ this notation also for functions f : Q → R
m×n by components. We consider

continuous random variables in this paper. For a discussion on gPC for discrete random
variables, see [17].

It follows that the solution of the linear system (2.1) becomes random-dependent. We
assume that this random process exhibits finite second moments, i.e., for all fixed t and x,

〈uj (t, x, ξ)2〉 < ∞ for j = 1, . . . , n. (2.2)

Consequently, the generalised polynomial chaos (gPC), see [17], yields an expansion of the
solution

u(t, x, ξ) =
∞∑
i=0

vi (t, x)�i(ξ) (2.3)

with orthonormal basis polynomials �i : R
q → R, i.e.,

〈�i�j 〉 =
∫

Rq

�i(ξ)�j (ξ)ρ(ξ) dξ = δij . (2.4)

The family (�i)i∈N represents a complete set of the polynomials in q variables, where the
probability distribution ρ(ξ) serves as the weight function in the orthogonality relation. This
establishes a correspondence between the probability distribution of the input random vari-
ables ξ and the type of orthogonal polynomials. For examples, Gaussian distribution defines
the Hermite polynomials, whereas uniform distribution defines the Legendre polynomials.
For a detailed discussion, see [17]. The coefficient functions vi : [t0, t1] × [x0, x1] → R

n are
unknown a priori. The convergence of the series (2.3) is at least pointwise in t and x due
to (2.2).

We apply a finite approximation

um(t, x, ξ) :=
m∑

i=0

vi (t, x)�i(ξ). (2.5)
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Inserting (2.5) in (2.1) causes a residual r(t, x, ξ) ∈ R
n. The Galerkin approach yields the

condition 〈r��〉 = 0 for � = 0,1, . . . ,m. Hence we obtain the larger coupled system

∂v�

∂t
+

m∑
i=0

〈��(ξ)�i(ξ)A(ξ)〉∂vi

∂x
= 0 for � = 0,1, . . . ,m (2.6)

involving the unknown coefficient functions. Using v := (v0, . . . ,vm), the complete system
can be written as

∂v
∂t

+ B
∂v
∂x

= 0 (2.7)

with a matrix B ∈ R
(m+1)n×(m+1)n. The matrix B exhibits a block structure

B =
⎛
⎜⎝

B00 · · · B0m

...
...

Bm0 · · · Bmm

⎞
⎟⎠

with the minors

Bij = 〈�i(ξ)�j (ξ)A(ξ)〉 ∈ R
n×n for i, j = 0,1, . . . ,m.

The following analysis can be generalised directly to linear systems of conservation laws

∂u
∂t

+ A(p)
∂u
∂x

= g(t, x,u,p)

including a source term g : [t0, t1] × [x0, x1] × R
n × Q → R

n, since the definition of a hy-
perbolic system is independent of the source term.

In case of linear PDEs, the gPC technique using the larger coupled system is significantly
more efficient than a quasi Monte-Carlo simulation. For a parabolic PDE, this efficiency has
been demonstrated in [10]. A challenge consists in the adequate application of the gPC for
nonlinear problems, see [1]. If the coupled system (2.7) is hyperbolic, then we can use stan-
dard algorithms to solve the stochastic problem numerically. More precisely, we may apply
the same methods for the system (2.7) as for the original systems (2.1). Hence numerical
algorithms do not need to be adapted to the system of PDEs from the stochastic Galerkin
approach.

3 Analysis of Hyperbolicity

We examine if the system (2.7) is hyperbolic, i.e., if the matrix B is real diagonalisable.
Thereby, we assume that the original systems (2.1) are hyperbolic for each tuple of pa-
rameters p in the support of the probability density function corresponding to the random
distribution.

3.1 Preliminaries

For symmetric matrices, we achieve the following theorem.

Theorem 1 If the matrix A(ξ) is symmetric for all ξ within the support of the probability
density function, then the matrix B in (2.7) is real diagonalisable.
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Proof Let B∗
ij ∈ R

n×n for i, j = 0,1, . . . ,m be the minors of the matrix B	. It follows

B∗
ij = B	

j i = 〈�j(ξ)�i(ξ)A(ξ)	〉 = 〈�i(ξ)�j (ξ)A(ξ)〉 = Bij .

The matrix B is also symmetric. Consequently, the matrix B is real diagonalisable. �

Although mathematical modelling often yields asymmetric matrices A(ξ), the corre-
sponding hyperbolic linear conservation law can be symmetrised.

