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Abstract. We present a methodology for estimating the probability of
multi-object anatomic complexes that reflects both the individual ob-
jects’ variability and the variability of the inter-relationships between
objects. The method is based on m-reps and the idea of augmenting me-
dial atoms from one object’s m-rep to the set of atoms of an object being
described. We describe the training of these probabilities, and we present
an example of calculating the statistics of the bladder, prostate, rectum
complex in the male pelvis. Via examples from the real world and from
Monte-Carlo simulation, we show that this means of representing multi-
object statistics yields samples that are nearly geometrically proper and
means and principal modes of variations that are intuitively reasonable.

1 Introduction

Since multiple objects form a given anatomic region, there has been a desire
to characterize probabilistically populations of multi-object anatomic geometry.
Our companion paper [2] makes the case that probabilities on populations of
geometric regions are an essential part of multiscale probabilities on geometric-
model-based image intensities. In the schema described there regions of space
with predictable intensity histograms are placed in a neighbor relationship, and
this is done at a number of different discrete scale levels. In another of our
papers [5], three scale levels are under consideration: that global to the image,
that consisting of only objects without interstitial regions, and that consisting
of certain through-object subsections. Here we assume the ability to handle the
global scale level and through-object subsection scale level, and we focus on the
critical issue of how to produce probability distributions that reflect not only
region (object) shape but also inter-object geometric relationships.

The approaches to forming probability distributions on multi-object anatomic
geometry that have been tried so far consist of representing the objects and doing
global statistics on these representations, as derived from some dozens of train-
ing cases. Among the representations to which this approach has been applied
are point distribution models [3], diffeomorphisms from atlases [14], distance
functions or their levels sets [7], and our own m-reps [1]. We suggest that such
global statistics pay inadequate attention to the objects themselves and most
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especially to the inter-relations among objects. We provide a concrete method
that generates probabilities directly on objects and their relationships.

M-reps are representations of object interiors that consist of hierarchies of
sheets of medial atoms. They are designed to have the following properties: 1) By
medial atom transformations they explicitly capture local bending and twisting
(rotation), local magnification, and local elongation, and they separate these
from one another. 2) They are based on the subdivision of an object into figures,
i.e., main bodies, protrusions, and indentations. Moreover, they provide a fixed
topology of such branching for a population of objects and thus allow statistics
on this population. 3) They provide a local coordinate system for object interiors
that can provide correspondences across instances of an object. 4) They allow
neighboring geometric entities to be understood as medial atom transformations
of each other. This allows rich characterization of neighbor relationships, for
situations internal to a figure, between figures, or between objects.

We use m-reps as the geometric models and statistics using geodesic distance
on the curved manifold of a symmetric space [4]. Here we restrict the discussion
to objects each of which can be represented by a single sampled sheet of medial
atoms (Fig. 1), i.e., ”single-figure objects”. We show examples describing the
variability of the bladder, prostate, and rectum complex in the male pelvis within
a patient across a series of treatment days.

We assume that we are given a single-figure m-rep model for multiple objects,
for many training cases, and we assume further that the object complexes have
already been aligned across the cases and that the medial atoms correspond
across the cases.

Fig. 1. Medial atom with a section of implied boundary surface (left). An m-rep
3-object complex for the bladder, the prostate, and the rectum of a patient in
different view in a box (right).

Limiting ourselves here to the object level of locality, we assume that any
truly global variation of the complex has been removed from each object, via the
residue technique described in [5]. We do not consider the interstitium between
and around objects.



The subject of sections 2-6 is how to express and compute the probabilities
of the objects and of the inter-object geometry. In section 2 we overview the ap-
proach and then in succession treat its three major components, namely section
3: atom augmentation to simultaneously capture objects and their relations to
other objects, section 4: propagation of the inter-object relations to remaining
objects, and section 5: inter-object residues to describe the variation remaining
after the propagation of effects from other objects. In section 6 we explain how
to train probabilities for objects by successive PGA’s on object residues.

