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ABSTRACT
The trajectory of early brain development is marked by rapid
growth presented by volume but also by tissue property
changes. Capturing regional characteristics of axonal struc-
turing and myelination via neuroimaging requires analysis
of longitudinal image data with multiple modalities. Com-
plementary to earlier studies of volume and cortical folding
analysis, this paper focuses on white matter tissue changes
as seen in multimodal MRI and DTI. We propose a new
framework for analyzing early maturation in white matter
that generates a normative spatiotemporal model and pro-
vides 3D maps of absolute and relative indices of maturation.
The method, using a continuous model of intensity changes
using modified Legendre polynomials, has been applied to
a multimodal dataset (T1W, T2W, PD, DTI) with 8 subjects
that have been scanned at approximately 2 weeks, 1 year,
and 2 years. We demonstrate that spatial maturation maps
generated from different modalities capture different prop-
erties of white matter growth which might lead to a better
understanding of the underlying neurobiology.

Index Terms— Brain development, MRI, Diffusion ten-
sor imaging, Longitudinal analysis, Growth trajectory

1. INTRODUCTION

The understanding of human brain development is of signif-
icant scientific and clinical importance as relatively little is
known about the quantitative trajectory and pattern of early
growth. Characterization of early brain growth in healthy
children is important to generate normative data to be com-
pared to children at risk for mental disorders or brain diseases.
This might lead to structural phenotypes of growth patterns in
disease and eventually to early detection and diagnosis.

Previous neuroimaging studies have been mostly focused
on morphometric measures such as volume [1, 2, 3] and
shape, e.g. cortical folding [4]. Diffusion imaging provides
information about the early brain development trajectory that
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might complement structural image information. Seminal
work by Dubois et al. [5, 6] explored changes of diffusion
measurements (FA, MD) as a function of age and presented
a model for maturation stage which inspired methodology as
presented in this paper. This might lead to a normative model
of tissue growth that could eventually characterize maturation
changes presented in disease.

Our main goal is to complement brain growth analysis
based on morphometry [1] with the study of longitudinal
tissue property changes as reflected in patterns observed
in multi-modal structural MRI and DTI. Such patterns of
appearance in imaging are the major features discussed in
radiology textbooks [7]. To our knowledge, this is the first
joint MRI/DTI analysis of brain maturation. We propose a
new framework for analyzing maturation of white matter to
create white matter maturation maps. In contrast to previous
works that analyzes discrete values through time, we propose
a longitudinal data analysis where we analyze continuous
functions rather than discrete snap shots of data.

2. ANALYSIS FRAMEWORK

Our goal is the analysis of spatio-temporal patterns that are
observed in the multimodal MR data of children undergoing
normal growth. This analysis generates imaging markers that
can isolate interesting features in early brain development.
We assume that we have repeated measurements of multiple
subjects at different stages of development, with no missing
data. Co-registered multimodal MR data scanned at approxi-
mately 2 weeks, 1 year, and 2 years are shown in Fig. 1.

We propose a framework that is composed of the follow-
ing steps: 1) Averaging of temporal curves to create norma-
tive data, 2) an absolute measurement of maturation using
growth rates at each location, 3) spatial clustering of aver-
age growth curves to find distinct patterns of growth, and 4) a
relative measurement of maturation within white matter.

2.1. Averaging of Multimodal Growth Curves

To measure the relative maturation index of white matter in
normal subjects, we first create a model for the average non-



Fig. 1. Axial view of a co-registered multimodal MR data
across age. Top: T1-weighted scans. Bottom: Axial diffusiv-
ity from DT-MRI (λ1). Left to right: Scans at approximately
2 weeks, 1 year, and 2 years.

linear growth in the observed multimodal data. We perform a
least squares fit within each modality to a modified Legendre
polynomial basis, using the following three basis functions
for the three observations:

L1(t) = 1

L2(t) =
√

3(2t− 1) (1)

L3(t) =
√

5(6t2 − 6t+ 1)

These basis functions are orthonormal in the [0, 1] domain,
where

∫ 1

0
Li(t)Li(t)dt = 1 and

∫ 1

0
Li(t)Lj(t)dt = 0 for

i 6= j. This results in a simplification of algebraic opera-
tions on the curves since dot products and norms are reduced
to Euclidean operations on the vector of basis coefficients.