We obtain another positive result if the eigenvectors of the matrix do not depend on the
parameters, i.e., the eigenvectors are not uncertain.

Theorem 2 If the matrix A(ξ) is real diagonalisable for all ξ within the support of the
probability density function and the eigenvectors do not depend on ξ , then the matrix B

in (2.7) is real diagonalisable.

Proof It holds D(ξ) = V A(ξ)V −1 with diagonal matrices D(ξ) and a constant matrix V .
The minors Bij ∈ R

n×n for i, j = 0,1, . . . ,m of the matrix B satisfy

Bij = 〈�i(ξ)�j (ξ)A(ξ)〉 = 〈�i(ξ)�j (ξ)V −1D(ξ)V 〉
= V −1〈�i(ξ)�j (ξ)D(ξ)〉V.

Hence we write B = (Im+1 ⊗ V −1)B̂(Im+1 ⊗ V ) using Kronecker products and the identity
matrix Im+1 ∈ R

(m+1)×(m+1). The matrix B̂ consists of the minors B̂ij = 〈�i(ξ)�j (ξ)D(ξ)〉.
Due to the symmetry in i, j and D(ξ)	 = D(ξ), the matrix B̂ is symmetric. Now B̂ and
thus B is real diagonalisable. �

Theorem 1 and Theorem 2 hold for arbitrary sets of orthonormal basis functions (�i)i∈N.
In case of nonlinear hyperbolic systems, the coupled system from the stochastic Galerkin
technique also inherits the hyperbolicity in these two cases, which has been proven in [12].

In the following, we assume a specific structure of the matrix A(ξ), which has already
been considered in [11]. For ξ = (ξ1, . . . , ξq), let

A(ξ) = A0 +
q∑

k=1

ηk(ξk)Ak (3.1)

with constant matrices A0,A1, . . . ,Ak ∈ R
n×n and nonlinear scalar functions ηk : R → R.

This structure allows for a specific analysis in contrast to the general form. However, linear
hyperbolic systems often exhibit matrices of the form (3.1) with respect to the involved
parameters in the applications.

Without loss of generality, we assume 〈ηk(ξk)〉 = 0 and 〈ηk(ξk)
2〉 = 1 for each k =

1, . . . , q . (Note this can always be achieved by properly shifting and scaling the matrices.)
Observing (3.1), the matrix A0 is seen as a constant part, whereas the sum represents a
perturbation. The magnitude of the perturbation is specified by the norm of the matrices
A1, . . . ,Ak .

Using (3.1), it follows

Bij = 〈�i(ξ)�j (ξ)A(ξ)〉 = δijA0 +
q∑

k=1

〈ηk(ξk)�i(ξ)�j (ξ)〉Ak.



298 J Sci Comput (2012) 51:293–312

Now the coupled system (2.6) reads

∂v�

∂t
+

m∑
i=0

[
δilA0 +

q∑
k=1

〈ηk(ξk)�i(ξ)��(ξ)〉Ak

]
∂vi

∂x
= 0

or, equivalently,

∂v�

∂t
+ A0

∂v�

∂x
+

q∑
k=1

Ak

[
m∑

i=0

〈ηk(ξk)�i(ξ)��(ξ)〉∂vi

∂x

]
= 0 (3.2)

for � = 0,1, . . . ,m. As an abbreviation, we define the matrices

Sk = (σ k
ij ) ∈ R

(m+1)×(m+1), σ k
ij := 〈ηk(ξk)�i(ξ)�j (ξ)〉.

The coupled system (2.7) can be written in the form

∂v
∂t

+
[
Im+1 ⊗ A0 +

q∑
k=1

Sk ⊗ Ak

]
∂v
∂x

= 0 (3.3)

with Kronecker products and the identity matrix Im+1 ∈ R
(m+1)×(m+1).

Each matrix Sk is symmetric and thus real diagonalisable, i.e.,

Sk = TkDkT
	
k

with orthogonal matrices Tk and diagonal matrices Dk . Remark that the transformation ma-
trices Tk are not identical for different k in general.

3.2 Single Random Parameter

We examine the special case of just one random parameter. In the original system (2.1), the
dependence on the parameter reads

A(p1) = A0 + η1(p1)A1.