We say that a geometric model for a complex of non-interpenetrating ob-
jects is proper if a) the topology of the objects is retained, b) each object in the
model does not have singularities or folds of its boundary or interior, and c) the
non-interpenetration of objects is retained within the tolerances appropriate for
the scale of the description. Many previous methods for estimating inter-object
probability distributions have produced samples some of which are decidedly
improper. In section 7 we test our method by illustrating that models sampled
from our probability distributions on intra-patient bladder, prostate, and rec-
tum deformations are nearly proper and that the means and principal modes of
variation of these distributions are intuitively reasonable. We also briefly discuss
application of these ideas to segmentation by posterior optimization. Section 8
discusses further opportunities for evaluation, and extensions and alternatives
to the proposed methods.

2 Overview of the approach

We assume that in each case we have n objects, with m-reps z2 = {Mk}n
k=1

where Mk is an ordered set of medial atoms and z2 describes the geometric
representation of objects at the second scale level as in [2]. Each interior medial
atom requires an 8-tuple to represent, describing a hub and two equal-length
spokes (Fig. 1), and each grid-edge medial atom requires a 9-tuple to represent,
describing a hub, two equal-length spokes, and a third spoke formed from their
bisector, which may be of a different length. In our present approach we assume
that the objects will be provided in an order of decreasing stability, i.e., whose
posterior probability, based on both geometric and intensity variability and edge
sharpness, are in decreasing levels of tightness. In this work we provide object
statistics in this order, treating each object once. The details of dealing with
these objects’ statistics in sequence are described in section 6. In section 8 we
discuss the extension to a form of a Markov process described in [2].

The main new idea of this paper (Fig. 2) is that while estimating the statis-
tics of a particular object Mk we deal with that object’s inter-relation with
other atoms by augmenting highly correlated atoms Ak in the remaining ob-
jects Rk = ∪i>k(Mi) to Mk to produce “augmented” representations Uk =
Mk ∪ Ak. We can write p(z2) = p(Uk, Rk) = p(Uk)p(Rk|Uk). In specifying
p(Rk|Uk), we divide the effect into a deterministic prediction from Uk and an
Uk-independent probability on the residue of Rk from that prediction. When
comparing this to the equation in the companion paper [2], p(z2

k | zN(2,k)) =



Fig. 2. A discrete m-rep for the bladder (M1), the prostate (M2), the rectum
(M3) 3-object complex of a patient. The augmented atoms in the prostate form-
ing A1 are shown with their hub enlarged (left). The prostate (M2), the rectum
(M3) of the same patient the enlarged atoms in the rectum form A2 (right).

p(shape of z2
k, inter-relation of z2

k, and zN(2,k)), we see that in effect we are de-
scribing the shape of Rk by its residue and the interrelation with Mk via Uk.

We now describe the other aspect of our new idea, the deterministic propa-
gation of augmenting atoms’ movement in the statistics of one augmented object
to the remainder of the objects to be processed. The idea is that if an object
changes position, pose, size, or shape, its neighboring objects will change sympa-
thetically. In particular (Fig. 3), let all of the atoms in these other objects whose
statistics are yet to be determined be Rk. The changes in Ak will be reflected in
sympathetic changes in Rk \Ak

1 before the statistics on Rk \Ak are calculated.
The details of this propagation are discussed in section 4.

We synthesize these probability distributions via principal geodesic analysis
(PGA)[4]. This method of augmentation is discussed further in section 3.

Fig. 3. Assuming we have produced statistics for the augmented bladder U1,
which has augmenting atoms A1 in the prostate (M2), we illustrate the sympa-
thetic change of R1 \A1 caused by A1.

1 Recall that the notation A \B means the set difference A minus B.



3 Objects inter-relation by augmentation

Because we have evidence that atoms in one object that are near another object
are most highly correlated with that other object, we describe the inter-relation
of a multi-object using these nearby atoms for augmentation. In the male-pelvis
example of Fig. 2, medial atoms in bladder M1 should be more highly correlated
with medial atoms nearby in prostate A1 than those in the rest of the prostate
or in the rectum R1 \ A1. Thus we let the nearby prostate atoms form A1,
producing the representation of the augmented bladder U1. We study the effect
of the deformation of the bladder on the augmenting atoms and then study the
relation of changes in the augmenting atoms A1 to that of rest of the prostate
and the rectum, R1 \A1. We use the latter results in a stage we call prediction,
which is explained next.

