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Uncertainty is a tricky business. The term 
encompasses all sorts of unknowns, in-
cluding error, deviations, missing infor-

mation, or confidence levels. Numerous methods 
exist for quantifying and expressing uncertainty, 
and its existence is persistent and accumulative 
throughout the visualization pipeline.1 For vi-
sualization researchers, this term is particularly 
complex owing to the visual display medium’s 
limitations.

Consequently, aggregation is a common tech-
nique for summarizing uncertainty for visualiza-
tion purposes. Two particular summary statistics 
stand out as the de facto characterization: mean 
and standard deviation. These statistics reduce un-
certainty to an expected value and variation from 
that value and are particularly effective in ex-
pressing normally distributed data. However, they 
aren’t always appropriate or even feasible, particu-
larly when we can’t describe the uncertainty in a 
dataset as a probability distribution function.

Consider a problem from medical-image pro-
cessing: segmenting a brain volume into specific 
tissue types using fuzzy classification. Each voxel 
has 11 probability distributions, one for each pos-
sible tissue type. Because these probabilities are 
assigned over categorical data (in which a variable 
value is one of a limited number of nominal cat-
egories), traditional uncertainty measures aren’t 
well defined. In this setting, we can use entropy, 
in the information-theoretic sense, to quantify 
the spread of probabilities over the categories and 
encode uncertainty for visualization. For example, 
in Figure 1, a grayscale color map encodes each 
voxel’s entropy. The white areas indicate regions 
where the assignment of a voxel to a particular 
tissue type is inherently uncertain.

Uncertainty Visualization
Since the first calls for research in uncertainty 
visualization,2,3 much work has been done in re-

sponse.4,5 This goes hand in hand with comput-
ing-technology advances leading to larger, more 
complex datasets along with greater availability 
of uncertainty information for use in visualiza-
tions. In most cases, visualization researchers are 
ultimately presented with a probability distribu-
tion of possible instances of the data. The chal-
lenge here is to augment a visual representation 
of a single instance to incorporate the uncertainty 
represented in the probability distribution. This 
additional information poses challenges related to 
visual encoding, including visual clutter, cognitive 
overload, and data obfuscation, which can defeat 
uncertainty visualization’s main goals. In most 
cases, a comprehensive visualization of uncertainty 
isn’t feasible; a summary of the probability distri-
bution is required.

The typical framework for summarizing is to 
pick the “most likely” representation of the data, 
such as the mean, and add information about the 
variability through color, spatial distortion, and so 
on. So, uncertainty visualization’s major challenge 
is simply the perceptually efficient encoding of the 
dataset’s appropriate summary statistics. This ar-
ticle focuses on such statistics.

Although summary statistics such as the mean, 
the standard deviation, and quantiles are typical 
expressions of uncertainty,6 their use is limited 
to data classes in which they’re well defined. One 
data class for which they don’t work is categori-
cal data. For example, in medical images, a pixel 
(or voxel) might be one of several tissue types. In 
remote sensing, satellite image data might depict a 
particular ground cover, such as vegetation, urban 
space, or water. (Although such data might actu-
ally have an ordering provided by the imaging mo-
dality, the classification into nominal categories 
often relies on both the scalar value and spatial 
location. So, the existent ordering is insufficient.)

Categorical data is inherently discrete; we can 
encode uncertainty through a discrete distribution 
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over the possible classification by defining a prob-
ability for each nominal category. These categories 
have no meaningful ordering; that is, we can’t say 
a particular category is closer to another. So, we 
can’t define a metric across the space. Moreover, 
we can’t combine categories such that a variable 
exists partially as multiple categories. Thus, we 
can’t meaningfully compute measures such as the 
mean or standard deviation because this would re-
quire averaging across different categorical types.

As an example, we use data from the BrainWeb 
project (www.bic.mni.mcgill.ca/brainweb), which 
seeks to provide a ground truth for medical-image-
processing techniques through a database of sim-
ulated magnetic resonance imaging (MRI) brain 
scans. BrainWeb provides a probabilistic anatomi-
cal model used for simulation. The anatomical 
model is represented through 11 volumetric sca-
lar fields, each corresponding to one tissue type 
identified in the MRI scan. A single volume rep-
resents the probability of the corresponding tis-
sue at each voxel. So, across all volumes, the 11 
probabilities at each voxel add to 1. Formally, we 
have a set of random variables X(i,j) at each voxel 
location (i, j), with a discrete distribution p(i,j) over 
the 11 tissue types.

An important question in this context is, what’s 
each voxel’s tissue type? To get a complete an-
swer, we must look at the probability distribution 
at each voxel and encode it into a visual repre-
sentation. Our approach follows the framework 

we mentioned earlier in this section. We encode 
the most likely representation as the maximum-
probability tissue type—that is, the maximum 
statistic at each voxel, arg maxx ∈ X(i,j)p(i,j)(x). We 
quantify the uncertainty through the distribu-
tion’s entropy, H[X(i,j)].

