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Abstract

The number of high-dimensional datasets recording multiple aspects of a single phenomenon is increasing in many areas of
science, accompanied by a need for mathematical frameworks that can compare multiple large-scale matrices with different
row dimensions. The only such framework to date, the generalized singular value decomposition (GSVD), is limited to two
matrices. We mathematically define a higher-order GSVD (HO GSVD) for N$2 matrices Di[Rmi|n, each with full column
rank. Each matrix is exactly factored as Di = UiSiV

T, where V, identical in all factorizations, is obtained from the eigensystem
SV = VL of the arithmetic mean S of all pairwise quotients AiA

{1
j of the matrices Ai~DT

i Di , i?j. We prove that this
decomposition extends to higher orders almost all of the mathematical properties of the GSVD. The matrix S is nondefective
with V and L real. Its eigenvalues satisfy lk$1. Equality holds if and only if the corresponding eigenvector vk is a right basis
vector of equal significance in all matrices Di and Dj, that is si,k/sj,k = 1 for all i and j, and the corresponding left basis vector
ui,k is orthogonal to all other vectors in Ui for all i. The eigenvalues lk = 1, therefore, define the ‘‘common HO GSVD
subspace.’’ We illustrate the HO GSVD with a comparison of genome-scale cell-cycle mRNA expression from S. pombe, S.
cerevisiae and human. Unlike existing algorithms, a mapping among the genes of these disparate organisms is not required.
We find that the approximately common HO GSVD subspace represents the cell-cycle mRNA expression oscillations, which
are similar among the datasets. Simultaneous reconstruction in the common subspace, therefore, removes the experimental
artifacts, which are dissimilar, from the datasets. In the simultaneous sequence-independent classification of the genes of
the three organisms in this common subspace, genes of highly conserved sequences but significantly different cell-cycle
peak times are correctly classified.
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Introduction

In many areas of science, especially in biotechnology, the

number of high-dimensional datasets recording multiple aspects of

a single phenomenon is increasing. This is accompanied by a

fundamental need for mathematical frameworks that can compare

multiple large-scale matrices with different row dimensions. For

example, comparative analyses of global mRNA expression from

multiple model organisms promise to enhance fundamental

understanding of the universality and specialization of molecular

biological mechanisms, and may prove useful in medical diagnosis,

treatment and drug design [1]. Existing algorithms limit analyses

to subsets of homologous genes among the different organisms,

effectively introducing into the analysis the assumption that

sequence and functional similarities are equivalent (e.g., [2]).

However, it is well known that this assumption does not always

hold, for example, in cases of nonorthologous gene displacement,

when nonorthologous proteins in different organisms fulfill the

same function [3]. For sequence-independent comparisons,

mathematical frameworks are required that can distinguish and

separate the similar from the dissimilar among multiple large-scale

datasets tabulated as matrices with different row dimensions,

corresponding to the different sets of genes of the different

organisms. The only such framework to date, the generalized

singular value decomposition (GSVD) [4–7], is limited to two

matrices.

It was shown that the GSVD provides a mathematical

framework for sequence-independent comparative modeling of

DNA microarray data from two organisms, where the mathemat-

ical variables and operations represent biological reality [7,8]. The

variables, significant subspaces that are common to both or

exclusive to either one of the datasets, correlate with cellular

programs that are conserved in both or unique to either one of the

organisms, respectively. The operation of reconstruction in the
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subspaces common to both datasets outlines the biological similarity

in the regulation of the cellular programs that are conserved across

the species. Reconstruction in the common and exclusive subspaces

of either dataset outlines the differential regulation of the conserved

relative to the unique programs in the corresponding organism.

Recent experimental results [9] verify a computationally predicted

genome-wide mode of regulation that correlates DNA replication

origin activity with mRNA expression [10,11], demonstrating that

GSVD modeling of DNA microarray data can be used to correctly

predict previously unknown cellular mechanisms.

We now define a higher-order GSVD (HO GSVD) for the

comparison of N§2 datasets. The datasets are tabulated as N real

matrices Di[Rmi|n, each with full column rank, with different row

dimensions and the same column dimension, where there exists a

one-to-one mapping among the columns of the matrices. Like the

GSVD, the HO GSVD is an exact decomposition, i.e., each

matrix is exactly factored as Di~UiSiV
T , where the columns of

Ui and V have unit length and are the left and right basis vectors

respectively, and each Si is diagonal and positive definite. Like the

GSVD, the matrix V is identical in all factorizations. In our HO

GSVD, the matrix V is obtained from the eigensystem SV~VL
of the arithmetic mean S of all pairwise quotients AiA

{1
j

of the matrices Ai~DT
i Di, or equivalently of all Sij~

1

2
(AiA

{1
j zAjA

{1
i ), i=j.

To clarify our choice of S, we note that in the GSVD, defined

by Van Loan [5], the matrix V can be formed from the

eigenvectors of the unbalanced quotient A1A{1
2 (Section 1 in

Appendix S1). We observe that this V can also be formed from the

eigenvectors of the balanced arithmetic mean S12~
1

2
(A1A{1

2 zA2A{1
1 ). We prove that in the case of N~2, our

definition of V by using the eigensystem of S:S12~
1

2
(A1A{1

2 zA2A{1
1 ) leads algebraically to the GSVD (Theorems

S1–S5 in Appendix S1), and therefore, as Paige and Saunders

showed [6], can be computed in a stable way. We also note that in

the GSVD, the matrix V does not depend upon the ordering of

the matrices D1 and D2. Therefore, we define our HO GSVD for

N§2 matrices by using the balanced arithmetic mean S of all

pairwise arithmetic means Sij , each of which defines the GSVD of

the corresponding pair of matrices Di and Dj , noting that S does

not depend upon the ordering of the matrices Di and Dj .