Let ρ be the density function of the probability distribution assigned to p1. We assume
that A(p1) is real diagonalisable for all p1 ∈ supp(ρ) (support of the density function), i.e.,
the system (2.1) is hyperbolic for each parameter p1 ∈ supp(ρ).

The coupled system (3.3) becomes

∂v
∂t

+ [
Im+1 ⊗ A0 + S1 ⊗ A1

] ∂v
∂x

= 0. (3.4)

In this case, we achieve a positive result concerning the hyperbolicity applying an arbitrary
set (�i)i∈N of basis functions.

Theorem 3 Let A(p1) be real diagonalisable for all p1 ∈ supp(ρ). If the eigenvalues λ� of
the matrix S1 satisfy λ� ∈ G for all � with

G := {η1(p1) : p1 ∈ supp(ρ)},
then the system (3.4) is hyperbolic.
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Proof Applying the multiplication rule (A⊗B)(C ⊗D) = (AC)⊗ (BD), we transform the
system (3.4) into

(T1 ⊗ In)
∂v
∂t

+ [
(T1T

	
1 ) ⊗ A0 + (T1S1T

	
1 ) ⊗ A1

]
(T1 ⊗ In)

∂v
∂x

= 0.

The substitution w := (T1 ⊗ In)v yields the equivalent system

∂w
∂t

+ [
Im+1 ⊗ A0 + D1 ⊗ A1

] ∂w
∂x

= 0.

Let C := Im+1 ⊗ A0 + D1 ⊗ A1 and D1 = diag(λ0, . . . , λm). Consequently, the matrix C

exhibits a block diagonal structure with the minors

C� = A0 + λ�A1 for � = 0,1, . . . ,m. (3.5)

Since we assume that λ� ∈ G holds, the matrix C� is real diagonalisable for each �. It follows
that the total matrix C is real diagonalisable. �

In particular, the assumption λ� ∈ G used in Theorem 3 is always satisfied in case of
a Gaussian distribution (supp(ρ) = R) provided that η1 is surjective. The function η1 is
surjective in the important case η1(p1) ≡ p1, for example.

We consider the special case η1(p1) ≡ p1, where the corresponding matrix is given by
S1 = (〈ξ�i�j 〉). Thus the following result applies to the particular case A(ξ) = A0 + ξA1.

Lemma 1 Let ξ be a random variable with the probability density function ρ(ξ). Let
{�i(ξ)}m

i=0 be the gPC orthogonal polynomials satisfying

〈�i�j 〉 =
∫

R

�i(ξ)�j (ξ)ρ(ξ) dξ = δij . (3.6)

Then the eigenvalues of the symmetric matrix S1 ∈ R
(m+1)×(m+1) are the zeros of the m + 1

degree polynomial �m+1(ξ).

Proof It is well known that the univariate orthonormal polynomials from (3.6) satisfy a
three-term recurrence relation in the following form

ξ�k(ξ) = bk+1�k+1(ξ) + ak�k(ξ) + bk�k−1(ξ), k = 0,1,2, . . .

with �−1(ξ) = 0 and �0(ξ) = 1 and ak, bk are real numbers satisfying certain conditions.
Let us consider the polynomials of degree up to m. By using matrix-vector notation, we
denote �(ξ) = (�0(ξ), . . . ,�m(ξ))	 and rewrite the three-recurrence relation for up to m

as

ξ�(ξ) = J�(ξ) + bm+1�m+1(ξ)em+1.

The tridiagonal symmetric matrix J ∈ R
(m+1)×(m+1) takes the form

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 b1

b1 a1 b2

b2 a2
. . .

. . .
. . . bm

bm am

⎞
⎟⎟⎟⎟⎟⎟⎠
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and em+1 = (0, . . . ,0,1)	 is the unit vector of length m + 1. It is now obvious that if ξi for
i = 1, . . . ,m + 1 are the zeros of the polynomial �m+1(ξ), then the above matrix equation
becomes an eigenvalue problem for J . Therefore, the eigenvalues of matrix J are the zeros
of the polynomial �m+1(ξ). On the other hand, by using the orthonormality (3.6) and the
three-term recurrence, it follows

〈ξ�i�j 〉 = bi+1〈�i+1�j 〉 + ai〈�i�j 〉 + bi〈�i−1�j 〉
and thus S1 = J . This completes the proof. �

We remark that though similar results were presented in [13] for several well-known
orthogonal polynomials, the above proof is rooted on the work of [3], which is more general
and elegant.