Entropy as a Measure of Uncertainty
Uncertainty visualization approaches have focused 
almost exclusively on applications that derive the 
uncertainty’s magnitude from a continuous dis-
tribution. Uncertainty stemming from a discrete 
distribution over (unordered) categorical variables 
presents unique challenges. In the continuous case, 
we can characterize the uncertainty by a measure 
of the distribution’s spread, most commonly de-
scribed by the distribution’s variance or quantiles. 
For categorical data, such a measure is possible 
only if we can meaningfully order the variables. 
For categorical data with no ordering, we believe 
that entropy is a more appropriate measure.

Let X be a random variable with the probability 
density p: W → R+ on the discrete sample space 
W = {x1, …, xn}. The mean E X x p xi i
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ingful only if the addition of the random variables 
xi is sensible. Consider the example of different tis-
sue types in a brain MRI scan. Adding, for exam-
ple, white matter and cerebral spinal fluid (CSF) 
clearly isn’t sensible; tissue can’t be both white 
matter and CSF. So, we reasonably can’t define the 
sample mean and variance. The Shannon entropy 
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probabilities of tissue types rather than the value 
of xi. So, it’s sensible for categorical variables such 
as these tissue types.

Informally, entropy, like variance, measures how 
spread out a distribution is. A discrete distribution’s 
entropy ranges from 0 to –log(1/n); 0 corresponds 
to a distribution with a probability of 1 for a single 
outcome, and –log(1/n) is a discrete uniform dis-
tribution. In the tissue type example, a voxel with 
maximal entropy would indicate that the brain MRI 
scan is inconclusive regarding tissue type. Con-
versely, voxels with minimal entropy would indi-
cate, with a probability of 1, that the tissue is of a 
specific type.

However, unlike variance, entropy provides no 
information about the random variable’s value. 
Entropy only measures randomness, whereas the 
combination of mean and variance indicates a 
range of most likely values. The formal definition 
of entropy reflects this by observing that only the 
probability density influences the entropy, not the 
random variable’s actual values.

Figure 1. This volume rendering of magnetic 
resonance imaging (MRI) brain data uses entropy 
to show areas in which the type of brain tissue 
is uncertain. The high-entropy regions, in white, 
highlight tissue boundaries where MRI couldn’t 
distinguish between the defined tissue types.
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Another perspective comes from information 
theory results for constructing optimal (minimal 
length) codes. We can translate those results into 
finding the minimal expected number of yes or 
no (binary) questions,7 #Q, required to determine 
the value of an observation of X. This relates 
directly to the random variable’s entropy (in log2): 
H[X] ≤ E[#Q] < H[X] + 1. This entropy intuitively 
describes the uncertainty by encoding how close to 
deterministic a random variable acts.

Generally, the logarithm’s base only scales the 
entropy value and doesn’t affect the visualization’s 
qualitative aspects. In the following, we use a base 
two logarithm, which lets us interpret the entropy 
in bit units—that is, the expected number of binary 
questions required to determine the category.

As a concrete example, consider the following 
discrete distributions over four categories and the 
resulting entropies:

p1 = {1, 0, 0, 0}� ⇒ H[X] = 0.00,
p2 = {0.85, 0.15, 0, 0}� ⇒ H[X] = 0.61,
p3 = {0.85, 0.05, 0.05, 0.05}� ⇒ H[X] = 0.85,
p4 = {0.25, 0.25, 0.25, 0.25}� ⇒ H[X] = 2.00.

The first example, p1, is completely deterministic. 
Determining the outcome requires zero yes or no 
questions, corresponding to zero entropy. Examples 
p2 and p3 demonstrate increased entropy because the 
probabilities are distributed over more categories. Fi-
nally, p4 is the maximal-entropy case for four catego-
ries and results in the expected two binary questions 
required to determine an observation from p4.

Visualization Methodology
Using entropy to encode each voxel’s uncertainty 
lets us visualize the uncertainty across the entire 
volumetric dataset. This allows for a more con-
textual understanding of the data, including the 
individual tissues’ shape as well as their juxtaposi-
tion in the volume.

Figure 2 shows a slice through the volume of 
entropy values in which the distribution’s entropy 
at each voxel is color-mapped from low (blue) to 
high (white). White indicates where multiple tis-
sue types are possible; dark blue indicates a single 
tissue type. This is most readily apparent in the 
head’s outer edges, where a voxel might be classi-
fied as skull, skin, muscle, CSF, fat, or connective 
tissue. Although this visualization appropriately 
expresses the regions of higher entropy (and thus 
uncertainty) around tissue boundaries, it’s missing 
the structural information from the original data.

To reincorporate structural and contextual infor-
mation, we look at a particular tissue’s most likely 

location, which we represent as the maximum-
probability tissue type at each voxel. A natural vi-
sual encoding of this information is to label each 
tissue type with a color and assign to each voxel 
the color of the tissue with the maximum prob-
ability at that location. Such an encoding is effec-
tive only when the colors are easily discernable. So, 
we must choose colors carefully, and the number 
of distinguishable color labels is generally limited 
to a dozen or so. Figure 3 shows a slice through 
this tagged dataset. Each of the 11 tissues is as-
signed a color, and each voxel in the slice repre-
sents a single tissue.