We prove that S is nondefective (it has n independent

eigenvectors), and that its eigensystem is real (Theorem 1). We

prove that the eigenvalues of S satisfy lk§1 (Theorem 2). As in our

GSVD comparison of two matrices [7], we interpret the kth

diagonal of Si~diag(si,k) in the factorization of the i th matrix Di

as indicating the significance of the kth right basis vector vk in Di in

terms of the overall information that vk captures in Di. The ratio

si,k=sj,k indicates the significance of vk in Di relative to its

significance in Dj . We prove that an eigenvalue of S satisfies lk~1 if

and only if the corresponding eigenvector vk is a right basis vector of

equal significance in all Di and Dj , that is, si,k=sj,k~1 for all i and j,
and the corresponding left basis vector ui,k is orthonormal to all

other vectors in Ui for all i. We therefore mathematically define, in

analogy with the GSVD, the ‘‘common HO GSVD subspace’’ of the

N§2 matrices to be the subspace spanned by the right basis vectors

vk that correspond to the lk~1 eigenvalues of S (Theorem 3). We

also show that each of the right basis vectors fvkg that span the

common HO GSVD subspace is a generalized singular vector of all

pairwise GSVD factorizations of the matrices Di and Dj with equal

corresponding generalized singular values for all i and j (Corollary 1).

Recent research showed that several higher-order generaliza-

tions are possible for a given matrix decomposition, each

preserving some but not all of the properties of the matrix

decomposition [12–14] (see also Theorem S6 and Conjecture S1

in Appendix S1). Our new HO GSVD extends to higher orders all

of the mathematical properties of the GSVD except for complete

column-wise orthogonality of the left basis vectors that form the

matrix Ui for all i, i.e., in each factorization.

We illustrate the HO GSVD with a comparison of cell-cycle

mRNA expression from S. pombe [15,16], S. cerevisiae [17] and

human [18]. Unlike existing algorithms, a mapping among the

genes of these disparate organisms is not required (Section 2 in

Appendix S1). We find that the common HO GSVD subspace

represents the cell-cycle mRNA expression oscillations, which are

similar among the datasets. Simultaneous reconstruction in this

common subspace, therefore, removes the experimental artifacts,

which are dissimilar, from the datasets. Simultaneous sequence-

independent classification of the genes of the three organisms in the

common subspace is in agreement with previous classifications into

cell-cycle phases [19]. Notably, genes of highly conserved sequences

across the three organisms [20,21] but significantly different cell-

cycle peak times, such as genes from the ABC transporter

superfamily [22–28], phospholipase B-encoding genes [29,30] and

even the B cyclin-encoding genes [31,32], are correctly classified.

Methods

HO GSVD Construction
Suppose we have a set of N real matrices Di[Rmi|n each with

full column rank. We define a HO GSVD of these N matrices as

D1

D2

DN

~

~

..

.

~

U1S1VT ,

U2S2VT ,

UNSNVT ,

ð1Þ

where each Ui[Rmi|n is composed of normalized left basis vectors,

each Si~diag si,kð Þ[Rn|n is diagonal with si,kw0, and V ,

identical in all matrix factorizations, is composed of normalized

right basis vectors. As in the GSVD comparison of global mRNA

expression from two organisms [7], in the HO GSVD comparison

of global mRNA expression from N§2 organisms, the shared right

basis vectors vk of Equation (1) are the ‘‘genelets’’ and the N sets of

left basis vectors ui,k are the N sets of ‘‘arraylets’’ (Figure 1 and

Section 2 in Appendix S1). We obtain V from the eigensystem of S,

the arithmetic mean of all pairwise quotients AiA
{1
j of the matrices

Ai~DT
i Di, or equivalently of all Sij~

1

2
(AiA

{1
j zAjA

{1
i ), i=j:

S:
1

N N{1ð Þ
XN

i~1

XN

jwi

AiA
{1
j zAjA

{1
i

� �

~
2

N N{1ð Þ
XN

i~1

XN

jwi

Sij ,

SV~VL,

V: v1 . . . vnð Þ, L~diag lkð Þ,

ð2Þ

with EvkE~1. We prove that S is nondefective, i.e., S has n

independent eigenvectors, and that its eigenvectors V and

eigenvalues L are real (Theorem 1). We prove that the eigenvalues

of S satisfy lk§1 (Theorem 2).