3.3 Multiple Random Parameters

Now we investigate the general case of q ≥ 2 random parameters. The corresponding system
is given in (3.2). In the gPC, the multivariate basis polynomials read

�i1,...,iq (ξ1, . . . , ξq) :=
q∏

�=1

�
i�
(ξ�),

where �
i represents the univariate basis polynomial of degree i corresponding to the �th

random parameter. As an abbreviation, we apply i := (i1, . . . , iq). Let 〈·〉� denote the ex-
pected value of a random variable depending on the parameter ξ� only. It holds due to the
independence of the random parameters

〈�i�j〉 =
〈(

q∏
�=1

�
i�
(ξ�)

)(
q∏

k=1

k
jk

(ξk)

)〉
=

〈
q∏

�=1

(
�

i�
(ξ�)

�
j�

(ξ�)
)〉

=
q∏

�=1

〈
�

i�
(ξ�)

�
j�

(ξ�)
〉
�
=

q∏
�=1

δi�j� =: δij,

which confirms the orthogonality of the basis functions, cf. (2.4).
We consider two different sets of basis polynomials

MR :=
{

�i :
q∑

�=1

i� ≤ R

}
and NR :=

{
�i : max

1≤�≤q
i� ≤ R

}

for each degree R ∈ N. The set MR represents all multivariate polynomials up to degree R

as used in a Taylor expansion. We will provide a counterexample with two random param-
eters in Sect. 4.2, which demonstrates that the corresponding coupled system (3.2) is not
always hyperbolic using MR , although the underling systems (2.1) are all hyperbolic. The
counterexample exhibits the specific form (3.1) with two linear functions η1, η2. Neverthe-
less, it also represents a counterexample for the general case (2.1).

For the set NR , we define

|i| := max
1≤�≤q

i�
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and the system (3.2) reads

∂vl

∂t
+ A0

∂vl

∂x
+

q∑
k=1

Ak

⎡
⎣ R∑

|i|=0

〈ηk(ξk)�i(ξ)�l(ξ)〉∂vi

∂x

⎤
⎦ = 0

for |l| ≤ R. The involved expected value can be calculated as

〈ηk(ξk)�i(ξ)�l(ξ)〉 =
〈
ηk(ξk)

(
q∏

α=1

α
iα

(ξα)

)⎛
⎝ q∏

β=1


β

�β
(ξβ)

⎞
⎠

〉

=
〈
ηk(ξk)

k
ik
(ξk)

k
�k

(ξk)
〉
k

∏
α �=k

〈
α

iα
(ξα)

α
�α

(ξα)
〉
α

=
〈
ηk(ξk)

k
ik
(ξk)

k
�k

(ξk)
〉
k

∏
α �=k

δiα�α .

We define the matrices Sk := (〈ηk(ξk)
k
ik
(ξk)

k
�k

(ξk)〉) for 0 ≤ ik, �k ≤ R again. Hence
Sk ∈ R

(R+1)×(R+1) holds for all k. Using an adequate ordering of the basis polynomials and
v̂ = (vl)|l|≤R , the above system reads

∂ v̂
∂t

+
(

I(R+1)q ⊗ A0 +
q∑

k=1

Nk ⊗ Ak

)
∂ v̂
∂x

= 0 (3.7)

with the matrices

Nk := IR+1 ⊗ · · · ⊗ IR+1 ⊗ Sk ⊗ IR+1 ⊗ · · · ⊗ IR+1

= I(R+1)(k−1) ⊗ Sk ⊗ I(R+1)(q−k) .

To analyse the hyperbolicity, we consider the matrices

A(μ1, . . . ,μq) = A0 +
q∑

k=1

μkAk (3.8)

in the original systems (2.1). Let G be a q-dimensional cuboid of the form

G =
q∏

k=1

Gk (3.9)

with Gk = [ak, bk], Gk = [ak,+∞), Gk = (−∞, bk] or Gk = R. We assume that the matri-
ces (3.8) are real diagonalisable for all μ ∈ G .

Theorem 4 Let λk,� be the eigenvalues of the matrix Sk . If λk,� ∈ Gk holds for each �, then
the coupled system (3.2) based on the basis functions NR is hyperbolic.