Given a set of m intensity values y1, y2, ..., ym taken at m
time points t1, t2, ..., tm at a particular location x, we estimate
the polynomial coefficients β = (β1, β2, β3) that minimizes
the squared error measure:

m∑
j=1

(yj −
3∑

k=1

βkLk(tj))2 (2)

Therefore, each location x is represented by one curve
f

(c)
x (t) =

∑3
k=1 βkLk(t) for each modality c that repre-

sents the average defined in the least squares sense. Fig.
2 illustrates an example of least squares fitting using the
modified Legendre polynomial basis.

2.2. Absolute Measure of Maturation

We measure the absolute growth as the total changes in time
at each location. Given a set of smooth functions represented
by the β coefficients at each location, we can measure the
growth rate as the squared magnitude of the derivatives in
time (Fig. 3). Specifically, we measure the total growth rate
for a set of multimodal observations as follows:

GR =
∑
c∈C

|| d
dt
f (c)(t)||2 =

∑
c∈C

∫ 1

0

(
d

dt
f (c)(t))2dt (3)

where C represents a subset of the modalities in our datasets.

Fig. 2. Curve averaging through least squares fit with mod-
ified Legendre polynomial basis functions. Dashed colored
curves: Growth trajectories of a white matter voxel of differ-
ent subjects. Black curve: Average curve that minimizes the
squared error.

Fig. 3. Growth rate as a measure of maturation. Left: Aver-
age T1 growth trajectory of a white matter region (blue) with
derivative (red). Right: Squared derivative of the trajectory,
where growth rate is measured as the area under the curve.

2.3. Data Driven Spatial Clustering

We are interested in isolating spatial regions with distinct pat-
terns of growth represented by the average curves described
in section 2.1. The patterns are represented by a feature vec-
tor formed by the β coefficients for all modalities (i.e., for M
modalities we have vectors of length 3M ).

We assume that the feature vectors can be represented us-
ing mixtures of Gaussian distributions; we use the Dirichlet
Process Mixture Models (DPMM) [8] to automatically deter-
mine the number of clusters, and estimate the representative
parameters1. This is a data driven approach to extract the
unknown patterns that are present in the data. Fig. 4 shows
the mean curves of three different clusters for all modalities
(T1, T2, PD, axial diffusion, and radial diffusion). Within the
same modality, the clusters seem to have similar patterns of
changes (e.g., increase in T1, and decrease in T2 and in axial
diffusivity). However, different regions at different stages of
development appear to be shifted in time relative to the ma-
tured region.

2.4. Relative Measure of Maturation

The data driven approach described in the previous sub-
section highlighted the fact that region in white matter appear
to undergo similar growth patterns, but different locations
may be at different stages of growth. We propose to use this

1http://www.kyb.tuebingen.mpg.de/bs/people/dilan/dpcode/



Fig. 4. Multimodal growth trajectories of three different clus-
ters (shown in top row). Patterns for a reference cluster that
represents matured white matter regions are shown in red.
Patterns for two white matter regions (cluster 37 and 59)
that undergo later maturation are shown in blue. Patterns per
modality seems to be similar, but shifted in time.

observation to design a relative measure of maturation as the
amount of shift (in time) required to transform a curve to a
reference curve. This reference curve is assumed to be a rep-
resentation of a region that has already matured. the relative
maturation at each location is then calculated as the time shift
between the curve at each voxel and the reference curve:

TS = argmin
s

∑
c∈C

||f (c)(t+ s)− g(c)(t)||2 (4)

where ||f − g||2 =
∫ 1

0
(f(t)− g(t))2dt. Parameter s is the

amount of shift, C is a subset of modalities, f (c) is the curve
of interest, and g(c) is a reference curve. We use the known
early myelination region of the internal capsule as a reference
for calculating relative maturation state of the rest of white
matter. The time shift can be calculated for different subsets
of the observed modalities, yielding an estimate of the amount
of energy needed to transform a curve to the reference curve.
Fig. 5 shows a curve shifted to match the reference curve. We
treat the curve being shifted to be extended infinitely and find
the shift transform that would yield the best match in the [0, 1]
time window.