Given V , we compute matrices Bi by solving N linear systems:

VBT
i ~ DT

i ,

Bi : bi,1 . . . bi,nð Þ, i~1, . . . ,N,
ð3Þ

A Higher-Order Generalized SVD
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and we construct Si and Ui~( ui,1 . . . ui,n ) by normalizing the

columns of Bi:

si,k ~ bi,kk k,
Si ~ diag si,kð Þ,
Bi ~ UiSi:

ð4Þ

HO GSVD Interpretation
In this construction, the rows of each of the N matrices Di are

superpositions of the same right basis vectors, the columns of V

(Figures S1 and S2 and Section 1 in Appendix S1). As in our

GSVD comparison of two matrices, we interpret the kth diagonals

of Si, the ‘‘higher-order generalized singular value set’’ fsi,kg, as

indicating the significance of the kth right basis vector vk in the

matrices Di, and reflecting the overall information that vk captures

in each Di respectively. The ratio si,k=sj,k indicates the

significance of vk in Di relative to its significance in Dj . A ratio

of si,k=sj,k~1 for all i and j corresponds to a right basis vector vk

of equal significance in all N matrices Di. GSVD comparisons of

two matrices showed that right basis vectors of approximately

equal significance in the two matrices reflect themes that are

common to both matrices under comparison [7]. A ratio of

si,k=sj,k%1 indicates a basis vector vk of almost negligible

Figure 1. Higher-order generalized singular value decomposition (HO GSVD). In this raster display of Equation (1) with overexpression
(red), no change in expression (black), and underexpression (green) centered at gene- and array-invariant expression, the S. pombe, S. cerevisiae and
human global mRNA expression datasets are tabulated as organism-specific genes|17-arrays matrices D1, D2 and D3 . The underlying assumption is
that there exists a one-to-one mapping among the 17 columns of the three matrices but not necessarily among their rows. These matrices are
transformed to the reduced diagonalized matrices S1 , S2 and S3 , each of 17-‘‘arraylets,’’ i.e., left basis vectors|17-‘‘genelets,’’ i.e., right basis vectors,
by using the organism-specific genes|17-arraylets transformation matrices U1 , U2 and U3 and the shared 17-genelets|17-arrays transformation
matrix VT . We prove that with our particular V of Equations (2)–(4), this decomposition extends to higher orders all of the mathematical properties
of the GSVD except for complete column-wise orthogonality of the arraylets, i.e., left basis vectors that form the matrices U1 , U2 and U3 . We therefore
mathematically define, in analogy with the GSVD, the ‘‘common HO GSVD subspace’’ of the N~3 matrices to be the subspace spanned by the
genelets, i.e., right basis vectors vk that correspond to higher-order generalized singular values that are equal, s1,k~s2,k~s3,k , where, as we prove,
the corresponding arraylets, i.e., the left basis vectors u1,k , u2,k and u3,k , are orthonormal to all other arraylets in U1 , U2 and U3 . We show that like the
GSVD for two organisms [7], the HO GSVD provides a sequence-independent comparative mathematical framework for datasets from more than two
organisms, where the mathematical variables and operations represent biological reality: Genelets of common significance in the multiple datasets,
and the corresponding arraylets, represent cell-cycle checkpoints or transitions from one phase to the next, common to S. pombe, S. cerevisiae and
human. Simultaneous reconstruction and classification of the three datasets in the common subspace that these patterns span outline the biological
similarity in the regulation of their cell-cycle programs. Notably, genes of significantly different cell-cycle peak times [19] but highly conserved
sequences [20,21] are correctly classified.
doi:10.1371/journal.pone.0028072.g001
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significance in Di relative to its significance in Dj . GSVD

comparisons of two matrices showed that right basis vectors of

negligible significance in one matrix reflect themes that are

exclusive to the other matrix.

We prove that an eigenvalue of S satisfies lk~1 if and only if

the corresponding eigenvector vk is a right basis vector of equal

significance in all Di and Dj , that is, si,k=sj,k~1 for all i and j, and

the corresponding left basis vector ui,k is orthonormal to all other

vectors in Ui for all i. We therefore mathematically define, in

analogy with the GSVD, the ‘‘common HO GSVD subspace’’ of

the N§2 matrices to be the subspace spanned by the right basis

vectors fvkg corresponding to the eigenvalues of S that satisfy

lk~1 (Theorem 3).

It follows that each of the right basis vectors fvkg that span the

common HO GSVD subspace is a generalized singular vector of all

pairwise GSVD factorizations of the matrices Di and Dj with equal

corresponding generalized singular values for all i and j (Corollary

1). Since the GSVD can be computed in a stable way [6], we note

that the common HO GSVD subspace can also be computed in a

stable way by computing all pairwise GSVD factorizations of the

matrices Di and Dj . This also suggests that it may be possible to

formulate the HO GSVD as a solution to an optimization problem,

in analogy with existing variational formulations of the GSVD [33].

Such a formulation may lead to a stable numerical algorithm for

computing the HO GSVD, and possibly also to a higher-order

general Gauss-Markov linear statistical model [34–36].

We show, in a comparison of N~3 matrices, that the

approximately common HO GSVD subspace of these three

matrices reflects a theme that is common to the three matrices

under comparison (Section 2).

HO GSVD Mathematical Properties
Theorem 1. S is nondefective (it has n independent eigenvectors) and

its eigensystem is real.

Proof. From Equation (2) it follows that

S ~
1

N N{1ð Þ H{NIð Þ,

H ~
PN
i~1

Ai

� � PN
j~1

A{1
j

 !
,

ð5Þ

and the eigenvectors of S equal the eigenvectors of H .

Let the SVD of the matrices Di appended along the n-columns

axis be

D1

..

.

DN

2
664

3
775 ~

ÛU1

..