Proof Each matrix Sk is symmetric and thus diagonalisable, i.e., Sk = TkDkT
	
k . In the fol-

lowing, we apply the multiplication rule

(A1 ⊗ A2 ⊗ · · · ⊗ Ar)(B1 ⊗ B2 ⊗ · · · ⊗ Br) = (A1B1) ⊗ (A2B2) ⊗ · · · ⊗ (ArBr).
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We arrange the transformation matrix

T̂ := T1 ⊗ T2 ⊗ · · · ⊗ Tq.

It holds

T̂ −1 = T 	
1 ⊗ T 	

2 ⊗ · · · ⊗ T 	
q = T̂ 	.

We perform a similarity transformation of the matrix in the system (3.7)

C := (T̂ 	 ⊗ In)

(
I(R+1)q ⊗ A0 +

q∑
k=1

Nk ⊗ Ak

)
(T̂ ⊗ In)

= (T̂ 	T̂ ) ⊗ A0 +
q∑

k=1

(T̂ 	NkT̂ ) ⊗ Ak.

It follows

T̂ 	NkT̂ = T 	
1 T1 ⊗ · · · ⊗ T 	

k−1Tk−1 ⊗ T 	
k SkTk ⊗ T 	

k+1Tk+1 ⊗ · · · ⊗ T 	
q Tq

= I(R+1)(k−1) ⊗ Dk ⊗ I(R+1)(q−k) =: D̂k,

where D̂k is a diagonal matrix of order (R+1)q containing only diagonal elements from Dk .
Thus the transformed matrix becomes

C = I(R+1)q ⊗ A0 +
q∑

k=1

D̂k ⊗ Ak.

This matrix is block diagonal with the minors

C� := A0 +
q∑

k=1

λk,�Ak

for � = 1, . . . , (R + 1)q . Each coefficient λk,� is an eigenvalue of the symmetric matrix Sk .
It follows that each matrix C� is real diagonalisable due to the assumption λk,� ∈ Gk . �

Again we can guarantee the assumption made by Theorem 4 in the special case ηk(pk) ≡
pk for all k provided that the original systems (2.1) are hyperbolic for all p ∈ supp(ρ).
Using a Gaussian distribution for pk yields Gk = R. Given a uniform distribution, it follows
Gk = [ak, bk].

Theorem 4 implies the hyperbolicity of the gPC system (3.7), where a set NR of ba-
sis functions is involved. The counterexample given in Sect. 4.2 yields that the coupled
system (2.6) is not always hyperbolic in case of the set MR . Nevertheless, in view of
MR ⊂ NR , we can always enlarge the set of basis polynomials to guarantee a hyperbolic
system. Due to |NR| = (R + 1)q and |MR| = (R+q)!

R!q! , we obtain |NR| ≈ q!|MR|. Hence the
sizes |NR|n and |MR|n of the corresponding systems of conservation laws differ signifi-
cantly for large numbers of random parameter.

Finally, we comment shortly on the case of small random perturbations, which often
yields stronger results, cf. [11]. The standardisation 〈ηj (ξj )

2〉 = 1 for j = 1, . . . , q implies
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that the magnitude of the stochastic perturbation is included in the matrices A1, . . . ,Aq . If
it holds

‖Aj‖ → 0 for all j = 1, . . . , q,

then the matrix from (3.3) results to Im+1 ⊗ A0 in the limit case. It follows that the sys-
tem (3.3) is not strictly hyperbolic in the limit, since multiple eigenvalues occur. For a small
random perturbation, we obtain a matrix Im+1 ⊗ A0 + E with ‖E‖ � 1. Gerschgorin’s the-
orem implies that the eigenvalues of this matrix are located within small circles around the
real eigenvalues of A0 in the complex plane. However, since multiple eigenvalues appear in
the limit, pairs of conjugate complex eigenvalues are not excluded for the perturbed matrix.
Hence we do not achieve more information on hyperbolicity in the case of small random
perturbations.

4 Numerical Simulation

We discuss two test examples, which exhibit a single random parameter and two random
parameters, respectively.

4.1 Wave Equation

As illustrative example, we consider the scalar wave equation in one space dimension

∂2w

∂t2
= c2 ∂2w

∂x2
with w : [0, T ] × R → R, (t, x) �→ w(t, x) (4.1)

and velocity c > 0. The corresponding initial values read

w(0, x) = w0(x),
∂w

∂t

∣∣∣∣
t=0

= w1(x),

where w0,w1 are predetermined functions. Using u1 := ∂w
∂x

and u2 := ∂w
∂t

, the equivalent
system of first order is given by

∂

∂t

(
u1

u2

)
+

(
0 −1

−c2 0

)
∂

∂x

(
u1

u2

)
=

(
0
0

)
, (4.2)

see [6]. The according initial values result to

u1(0, x) = w′
0(x), u2(0, x) = w1(x).