0.000 0.442 0.885
Entropy

1.33 1.77

Figure 2. A slice through the entropy volume. Low to high entropy 
is color-mapped blue to white. Low entropy indicates where a 
voxel’s category is known, such as the volume’s four corners, where 
“background” is the only possible category. High entropy indicates 
where multiple categories can exist, such as around tissue boundaries.
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Skull
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Figure 3. A slice through the tagged data, with each voxel having the 
color of the corresponding maximum-probability tissue.
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Combining the entropy volume and tagged 
voxel information provides a holistic view of the 
data. Figure 4 demonstrates this visualization, 
restricting the number of tissues we’re interested 
in to four: gray matter, white matter, CSF, and 
lesion, and using two-step color mapping. For 

each voxel of the slice, we find the maximum-
probability tissue type and take its color tag. 
We then blend this color through white, on the 
basis of that location’s entropy. This encoding of 
entropy and maximum-probability tissue type is 
perceptually meaningful.

A maximal-entropy voxel, with each tissue type 
equally likely, will appear white and not indicate 
a particular tissue type. For a minimal-entropy 
voxel, the color will clearly identify its tissue type. 
Between these two extremes, the entropy depends 
on both the magnitude of the probability mass on 
the likely tissue type and the distribution of the 
remaining probability mass over the other tissues, 
as illustrated in the numerical example we gave 
earlier. In Figure 4, this approach highlights the 
uncertainty of the lesion’s size and position.

Whereas slice-based rendering can be advan-
tageous in understanding tissue interactions re-
stricted to small regions of the data, volume ren-
dering can give insights to contextual information 
in the 3D spatial domain. Figure 5 shows a vol-
ume rendering using a coloring technique similar 
to that of the slice-based method. We’ve selected 
a single tissue type—white matter. All maximum-
probability voxels of that tissue type are red if the 
voxel’s entropy is below a threshold or white if the 
entropy is above the threshold. In this visualiza-
tion, viewers can see the white matter’s relation-
ship to the rest of the brain volume. They can also 
gain an understanding of the location, shape, and 
magnitude of the uncertainty associated with as-
signing the voxel a certain tissue type.

Such approaches to employing entropy might 
not be suitable in other applications or fulfill other 
specific visualization goals. However, we foresee 
that future visualizations will leverage entropy 
to aggregate complex information and expose the 
uncertainty’s location and magnitude.

This use of entropy isn’t novel; geophysics re-
search has employed it extensively. (For a look 

at this and other uses of entropy in visualization, 
see the sidebar.) However, we believe it’s important 
to exemplify entropy as an uncertainty measure 
for visualization. With the increased popularity of 
understanding uncertainty through visualization, 
visualization experts need a variety of uncertainty 
measures, and those measures should be com-
monplace in the visualization vocabulary. Moving 
beyond mean and standard deviation allows for 
more expressive control and greater understanding 
of the nuances of uncertainty quantification and 
visualization. For this reason, we expect entropy 

Gray matter White matter CSF Lesion

Figure 4. A slice through the combined entropy volume and tagged 
voxel information. We color-mapped each voxel on the basis of its 
maximum-probability tissue and the amount of entropy. As a voxel 
tends toward white, the higher the entropy and the less certainty of a 
particular tissue type.

Figure 5. A volume rendering of the combined entropy volume and 
tagged voxel information in which red indicates white matter and white 
indicates high entropy. For more context, the skull and skin appear in 
shadow.



	 IEEE Computer Graphics and Applications� 79

to become one of a collection of mainstream mea-
sures of uncertainty for visualization.�
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Information theory and, more specifically, entropy have 
increasingly been leveraged as a way to make quantitative 

statements about various properties broadly throughout 
the visualization framework.1,2 For example, researchers 
have applied entropy to measure the amount of informa-
tion in the volume rendering of 3D datasets to determine 
the most informative camera viewpoint or a minimal set of 
representative views of a 3D scene.3 Likewise, for large-scale 
time-varying data, researchers have used entropy to pick 
important time steps or subregions with maximal informa-
tion to enable visualization with limited resources or time.4 
Entropy can also serve to measure quality for evaluation 
and comparison of level-of-detail algorithms for multireso-
lution volume rendering.5 Finally, in flow field and vector 
visualization, researchers have employed entropy both to 
quantify the information present to evaluate a visualization’s 
effectiveness6 and to generate noise reflecting the amount 
of information in texture-based methods.7

The most popular applications of entropy arise in 
geoscience. For example, uncertainties might arise when 
classifying remotely sensed data into vegetation types or 
modeling geological structures and data assimilation. In 
such cases, entropy encompasses uncertainties in these 
systems and can serve as an axis for parallel coordinates8 
or a color-mapping method.9,10
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