.

ÛUN

2
664

3
775ŜSV̂VT ,

PN
i~1

ÛUT
i ÛUi ~ I :

ð6Þ

Since the matrices Di are real and with full column rank, it follows

from the SVD of ÛUi that the symmetric matrices ÛUT
i ÛUi are real

and positive definite, and their inverses exist. It then follows from

Equations (5) and (6) that H is similar to ĤH ,

H ~ V̂V ŜSĤHŜS{1V̂VT ,

ĤH ~
PN
j~1

(ÛUT
j ÛUj)

{1,
ð7Þ

and the eigenvalues of H equal the eigenvalues of ĤH .

A sum of real, symmetric and positive definite matrices, ĤH is

also real, symmetric and positive definite; therefore, its eigensys-

tem

ŶY T ĤHŶY~diag(mk) ð8Þ

is real with ŶY orthogonal and mkw0. Without loss of generality let

ŶY be orthonormal, such that EŷykE~1. It follows from the

similarity of H with ĤH that the eigensystem of H can be written

as V{1HV~diag(mk), with the real and nonsingular

V~(V̂V ŜSŶY )ŴW{1, where ŴW~diag(ŵwk) and ŵwk~EV̂V ŜSŷykE such

that EvkE~1 for all k.

Thus, from Equation (5), S is nondefective with real

eigenvectors V . Also, the eigenvalues of S satisfy

lk~
1

N(N{1)
(mk{N), ð9Þ

where mkw0 are the eigenvalues of H and ĤH. Thus, the

eigenvalues of S are real. %

Theorem 2. The eigenvalues of S satisfy lk§1.

Proof. Following Equation (9), asserting that the eigenvalues of S
satisfy lk§1 is equivalent to asserting that the eigenvalues of ĤH
satisfy mk§N2.

From Equations (6) and (7), the eigenvalues of ĤH satisfy

mk§ min
x

XN

j~1

½xT (ÛUT
j ÛUj)x�{1

, ð10Þ

under the constraint that

XN

j~1

xT (ÛUT
j ÛUj)x~1, ð11Þ

where x is a real unit vector, and where it follows from the

Cauchy-Schwarz inequality [37] (see also [4,34,38]) for the real

nonzero vectors (ÛUT
j ÛUj)x and (ÛUT

j ÛUj)
{1x that for all j

xT (ÛUT
j ÛUj)

{1x§½xT (ÛUT
j ÛUj)x�{1: ð12Þ

With the constraint of Equation (11), which requires the sum of the

N positive numbers xT (ÛUT
j ÛUj)

{1x to equal one, the lower bound

on the eigenvalues of ĤH in Equation (10) is at its minimum when

the sum of the inverses of these numbers is at its minimum, that is,

when the numbers equal

xT (ÛUT
i ÛUi)x~xT (ÛUT

j ÛUj)x~N{1 ð13Þ

for all i and j. Thus, the eigenvalues of ĤH satisfy mk§N2. %

Theorem 3. The common HO GSVD subspace. An

eigenvalue of S satisfies lk~1 if and only if the corresponding eigenvector vk

is a right basis vector of equal significance in all Di and Dj , that is,

si,k=sj,k~1 for all i and j, and the corresponding left basis vector ui,k is

orthonormal to all other vectors in Ui for all i. The ‘‘common HO GSVD

subspace’’ of the N§2 matrices is, therefore, the subspace spanned by the right

basis vectors fvkg corresponding to the eigenvalues of S that satisfy lk~1.

Proof. Without loss of generality, let k~n. From Equation (12)

and the Cauchy-Schwarz inequality, an eigenvalue of ĤH equals its

minimum lower bound mn~N2 if and only if the corresponding

A Higher-Order Generalized SVD
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eigenvector ŷyn is also an eigenvector of ÛUT
i ÛUi for all i [37], where,

from Equation (13), the corresponding eigenvalue equals N{1,

(ÛUT
i ÛUi)ŶY~½ (ÛUT

i ÛUi)ŷy1 (ÛUT
i ÛUi)ŷy2 . . . N{1ŷyn �: ð14Þ

Given the eigenvectors V~(V̂V ŜSŶY )ŴW{1 of S, we solve

Equation (3) for each Di~ÛUiŜSV̂VT of Equation (6), and obtain

UiSi ~ Bi ~ DiV
{T

~ ÛUiŶYŴW :
ð15Þ

Following Equations (14) and (15), where vn~ŵw{1
n V̂V ŜSŷyn

corresponds to a minimum eigenvalue ln~1, and since ŶY is

orthonormal, we obtain

ŴW{1Si(U
T
i Ui)SiŴW

{1~ŶY T (ÛUT
i ÛUi)ŶY

~

ŷyT
1 (ÛUT

i ÛUi)ŷy1 ŷyT
2 (ÛUT

i ÛUi)ŷy1 . . . 0

ŷyT
1 (ÛUT

i ÛUi)ŷy2 ŷyT
2 (ÛUT

i ÛUi)ŷy2 . . . 0

..

. ..
.

P
..
.

0 0 . . . N{1

2
6666664

3
7777775

,
ð16Þ

with zeroes in the nth row and the nth column of the matrix above

everywhere except for the diagonal element. Thus, an eigenvalue

of S satisfies ln~1 if and only if the corresponding left basis

vectors ui,n are orthonormal to all other vectors in Ui.