For u := (u1, u2)
	, the system (4.2) exhibits the form (2.1) with a matrix A(c) depending

on the velocity c.
We apply the initial conditions

w0(x) =
{

(x − 1)2(x + 1)2 for −1 < x < 1
0 elsewhere

and w1 ≡ 0. Hence both w0 and w′
0 are smooth functions. We solve the system (4.2) with

c = 1 using the Lax-Wendroff scheme, see [7]. A grid in the domain x ∈ [−5,5] and
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Fig. 1 Solutions u1 (left) and u2 (right) of system (4.2) for c = 1

Fig. 2 Solution of wave
equation (4.1) for c = 1

t ∈ [0,3] is arranged with the mesh sizes �x = 1
40 and �t = 1

80 . Thus the CFL condi-
tion is satisfied, which is necessary for the stability of the method, see [7]. We apply the
boundary conditions u(−5, t) = u(5, t) = 0. Figure 1 illustrates the resulting solutions. We
compute the corresponding solution of (4.1) by integration of the partial derivatives obtained
from (4.2), see Fig. 2. We remark that there exist many other choices of spatial and temporal
discretisations. The key is to ensure grid resolution independent results. Here our focus is on
the random domain and the model problems usually have discontinuity in random domain
but not in physical domain. The choice of the Lax-Wendroff scheme was tested and shown
to be sufficient. For problems with more complex nature, more sophisticated schemes can
be used.

Now we arrange a random velocity via

c(ξ) = 1 + αξ

with a constant α ∈ R. A uniformly distributed random variable ξ ∈ [−1,1] is used. Conse-
quently, the matrix A(c) depends continuously on a random parameter. We apply a random
distribution for the velocity c and not for c2 to achieve a nonlinear dependence in A(c), i.e.,
to investigate the more complex case. In the following, we choose α = 0.1, which corre-
sponds to variations of 10% in the velocity.

Due to the uniform distribution, the gPC applies the Legendre basis, see [17]. Since no
discontinuities appear in random space, we expect an exponential convergence of the gPC
expansion (2.3). The eigenvalues of the matrices in the larger coupled system (2.6) are shown
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Fig. 3 Eigenvalues of matrix in
gPC systems for wave equation

Fig. 4 Expected values for u1 (left) and u2 (right) resulting from gPC for wave equation

in Fig. 3 for different degrees m. In the following, we employ the univariate basis polyno-
mials up to the degree m = 4. We solve the corresponding initial-boundary value problem
in the same domain with the same mesh sizes as above. Again the Lax-Wendroff scheme
yields the numerical solution. Figure 4 demonstrates the approximations of the expected
values achieved by the gPC, i.e., the first coefficient functions. These expected values are
similar to the deterministic solution in case of c = 1. The corresponding approximations of
the variance are shown in Fig. 5. For a more detailed visualisation, Fig. 6 depicts the ex-
pected values and the variances at the final time. Furthermore, Fig. 7 illustrates the other
coefficient functions of the first component of the solution. The behaviour of the coefficient
functions of the second component is similar.

Next, we observe the convergence of the gPC expansions for increasing order m. We
consider the approximations um from (2.5). Since the exact expansion is not available, we
examine the solution differences at successive orders in the spirit of a Cauchy sequence. For
the components ul , the differences

Em
l (t, x) := ‖um

l (t, x, ξ) − um−1
l (t, x, ξ)‖L2(�)

=
(

vm
m,l(t, x)2 +

m−1∑
i=0

(vm
i,l(t, x) − vm−1

i,l (t, x))2

)1/2

(4.3)
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Fig. 5 Variance for u1 (left) and u2 (right) resulting from gPC for wave equation

Fig. 6 Expected values (left) and variances (right) for u1 (solid line) and u2 (dashed line) at final time t = 3
resulting from gPC for wave equation

indicate the rate of convergence, where vm
i,l are the coefficient functions in um. We solve

the gPC systems for m = 1, . . . ,8 to obtain the numerical solutions um. Figure 8 shows the
maximal differences (4.3) in the grid points for each component. We recognise an exponen-
tial convergence in the approximations, which is typical for the gPC approach. Moreover,
the values for the two components coincide.