4 Prediction of movements from augmentation by using
the shape space of the remaining objects

In prediction we reflect a change in Mk in the statistics of Rk by predicting how
Rk\Ak bends, twists or warps from the change of Mk through augmenting atoms
Ak. In doing so, we take account of the shape space of the remainder objects Rk

as suggested in [6], but using PGA in a nonlinear symmetric space rather than
the principal component analysis used in [6].

Recall that PGA involves first finding the mean µ of m-reps {Mi ∈ M}N
i=1,

where M is the symmetric space of an m-rep Mi and N is the number of training
cases; projecting {Mi}N

i=1 to the tangent space TµM at µ by the log map2

(logµ : M→ TµM); and then doing PCA in the tangent space, which yields a
set of principal directions {vl}h

l=1 in TµM. Taking the exponential map (expµ :
TµM → M) of {vl}h

l=1 gives a set of principal geodesics in M, which in turn
generates a submanifold H of M. H is the shape space in which different modes
of variations restricted to H of {Mi}N

i=1 are described via principal geodesics.
The projection of Mi onto the shape space H, ProjH(Mi)3, describes the unique
variation within H nearest in geodesic distance to Mi.

Now consider the augmented m-rep object Uk = (Mk ∪Ak) and Rk (Ak ⊂
Rk). Let µr and Hr be the mean and the shape space generated by principal
geodesics in the symmetric space Mr of Rk, which we can obtain by performing
PGA on training cases of Rk. If we know how Uk deforms, i.e., how Mk and
Ak change together, ProjHr (Ak) predicts how the remaining object Rk changes
sympathetically through Ak in the shape space Hr:

ProjHr
(Ak) = expµr

(
hr∑
l=1

〈logµr
(Ak), vl〉 · vl

)
, (1)

2 Refer to [4] for detailed explanation of the log map and the exponential map.
3 More precisely, the projection operator ProjH : M → H is approximated by

ProjH(M) = expµ

(∑h

l=1
〈logµ(M), vl〉 · vl

)
. For detailed explanation, refer to [4].



where {vl}hr

l=1 are principal directions in the tangent space at µr corresponding
to the principal geodesics in Hr and the dimension of logµr

(Ak) is adjusted to
match with that of vl by adding zeros to logµr

(Ak) for parameters corresponding
to Rk \Ak. Then the prediction for the remainder Rk can be defined as

Pred(Rk; Ak) := ProjHr
(Ak) . (2)

Notice that Pred(Rk; Ak) is also an m-rep.

5 Residues of objects in order

If we describe the changes in Uk and the sympathetic changes in Rk \ Ak, all
that is left to describe statistically is the remaining changes in Rk after the
sympathetic changes have been removed. If the objects are treated in order
and each object has augmenting atoms only in the next object, this will mean
that n probability distributions will need to be trained, namely, for U1, for U2

after the sympathetic changes from U1 have been removed, ... , for Un after the
sympathetic changes from U1, U2 . . . , and Un−1 have been removed. The removal
of sympathetic changes is accomplished via the residue idea described in [5]. Next
we explain how such residues are calculated between a predicted remainder N0

and the actual value M of that remainder.

5.1 Difference of medial atoms

A medial atom m = (x, r, u,v) is defined as an element of the symmetric space
G = R3 × R+ × S2 × S2 where the position x ∈ R3, the spoke length r ∈ R+,
and two unit spoke directions u,v ∈ S2 (S2 is a unit sphere). If an m-rep has d
medial atoms, the m-rep parameter space becomes M = Gd. Let Rw represent
the rotation along the geodesics in S2 that moves a point w ∈ S2 to the north
pole p = (0, 0, 1) ∈ S2. For given any two medial atoms m1,m2 ∈ G where
mi = (xi, ri, ui,vi), i = 1, 2, the difference between them can be described as
follows:

	 : G×G −→ G
m1 	m2 := (x1 − x2,

r1
r2

, Ru2(u1) Rv2(v1)) .
(3)

m1 	m2 is the difference between m1,m2 relative to m2 coordinates. Like m1

and m2, m1 	m2 ∈ G.
Corresponding to the difference operator 	, the addition operator ⊕ can be

defined as:

⊕ : G×G −→ G
m⊕∆m := (x + ∆x, r ·∆r, R−1

u (∆u), R−1
v (∆v)) (4)

for given m = (x, r, u,v) and the difference ∆m = (∆x, ∆r, ∆u,∆v). This
operation is neither commutative nor associative. As an m-rep object is a collec-
tion of medial atoms, these operations can be individually applied to each atom
of the object.



5.2 Residues in an object stage

Our probabilistic analysis proceeds object by object in order. After some object
has been described probabilistically and its sympathetic effect has been applied
to its remainder, there is a further change in the remaining objects to be de-
scribed. We call that further change the residue of the remainder objects with
respect to the probability distribution on the first. More precisely, let M ∈ M
be an m-rep or an m-rep residue of one object fitting a particular training case
where M is a symmetric space of M and let p(N) be a probability distribution
on N ∈M describing part of the variation of M. Notice that if D(p) represents
the domain of p, then D(p) is a submanifold of M. Relative to the probability
distribution p, N0, the closest m-rep to M in D(p), is

N0 = arg min
N∈D(p)

d(M,N), (5)

where d(M,N) is the geodesic distance on M. Then the residue ∆M of M with
respect to p can be defined as

∆M := M	N0 . (6)

In the method we are describing, we use the prediction Pred(M;A) from a set
of augmented atoms A in M to M’s previous object (of which movements have
an effect on M) as an approximation to N0 because the prediction is made on
the shape space of M and the augmentation can give a good estimation to the
overall effect of M’s previous object. We expect the prediction Pred(M;A) to
be close to N0. Thus we compute ∆M := M	 Pred(M;A).

6 Training the probabilities for objects

Training the probabilities for the object is done via successive PGA’s on the
object residues. Using the notation from Sec. 2, let Oi be a multi-object m-
rep residue in case i from which any truly global variations are removed from
{M i

k}k∈K , where I = {1, . . . , N},K = {1, . . . , n} are index sets for N training
cases and n objects. Then Oi = {∆M i

k}k∈K forms a multi-object m-rep residue
of the ith training case.

The residues {Oi}i∈I are treated in the order of objects Mk from k = 1
to n. First we apply PGA on {∆U i

1}i∈I , the residue of the first object, to get
the mean µ1 and a set of principal variances and associated principal geodesics
{expµ1

(vl
1)}

n1
l=1, where vl

1 ∈ Tµ1M1. This mean, principal variances, and prin-
cipal geodesics provide our estimate of the probability distribution of ∆U1. Let
H1 be a submanifold of M1, where M1 is the symmetric space for ∆U1. The
projection of ∆U i

1 onto the geodesic submanifold H1, ProjH1(∆U i
1), describes

the variation unique to ∆U i
1 in H1. Now we need to update the residue {∆Ri

1}i∈I

to reflect the sympathetic effect from ∆M1 on ∆R1 by ∆A1. That is done using
the prediction Pred(∆Ri

1; ∆Ai
1) as described in Sec. 4.



So the residue for the next object (the second object) that we use to apply
PGA is no longer {Oi}i∈I . The updated residue of the remainder to the first
object becomes

∆2Ri
1 = ∆Ri

1 	 Pred(∆Ri
1; ∆Ai

1) i ∈ I . (7)

Once we have the new updated residue ∆k−1U i
k ⊂ ∆k−1Ri

k for the kth object,
k = 2, . . . , n, we repeat the same steps 1) applying PGA on ∆k−1U i

k and 2)
updating the residue of the remainder, which produces a set of means {µk}k∈K

and sets of principal geodesics {{expµk
(vl

k)}nk

l=1}k∈K on object residues.