The corresponding higher-order generalized singular values are

si,n~N{1=2ŵwnw0. Thus si,n=sj,n~1 for all i and j, and the

corresponding right basis vector vn is of equal significance in all

matrices Di and Dj . %

Corollary 1. An eigenvalue of S satisfies lk~1 if and only if the

corresponding right basis vector vk is a generalized singular vector of all

pairwise GSVD factorizations of the matrices Di and Dj with equal

corresponding generalized singular values for all i and j.

Proof. From Equations (12) and (13), and since the pairwise

quotients AiA
{1
j are similar to (UT

i Ui)(U
T
j Uj)

{1 with the

similarity transformation of V̂V ŜS for all i and j, it follows that an

eigenvalue of S satisfies lk~1 if and only if the corresponding

right basis vector vk~ŵw{1
k V̂V ŜSŷyk is also an eigenvector of each of

the pairwise quotients AiA
{1
j of the matrices Ai~DT

i Di with

equal corresponding eigenvalues, or equivalently of all Sij with all

eigenvalues at their minimum of one,

Sijvk~
1

2
(AiA

{1
j zAiA

{1
j )vk~vk: ð17Þ

We prove (Theorems S1–S5 in Appendix S1) that in the case of

N~2 matrices our definition of V by using the eigensystem of Sij

leads algebraically to the GSVD, where an eigenvalue of Sij equals

its minimum of one if and only if the two corresponding

generalized singular values are equal, such that the corresponding

generalized singular vector vk is of equal significance in both

matrices Di and Dj . Thus, it follows that each of the right basis

vectors fvkg that span the common HO GSVD subspace is a

generalized singular vector of all pairwise GSVD factorizations of

the matrices Di and Dj with equal corresponding generalized

singular values for all i and j. %

Note that since the GSVD can be computed in a stable way [6],

the common HO GSVD subspace we define (Theorem 3) can also

be computed in a stable way by computing all pairwise GSVD

factorizations of the matrices Di and Dj (Corollary 1). It may also

be possible to formulate the HO GSVD as a solution to an

optimization problem, in analogy with existing variational

formulations of the GSVD [33]. Such a formulation may lead to

a stable numerical algorithm for computing the HO GSVD, and

possibly also to a higher-order general Gauss-Markov linear

statistical model [34–36].

Results

HO GSVD Comparison of Global mRNA Expression from
Three Organisms

Consider now the HO GSVD comparative analysis of global

mRNA expression datasets from the N~3 organisms S. pombe, S.

cerevisiae and human (Section 2.1 in Appendix S1, Mathematica

Notebooks S1 and S2, and Datasets S1, S2 and S3). The datasets

are tabulated as matrices of n~17 columns each, corresponding to

DNA microarray-measured mRNA expression from each organ-

ism at 17 time points equally spaced during approximately two

cell-cycle periods. The underlying assumption is that there exists a

one-to-one mapping among the 17 columns of the three matrices

but not necessarily among their rows, which correspond to either

m1~3167-S. pombe genes, m2~4772-S. cerevisiae genes or

m3~13,068-human genes. The HO GSVD of Equation (1)

transforms the datasets from the organism-specific genes|17-

arrays spaces to the reduced spaces of the 17-‘‘arraylets,’’ i.e., left

basis vactors|17-‘‘genelets,’’ i.e., right basis vectors, where the

datasets Di are represented by the diagonal nonnegative matrices

Si, by using the organism-specific genes|17-arraylets transfor-

mation matrices Ui and the one shared 17-genelets|17-arrays

transformation matrix VT (Figure 1).

Following Theorem 3, the approximately common HO GSVD

subspace of the three datasets is spanned by the five genelets

k~13, . . . ,17 that correspond to 1 lk 2. We find that these

five genelets are approximately equally significant with

s1,k : s2,k : s3,k*1 : 1 : 1 in the S. pombe, S. cerevisiae and human

datasets, respectively (Figure 2 a and b). The five corresponding

arraylets in each dataset are e~0:33-orthonormal to all other

arraylets (Figure S3 in Appendix S1).

Common HO GSVD Subspace Represents Similar Cell-
Cycle Oscillations

The expression variations across time of the five genelets that

span the approximately common HO GSVD subspace fit

normalized cosine functions of two periods, superimposed on

time-invariant expression (Figure 2 c and d). Consistently, the

corresponding organism-specific arraylets are enriched [39] in

overexpressed or underexpressed organism-specific cell cycle-

regulated genes, with 24 of the 30 P-values v10{8 (Table 1

and Section 2.2 in Appendix S1). For example, the three 17th

arraylets, which correspond to the 0-phase 17th genelet, are

enriched in overexpressed G2 S. pombe genes, G2/M and M/G1 S.

cerevisiae genes and S and G2 human genes, respectively,

representing the cell-cycle checkpoints in which the three cultures

are initially synchronized.