For comparison, we perform a quasi Monte-Carlo simulation using K samples ξk for the
random parameter to achieve a reference solution. Thereby, we consider the exact solution of
the initial-boundary value problem of the system (4.2) for each velocity c(ξk). We compute
the solutions of the larger coupled systems (2.6) in the gPC for different degrees m. Again
the Lax-Wendroff method yields the approximations on a mesh with same sizes as above.
We discuss the corresponding mean square errors

Ēm
l (t, x) :=

(
1

K

K∑
k=1

(
ul(t, x, ξk) − um

l (t, x, ξk)
)2

)1/2

(4.4)

for the components l = 1,2. Table 1 illustrates the maximum mean square errors (4.4) on the
grid using K = 100 and K = 200 samples. As expected, the differences decrease for increas-
ing degree m, i.e., higher accuracy in the gPC. The results for different sample number K

differ hardly, which indicates that the quasi Monte-Carlo simulation yields a sufficiently
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Fig. 7 Coefficient functions of u1 in gPC for wave equation

Fig. 8 Maximum of differences
Em

1 (circle) and Em
2 (cross) in

numerical solutions for different
orders m from gPC in
semi-logarithmic scale

accurate reference solution for comparing the gPC simulations. We remark that the mean
square error decreases significantly if smaller step sizes are applied in space and time. Thus
the error of the computed gPC solutions is dominated by the discretisation error in time and
space and not by the error of the stochastic Galerkin approach.
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Table 1 Maximum mean square
errors between approximations
from gPC for different degrees
and quasi Monte-Carlo
simulation with K samples

Degree m K = 100 K = 200

u1 u2 u1 u2

1 1.2 · 10−1 1.3 · 10−1 1.2 · 10−1 1.3 · 10−1

2 8.1 · 10−2 8.1 · 10−2 8.2 · 10−2 8.2 · 10−2

3 6.1 · 10−2 7.5 · 10−2 6.1 · 10−2 7.5 · 10−2

4 6.0 · 10−2 7.4 · 10−2 6.0 · 10−2 7.4 · 10−2

5 6.0 · 10−2 7.4 · 10−2 6.0 · 10−2 7.4 · 10−2

4.2 Linearised Shallow Water Equations

The one-dimensional shallow water equations read

∂

∂t

(
v

ϕ

)
+ ∂

∂x

(
1
2v2 + ϕ

vϕ

)
=

(
0
0

)

with the water level ϕ > 0 and the velocity v ∈ R, see [6]. The linearised shallow water
equations are

∂

∂t

(
u1

u2

)
+

(
v̄ 1
ϕ̄ v̄

)
∂

∂x

(
u1

u2

)
=

(
0
0

)
(4.5)

with constants v̄, ϕ̄. It follows that the linear system (4.5) is strictly hyperbolic for all v̄ ∈ R

and all ϕ̄ > 0. We apply the constants v̄ = 2, ϕ̄ = 1
2 and add random perturbations. We

choose the matrix in the linear system (2.1) as

A(ξ1, ξ2) =
(

2 1
1
2 2

)
+ ξ1γ

(
2 0
0 2

)
+ ξ2γ

(
0 0
2
5 0

)
(4.6)

with a Gaussian random variable ξ1 (〈ξ1〉 = 0, 〈ξ 2
1 〉 = 1) and a uniformly distributed random

variable ξ2 ∈ [−1,1]. The constant γ ∈ R is used to control the magnitude of the variance in
the random input later. It follows that the linear system (2.1) is strictly hyperbolic for each
realisation of the random parameters provided that |γ | < 5

4 . We choose γ = 1 now.
The corresponding gPC approach applies products of the Hermite polynomials and the

Legendre polynomials. We consider the two sets of basis polynomials MR and NR , respec-
tively, see Sect. 3.3. We calculate the matrix B in the coupled system (2.7) for different
integers R. Thereby, Gaussian quadrature yields the probabilistic integrals in (2.6), where
the results are exact except for roundoff errors.

Figure 9 illustrates the resulting eigenvalues of the matrix B from the coupled sys-
tem (2.7) in case of R = 2 and R = 10. In both cases, pairs of complex conjugate eigenvalues
occur for the basis MR . Hence the matrix B is not real diagonalisable. This counterexample
demonstrates that the hyperbolicity of the larger coupled system (2.6) cannot be guaranteed
in case of the basis MR . In contrast, the matrix B is real diagonalisable for the basis NR .
This result is in agreement to Theorem 4.