7 Geometrically proper objects in probability
distributions in the male pelvis

Samples being geometrically improper has been a problem for other methods
such as PCA on distance functions or on dense PDMs. Examples of what we
mean by geometrically improper is wrong topology, interpenetration of separated
objects, folding, and singularities such as unwanted corners and cusps. There are
two reasons why we would expect that our methods would avoid geometrically
improper samples from their probability distributions.

1) M-reps are founded on the idea that using primitive transformations in-
cluding local twisting and bending of objects will yield an economical repre-
sentation of the single and multi-object transformations of anatomy between
individuals or within an individual over time. When using such transformations
in the representation methods and in particular in the methods of description of
object inter-relations via augmentation and prediction, nonlinear PGA is neces-
sary to produce sample object complexes that are geometrically proper.

2) The regular grids of medial atoms that we generate from training binary
images of objects [9] are designed to have large geodesic distance to improper
entities on the manifold M. Thus we might hope that objects within [−2,+2]
standard deviations will also be proper. Analysis of our objects using a criterion
based on the radial shape operator of [8] could be used to avoid improper models,
but this criterion has not been applied in the work described in this paper.

The most basic test of our probability distributions is to visually judge
whether those generated samples are proper and whether the principal geodesic
directions derived from real patient data explain variations we see in the training
samples. Because our training set is just a particular sample subset of a popu-
lation of m-reps, we wish to know how our method would fare on other training
sample subsets. We can accomplish this by generating new random samples from
our probability distributions and test whether training from these samples pro-
duces a probability distribution whose samples are proper.

We generate the new samples by assuming that each tangent plane principal
component from the original training follows the standard normal distribution
once we scale the principal directions by the square root of corresponding eigen-
values in the tangent space. Thus, for each object residue we randomly sample



Fig. 4. Left: tangent spaces at object residue means from real patient data.
Middle: m-rep parameter space. Right: object residue means from generated
training data. The movie of 100 sampled m-reps from patient 1 and patient 2 data
is at http://www.cs.unc.edu/~jeong/DSSCV05/100SamplesPat1and2.avi. In
the movie the point of view changes from time to time.

each principal component following the standard normal distribution to gener-
ate random points on each tangent space about the mean {µk}k∈J . By taking
exponential maps of those points, we generate m-reps and residues that can be
combined by ⊕ to produce new training sample m-reps. PGA on such a new sam-
pled training set yields a new mean and set of principal directions and variances,
whose samples we can judge as to how proper they are.

We applied our new method to obtain the probability distributions from two
training sets, each of which are obtained from bone-aligned male-pelvis CT im-
ages of a real patient over several days. A single-figure m-rep was fit to each
organ: 4x6 grids of medial atoms for the bladder, 3x4 grids for the prostate,
and 3x7 grids for the rectum. The total number of medial atoms is 57, so the
dimension of the m-rep parameter space is 456. Our software to fit the single
figure m-reps to binary image of each organ provides reasonable correspondence
of medial atoms across cases by penalizing irregularity and rewarding correspon-
dence to one case [9]. Inter-penetrations among m-reps of the three objects were
restricted in the fitting [9] of each training case. We have 11 cases (m-reps) of
one patient (patient 1) and 17 cases of another patient (patient 2).

Figure. 5 displays the first modes of variation of patient 1 and 2 at PGA
coefficients -2, -1, 1, 2 standard deviations of bladder with prediction, prostate
with prediction and rectum in Fig. 5 from the top row to the bottom row.

In these movies, as well as the ones seen in fig. 4, we see the following behav-
iors: 1) The m-reps produced as samples or chosen along principal geodesics yield
limited inter-object penetration, as desired since the training samples have small
inter-object penetration. 2) The surfaces of the m-rep sample implied objects are
smooth, with few exceptions. Folding is not observed, and the introduction of
sharp ridges happens seldom, only at crest positions which are sharp in some of
the training cases. 3) The principal geodesics seem to correspond to anatomically



Fig. 5. Illustration of first modes of variation of patient 1 in the box on
the left and that of patient 2 in the box on the right. The movie that
shows the first modes of variations of patient 1 and then patient 2 is at
http://www.cs.unc.edu/~jeong/DSSCV05/VariationsPat1and2.avi.

observed changes. For example, we see strong growth in the bladder correspond-
ing to filling and strong bulging of the rectum corresponding to the introduction
of bowel gas. Also, the prostate residue shows only modest shape changes, a
behavior expected from the fact that the prostate is typically quite hard.