Simultaneous sequence-independent reconstruction and classi-

fication of the three datasets in the common subspace outline cell-

cycle progression in time and across the genes in the three

organisms (Sections 2.3 and 2.4 in Appendix S1). Projecting the

expression of the 17 arrays of either organism from the

corresponding five-dimensional arraylets subspace onto the two-

dimensional subspace that approximates it (Figure S4 in

Appendix S1), §50% of the contributions of the arraylets add

A Higher-Order Generalized SVD
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up, rather than cancel out (Figure 3 a–c). In these two-

dimensional subspaces, the angular order of the arrays of either

organism describes cell-cycle progression in time through

approximately two cell-cycle periods, from the initial cell-cycle

phase and back to that initial phase twice. Projecting the

expression of the genes, §50% of the contributions of the five

genelets add up in the overall expression of 343 of the 380 S.

pombe genes classified as cell cycle-regulated, 554 of the 641 S.

cerevisiae cell-cycle genes, and 632 of the 787 human cell-cycle

genes (Figure 3 d–f). Simultaneous classification of the genes of

either organism into cell-cycle phases according to their angular

order in these two-dimensional subspaces is consistent with the

classification of the arrays, and is in good agreement with the

previous classifications of the genes (Figure 3 g–i). With all 3167 S.

pombe, 4772 S. cerevisiae and 13,068 human genes sorted, the

expression variations of the five arraylets from each organism

approximately fit one-period cosines, with the initial phase of

each arraylet (Figures S5, S6, S7 in Appendix S1) similar to that

of its corresponding genelet (Figure 2). The global mRNA

expression of each organism, reconstructed in the common HO

GSVD subspace, approximately fits a traveling wave, oscillating

across time and across the genes.

Figure 2. Genelets or right basis vectors. (a) Raster display of the expression of the 17 genelets, i.e., HO GSVD patterns of expression variation
across time, with overexpression (red), no change in expression (black) and underexpression (green) around the array-, i.e., time-invariant expression.
(b) Bar chart of the corresponding inverse eigenvalues l{1

k , showing that the 13th through the 17th genelets correspond to 1 lk 2. (c) Line-
joined graphs of the 13th (red), 14th (blue) and 15th (green) genelets in the two-dimensional subspace that approximates the five-dimensional HO
GSVD subspace (Figure S4 and Section 2.4), normalized to zero average and unit variance. (d) Line-joined graphs of the projected 16th (orange) and
17th (violet) genelets in the two-dimensional subspace. The five genelets describe expression oscillations of two periods in the three time courses.
doi:10.1371/journal.pone.0028072.g002

Table 1. Arraylets or left basis vectors.

Overexpression Underexpression

Dataset Arraylet Annotation P-value Annotation P-value

S. pombe 13 G2 2:4|10{10 G1 1:0|10{15

14 M 2:2|10{21 G2 1:3|10{9

15 M 4:1|10{13 S 1:6|10{17

16 G2 5:2|10{18 G1 1:2|10{26

17 G2 2:4|10{10 S 5:3|10{35

S. cerevisiae 13 S/G2 4:3|10{15 M/G1 1:4|10{9

14 M/G1 4:9|10{26 G2/M 2:2|10{12

15 G1 7:7|10{17 S 1:3|10{8

16 G2/M 2:3|10{38 G1 2:0|10{32

17 G2/M 2:3|10{41 G1 2:6|10{40

Human 13 G1/S 1:1|10{33 G2 2:4|10{44

14 M/G1 5:7|10{3 G2 4:7|10{2

15 G2 9:8|10{24 None 1:4|10{1

16 G1/S 9:8|10{13 G2 4:1|10{4

17 G2 9:3|10{33 M/G1 2:7|10{2

Probabilistic significance of the enrichment of the arraylets, i.e., HO GSVD patterns of expression variation across the S. pombe, S. cerevisiae and human genes, that span
the common HO GSVD subspace in each dataset, in over- or underexpressed cell cycle-regulated genes. The P-value of each enrichment is calculated as described [39]
(Section 2.2 in Appendix S1) assuming hypergeometric distribution of the annotations (Datasets S1, S2, S3) among the genes, including the m = 100 genes most over- or
underexpressed in each arraylet.
doi:10.1371/journal.pone.0028072.t001
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Note also that simultaneous reconstruction in the common HO

GSVD subspace removes the experimental artifacts and batch

effects, which are dissimilar, from the three datasets. Consider, for

example, the second genelet. With s1,2 : s2,2 : s3,2*1 : 8 : 3 in

the S. pombe, S. cerevisiae and human datasets, respectively, this

genelet is almost exclusive to the S. cerevisiae dataset. This genelet is

anticorrelated with a time decaying pattern of expression

(Figure 2a). Consistently, the corresponding S. cerevisiae-specific

arraylet is enriched in underexpressed S. cerevisiae genes that were

classified as up-regulated by the S. cerevisiae synchronizing agent,

the a-factor pheromone, with the P-value v10{46. Reconstruc-

tion in the common subspace effectively removes this S. cerevisiae-

Figure 3. Common HO GSVD subspace represents similar cell-cycle oscillations. (a–c) S. pombe, S. cerevisiae and human array expression,
projected from the five-dimensional common HO GSVD subspace onto the two-dimensional subspace that approximates it (Sections 2.3 and 2.4 in
Appendix S1). The arrays are color-coded according to their previous cell-cycle classification [15–18]. The arrows describe the projections of the
k~13, . . . ,17 arraylets of each dataset. The dashed unit and half-unit circles outline 100% and 50% of added-up (rather than canceled-out)
contributions of these five arraylets to the overall projected expression. (d–f) Expression of 380, 641 and 787 cell cycle-regulated genes of S. pombe, S.
cerevisiae and human, respectively, color-coded according to previous classifications. (g–i) The HO GSVD pictures of the S. pombe, S. cerevisiae and
human cell-cycle programs. The arrows describe the projections of the k~13, . . . ,17 shared genelets and organism-specific arraylets that span the
common HO GSVD subspace and represent cell-cycle checkpoints or transitions from one phase to the next.
doi:10.1371/journal.pone.0028072.g003
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approximately exclusive pattern of expression variation from the

three datasets.