Furthermore, Table 2 shows the total number of eigenvalues, which is equal to the order
of the matrix, and the number of complex eigenvalues in case of the basis MR for all R =
1, . . . ,10. We recognise that the coupled system (2.7) is not hyperbolic for each R > 1.
Thus an improvement of the accuracy in the gPC expansion does not result in a gain of
hyperbolicity.
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Fig. 9 Eigenvalues of matrix in coupled system for the linearised shallow water equations using different
polynomial bases

Table 2 Total number of
eigenvalues and number of
complex eigenvalues for
linearised shallow water
equations in case of basis MR

R 1 2 3 4 5 6 7 8 9 10

Eig. val. 6 12 20 30 42 56 72 90 110 132

Comp. eig. val. 0 4 12 16 20 20 32 40 44 52

We also investigate the hyperbolicity in dependence on the magnitude of the variance of
the random input parameters for the basis MR . The constant γ determines this variance due
to (4.6). Figure 10 illustrates the maximum imaginary part in the spectrum of the matrix B

from (2.7) using R = 2 as well as R = 10. The absence of complex eigenvalues is neces-
sary for the hyperbolicity but not sufficient. Nevertheless, it has been checked numerically
that a hyperbolic system (2.7) follows in case of real eigenvalues for our example. For all
R = 2, . . . ,10, the hyperbolicity is given for sufficiently small variance in the random input
parameters. For larger variances, the hyperbolicity is lost and regained several times.

We perform a numerical simulation of the coupled system (2.6) with the polynomial
basis N3 using γ = 1 in (4.6). Thus 16 basis functions appear and the order of B from (2.7)
is 32. Since the solution of the linearised system (4.5) can be seen as a perturbation around
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Fig. 10 Maximum imaginary part of eigenvalues of matrix in the coupled system using basis MR for dif-
ferent magnitudes of stochastic input characterised by the constant γ ∈ [0, 5

4 ] from (4.6)

Fig. 11 Deterministic solutions u1 (left) and u2 (right) for linearised shallow water equations using the mean
of the random parameters

the point of the linearisation, we consider the initial values

u1(0, x) = 1

10
sin(2πx), u2(0, x) = 1

10
cos(2πx).

We apply periodic boundary conditions for the space interval x ∈ [0,1]. Again the Lax-
Wendroff scheme yields the numerical solution of the initial-boundary value problems of
the linear PDE systems. We select the step sizes �x = 1

100 and �t = 1
1000 , which satisfy

the CFL condition. We calculate the solution in the time interval t ∈ [0, 1
2 ]. For compari-

son, we solve the deterministic system (2.1) with the matrix (4.6) for ξ1 = ξ2 = 0, i.e., the
expected values of the random parameters. Figure 11 illustrates the resulting deterministic
solution. Figures 12 and 13 show the expected values and the variances, respectively, which
follow from the gPC approach. In contrast to the previous test example, the expected val-
ues differ significantly from the deterministic solution using the mean values of the random
parameters. Accordingly, the variances are relatively large, since the variances of the input
parameters are higher than in the previous test example.
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Fig. 12 Expected values for u1 (left) and u2 (right) resulting from gPC for linearised shallow water equations

Fig. 13 Variance for u1 (left) and u2 (right) resulting from gPC for linearised shallow water equations

5 Conclusions

Linear conservation laws including random parameters can be resolved by the generalised
polynomial chaos. Following the Galerkin approach, we obtain a larger coupled linear sys-
tem of conservation laws for a certain class. Assuming that the original systems are hy-
perbolic, it follows that the coupled system is also hyperbolic in case of a single random
parameter. Considering several random parameters, the hyperbolicity of the coupled system
is not guaranteed for a basis of multivariate polynomials up to a fixed degree, which has
been illustrated by a counterexample. In contrast, the hyperbolicity has been proved if a
specific set of basis polynomials is applied, which exhibits a tensor product structure based
on the univariate polynomials. Numerical simulations of two test examples illustrate that
linear systems with random parameters can be solved successfully by the approach of the
generalised polynomial chaos. The efficiency of this Galerkin approach is, however, a more
complicated issue and must be understood on a problem-dependent basis.
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