3. ANALYSIS OF WHITE MATTER MATURATION
IN EARLY BRAIN DEVELOPMENT

3.1. Data Description and Preprocessing

Our preliminary study includes eight healthy pediatric sub-
jects with repeated scans at the age of two weeks, one year,
and two years. Images acquired include T1W, T2W, PD, and
diffusion tensor images. We apply the unbiased atlas build-
ing procedure [9] to the set of T2W images at 1-year to ob-
tain spatial mappings between each subject. Scans of other

Fig. 5. Time shifting for matching a reference curve. Red:
T1 growth trajectory of a white matter region with early mat-
uration. Dashed blue: Original growth trajectory of a white
matter cluster (extended). Solid blue: Shifted growth trajec-
tory.

modalities and at different time points within each subject
are registered using linear transformations followed by non-
linear registration [10]. Tensor maps are calculated for each
DTI scan, and each tensor map is registered to the atlas us-
ing transformations between the baseline (B0) and T2W im-
ages. Tensors are resampled using finite strain reorientation
and Riemannian interpolation. Diffusion measurements such
as axial (λ1) and radial (λ2 + λ3) diffusivity are calculated
for each scan. The T1W, T2W, and PD intensities were nor-
malized to ensure comparison across subjects and time points.
T1W scans were normalized using high intensity of fatty tis-
sue between the skull and the skin, which was segmented us-
ing InsightSNAP2. T2W and PD scans were normalized using
values within ventricular CSF.

3.2. Results

We show the characterization of white matter maturation us-
ing the absolute growth rate (GR) measure and the relative
time shift (TS) measure. The top row of Fig. 6 illustrates the
growth rates (section 2.2) inferred from all structural modal-
ities (C = {T1, T2, PD}), as well as all diffusion modali-
ties (C = {λ1, λ2 + λ3}). Areas with low (internal capsule,
e.g.) and high growth rates (deep white matter in anterior and
posterior regions, temporal lobe) are depicted at locations as
expected from radiological knowledge [7]. The bottom row
of Fig. 6 displays the timing of maturation as measured by
calculating time shift of growth trajectories relative to a tem-
plate 2.4. As shown, the structural and diffusion modalities
capture different properties of growth. Structural TS values
show gradual changes in white matter in regions that undergo
myelination, while diffusion TS values highlight differences
between central and peripheral white matter regions which
might indicate degree of structuring.

Our results show white matter maturation presenting
asynchronous contrast changes in multiple modalities, which
might reflect different characteristics of complex axonal mat-
uration such as axon elimination and myelination [7]. Our
study confirms that basic brain functions such as motor and

2http://www.itksnap.org



Fig. 6. Top: Axial and coronal views of growth rates (GR)
map which shows absolute speed of maturation. GR maps
computed using structural modalities (T1, T2, PD) is shown
on left, while GR maps computed using diffusion modalities
(axial and radial diffusion) is shown on right. Darker regions
mark low GR and bright regions high GR. Bottom: Time shift
(TS) maps which show relative timing of maturation, which
was computed using structural modelities (left) and diffusion
modalities (right). Darker regions mark areas which have
similar pattern to early myelination, whereas bright regions
indicate later maturation.

sensory processes undergo maturation earlier. We also ob-
serve that central regions of white matter tracts were more
mature and organized than peripheral cortical regions, con-
firming [11]. The earlier maturation of the posterior versus
anterior internal capsule is clearly visible, and the signifi-
cantly later maturation of temporal lobes relative to other
white matter areas is depicted as well.

4. CONCLUSIONS

We have proposed a new framework for analysis of normal
brain growth using patterns of temporal change in multimodal
data. This approach provides the basis for measuring matura-
tion using an absolute measure of the rate of change (GR) and
a relative measure computed as the amount of energy to map
growth curves to a reference curve (TS). The resulting mat-
uration maps for white matter shows that the different MR
modalities capture different properties of the complex matu-
ration process in early brain development, which will be ex-
plored in our future developments.

The normative spatiotemporal trajectories, along with the
maturation measures (GR and TS), can be applied for analy-
sis of subjects at risk for mental illness or cognitive deficits.
This might highlight the relationship between growth trajec-
tory and cognitive development.

This research represents work in progress towards analy-
sis of tissue property changes which complements the paral-
lel effort of volume changes [1]. Our analysis framework is
currently limited to studies with repeated time scans and no
missing data. We assume that the data can be co-registered

across time points and modalities, which showed encourag-
ing results for this study but needs further validation. We also
plan to extend the simplified measures of growth rate and time
shift to include more complex models of growth.
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