Simultaneous HO GSVD Classification of Homologous
Genes of Different Cell-Cycle Peak Times

Notably, in the simultaneous sequence-independent classifica-

tion of the genes of the three organisms in the common subspace,

genes of significantly different cell-cycle peak times [19] but highly

conserved sequences [20,21] are correctly classified (Section 2.5 in

Appendix S1).

For example, consider the G2 S. pombe gene BFR1 (Figure 4a),

which belongs to the evolutionarily highly conserved ATP-binding

cassette (ABC) transporter superfamily [22]. The closest homologs

of BFR1 in our S. pombe, S. cerevisiae and human datasets are the S.

cerevisiae genes SNQ2, PDR5, PDR15 and PDR10 (Table S1a in

Appendix S1). The expression of SNQ2 and PDR5 is known to

peak at the S/G2 and G2/M cell-cycle phases, respectively [17].

However, sequence similarity does not imply similar cell-cycle

peak times, and PDR15 and PDR10, the closest homologs of PDR5,

are induced during stationary phase [23], which has been

Figure 4. Simultaneous HO GSVD classification of homologous genes of different cell-cycle peak times. (a) The S. pombe gene BFR1,
and (b) its closest S. cerevisiae homologs. (c) The S. pombe and (d) S. cerevisiae closest homologs of the S. cerevisiae gene PLB1. (e) The S. pombe cyclin-
encoding gene CIG2 and its closest S. pombe, (f) S. cerevisiae and (g) human homologs.
doi:10.1371/journal.pone.0028072.g004
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hypothesized to occur in G1, before the Cdc28-defined cell-cycle

arrest [24]. Consistently, we find PDR15 and PDR10 at the M/G1

to G1 transition, antipodal to (i.e., half a cell-cycle period apart

from) SNQ2 and PDR5, which are projected onto S/G2 and G2/

M, respectively (Figure 4b). We also find the transcription factor

PDR1 at S/G2, its known cell-cycle peak time, adjacent to SNQ2

and PDR5, which it positively regulates and might be regulated by,

and antipodal to PDR15, which it negatively regulates [25–28].

Another example is the S. cerevisiae phospholipase B-encoding

gene PLB1 [29], which peaks at the cell-cycle phase M/G1 [30].

Its closest homolog in our S. cerevisiae dataset, PLB3, also peaks at

M/G1 [17] (Figure 4d). However, among the closest S. pombe and

human homologs of PLB1 (Table S1b in Appendix S1), we find the

S. pombe genes SPAC977.09c and SPAC1786.02, which expressions

peak at the almost antipodal S. pombe cell-cycle phases S and G2,

respectively [19] (Figure 4c).

As a third example, consider the S. pombe G1 B-type cyclin-

encoding gene CIG2 [31,32] (Table S1c in Appendix S1). Its closest

S. pombe homolog, CDC13, peaks at M [19] (Figure 4e). The closest

human homologs of CIG2, the cyclins CCNA2 and CCNB2, peak at

G2 and G2/M, respectively (Figure 4g). However, while

periodicity in mRNA abundance levels through the cell cycle is

highly conserved among members of the cyclin family, the cell-

cycle peak times are not necessarily conserved [1]: The closest

homologs of CIG2 in our S. cerevisiae dataset, are the G2/M

promoter-encoding genes CLB1,2 and CLB3,4, which expressions

peak at G2/M and S respectively, and CLB5, which encodes a

DNA synthesis promoter, and peaks at G1 (Figure 4f).

Discussion

We mathematically defined a higher-order GSVD (HO GSVD)

for two or more large-scale matrices with different row dimensions

and the same column dimension. We proved that our new HO

GSVD extends to higher orders almost all of the mathematical

properties of the GSVD: The eigenvalues of S are always greater

than or equal to one, and an eigenvalue of one corresponds to a

right basis vector of equal significance in all matrices, and to a left

basis vector in each matrix factorization that is orthogonal to all

other left basis vectors in that factorization. We therefore

mathematically defined, in analogy with the GSVD, the common

HO GSVD subspace of the N§2 matrices to be the subspace

spanned by the right basis vectors that correspond to the

eigenvalues of S that equal one.

The only property that does not extend to higher orders

in general is the complete column-wise orthogonality of the

normalized left basis vectors in each factorization. Recent research

showed that several higher-order generalizations are possible for a

given matrix decomposition, each preserving some but not all of

the properties of the matrix decomposition [12–14]. The HO

GSVD has the interesting property of preserving the exactness and

diagonality of the matrix GSVD and, in special cases, also partial

or even complete column-wise orthogonality. That is, all N matrix

factorizations in Equation (1) are exact, all N matrices Si are

diagonal, and when one or more of the eigenvalues of S equal one,

the corresponding left basis vectors in each factorization are

orthogonal to all other left basis vectors in that factorization.