It is in this sense that we say that our statistical method provides samples
that are “nearly geometrically proper and means and principal modes of varia-
tions that are intuitively reasonable.”

In addition to the evaluation of m-rep probabilities just described, we can
also judge the probabilities by their usefulness in segmentation. In particular,
these probabilities are used as the prior at the object scale level in segmentation
by 3-scale (global, object, medial atom) posterior optimization of m-reps of the
bladder, prostate, rectum complex. These probabilities are trained from images
of a given patient on a variety of days, and the segmentation method is applied
to new target images of the same patient on different days. The details of the
application to segmentation are given in [2] and [12], object segmentation using
histogram statistics is described in [15], and the results on a few cases, agreeing
well with human segmentations, have been reported in [13]. Briefly, the results
are anecdotal but encouraging.

8 Discussion and Conclusion

We presented new ideas in estimating the probability distribution of multi-object
anatomic objects via augmentation and prediction with principal geodesic analy-
sis suggested in [4]. As described in our companion paper [2], a schema involving
neighboring regions at multiple scales has much to recommend it. At each scale



level in this schema, except the global level, a means is needed to produce statis-
tics reflecting region shape and inter-region relations for neighboring regions.
This paper has shown the viability of a particular method for producing these
statistics.

We have also applied our approach of augmentation and prediction to com-
pute statistics of m-reps of multi-figure objects, the structure of which is de-
scribed in [10]. We take hinge atoms as augmented atoms and predict the sym-
pathetic change of a subfigure from the change of its host figure [11].

In this paper, we have limited the residue to the object level of locality. But
we can compute finer residues at the medial atom level of locality and do further
analysis as described in [5].

Other evaluations of the sample probability distributions generated using
Monte Carlo approaches to generate new sample training sets are in progress.
These involve measuring the bias and reliability of the resulting probability dis-
tributions and determining the number of training samples required.

We can avoid ordering the objects by considering the mutual neighbor rela-
tion in augmentation. This extension from the present approach to the Markov
Random Field approach as discussed in [2] is suggested by real situations such as
male-pelvis example that we used: not only can the bladder induce a change in
the prostate and rectum but also the change of a prostate can induce sympathetic
change in the bladder and rectum, etc.

We have chosen the augmented atoms based on the distance between atoms
in one object and the other because we have preliminary evidence done by [5]
that those nearby atoms are highly correlated. Another test needed is whether
the remaining atoms are independent of the primary object when conditioned
on the augmenting atoms. In addition, attention is needed to defining the global
statistics so that the object probabilities and the global probabilities are condi-
tionally independent of each other. In this way the global probabilities will not
simply involve principal geodesic analysis of ∪n

k=1Mk.
The success of geodesic statistics depends on the initial alignment of the

training cases. In the example used in this paper, a global alignment of the cases
was accomplished using a rigid object, the pelvic bones. In multi-patient cases,
however, the alignment needs to be accomplished by the Procrustes algorithm
using the geodesic distance metric [4]. Once the global statistics have been com-
puted, it may be desirable to realign for each object, before the residue for that
object is analyzed.

Finally, a possible measure to explain the inter-object relation is canonical
correlation. Canonical correlation explains the relation of two sets of variables
each in a linear space. Here we wish to relate Mk and its neighbors. Because
the principal geodesics are defined in tangent spaces to the symmetric space M,
we speculate that we can incorporate this canonical correlation directly as an
alternative to the method described in this paper.

We thank Edward Chaney, Gregg Tracton, and Derek Merck for pelvis mod-
els. This work was done under the partial support of NIH grant P01 EB02779.
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