The complete column-wise orthogonality of the matrix GSVD

[5] enables its stable computation [6]. We showed that each of the

right basis vectors that span the common HO GSVD subspace is a

generalized singular vector of all pairwise GSVD factorizations of

the matrices Di and Dj with equal corresponding generalized

singular values for all i and j. Since the GSVD can be computed in

a stable way, the common HO GSVD subspace can also be

computed in a stable way by computing all pairwise GSVD

factorizations of the matrices Di and Dj . That is, the common HO

GSVD subspace exists also for N matrices Di that are not all of full

column rank. This also means that the common HO GSVD

subspace can be formulated as a solution to an optimization

problem, in analogy with existing variational formulations of the

GSVD [33].

It would be ideal if our procedure reduced to the stable

computation of the matrix GSVD when N~2. To achieve this

ideal, we would need to find a procedure that allows a

computation of the HO GSVD, not just the common HO GSVD

subspace, for N matrices Di that are not all of full column rank. A

formulation of the HO GSVD, not just the common HO GSVD

subspace, as a solution to an optimization problem may lead to a

stable numerical algorithm for computing the HO GSVD. Such a

formulation may also lead to a higher-order general Gauss-

Markov linear statistical model [34–36].

It was shown that the GSVD provides a mathematical

framework for sequence-independent comparative modeling of

DNA microarray data from two organisms, where the mathemat-

ical variables and operations represent experimental or biological

reality [7,8]. The variables, subspaces of significant patterns that

are common to both or exclusive to either one of the datasets,

correlate with cellular programs that are conserved in both or

unique to either one of the organisms, respectively. The operation

of reconstruction in the subspaces common to both datasets

outlines the biological similarity in the regulation of the cellular

programs that are conserved across the species. Reconstruction in

the common and exclusive subspaces of either dataset outlines the

differential regulation of the conserved relative to the unique

programs in the corresponding organism. Recent experimental

results [9] verify a computationally predicted genome-wide mode

of regulation [10,11], and demonstrate that GSVD modeling of

DNA microarray data can be used to correctly predict previously

unknown cellular mechanisms.

Here we showed, comparing global cell-cycle mRNA expression

from the three disparate organisms S. pombe, S. cerevisiae and

human, that the HO GSVD provides a sequence-independent

comparative framework for two or more genomic datasets, where

the variables and operations represent biological reality. The

approximately common HO GSVD subspace represents the cell-

cycle mRNA expression oscillations, which are similar among the

datasets. Simultaneous reconstruction in the common subspace

removes the experimental artifacts, which are dissimilar, from the

datasets. In the simultaneous sequence-independent classification

of the genes of the three organisms in this common subspace,

genes of highly conserved sequences but significantly different cell-

cycle peak times are correctly classified.

Additional possible applications of our HO GSVD in

biotechnology include comparison of multiple genomic datasets,

each corresponding to (i) the same experiment repeated multiple

times using different experimental protocols, to separate the

biological signal that is similar in all datasets from the dissimilar

experimental artifacts; (ii) one of multiple types of genomic

information, such as DNA copy number, DNA methylation and

mRNA expression, collected from the same set of samples, e.g.,

tumor samples, to elucidate the molecular composition of the

overall biological signal in these samples; (iii) one of multiple

chromosomes of the same organism, to illustrate the relation, if

any, between these chromosomes in terms of their, e.g., mRNA

expression in a given set of samples; and (iv) one of multiple

interacting organisms, e.g., in an ecosystem, to illuminate the

exchange of biological information in these interactions.
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Supporting Information

Appendix S1 A PDF format file, readable by Adobe Acrobat

Reader.

(PDF)

Mathematica Notebook S1 Higher-order generalized
singular value decomposition (HO GSVD) of global
mRNA expression datasets from three different organ-
isms. A Mathematica 5.2 code file, executable by Mathematica

5.2 and readable by Mathematica Player, freely available at

http://www.wolfram.com/products/player/.

(NB)

Mathematica Notebook S2 HO GSVD of global mRNA
expression datasets from three different organisms. A

PDF format file, readable by Adobe Acrobat Reader.

(PDF)

Dataset S1 S. pombe global mRNA expression. A tab-

delimited text format file, readable by both Mathematica and

Microsoft Excel, reproducing the relative mRNA expression levels

of m1 = 3167 S. pombe gene clones at n = 17 time points during

about two cell-cycle periods from Rustici et al. [15] with the cell-

cycle classifications of Rustici et al. or Oliva et al. [16].

(TXT)

Dataset S2 S. cerevisiae global mRNA expression. A tab-

delimited text format file, readable by both Mathematica and

Microsoft Excel, reproducing the relative mRNA expression levels

of m2 = 4772 S. cerevisiae open reading frames (ORFs), or genes, at

n = 17 time points during about two cell-cycle periods, including

cell-cycle classifications, from Spellman et al. [17].

(TXT)

Dataset S3 Human global mRNA expression. A tab-

delimited text format file, readable by both Mathematica and

Microsoft Excel, reproducing the relative mRNA expression levels

of m3 = 13,068 human genes at n = 17 time points during about

two cell-cycle periods, including cell-cycle classifications, from

Whitfield et al. [18].

(TXT)
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