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Abstract. M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid
geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric
information effectively in deformable models segmentation approaches. The representation is based on figural
models, which define objects at coarse scale by a hierarchy of figures—each figure generally a slab representing
a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment
objects of relatively simple structure.

A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or
chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a
width but also a local figural frame giving figural directions and an object angle between opposing, corresponding
positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orien-
tational correspondence between an object in two different states of deformation. This ability is central to effective
measurement of both geometric typicality and geometry to image match, the two terms of the objective function
optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is
their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled
by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment
of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models
and approaches also exist in 2D, we focus on 3D objects.

The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this
paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported.
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1. Introduction

Segmentation via deformable models has shown the
advantage of allowing the expected geometric con-
formation of objects to be expressed (Cootes, 1993;
Staib, 1996; Delingette, 1999; among others, also see
McInerny, 1996 for a survey of active surfaces meth-
ods). The basic formulation is to represent an object by
a set of geometric primitives and to deform the object
by changing the values of the primitives to optimize an
objective function including a match of the deformed

object to the image data. Either the objective function
also includes a term reflecting the geometric typical-
ity of the deformed object, or the deformation is con-
strained to objects with adequate geometric typicality.
In our work the objective function is the sum of a geo-
metric typicality term and a geometry to image match
term.

The most common geometric representation in the
literature of segmentation by deformable models has
been a mesh of boundary locations. The hypothesis
described and tested in this paper is that improved
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Figure 1. A 2D illustration of (left) the traditional view of the me-
dial locus of an object as a sheet of disks (spheres in 3D) bitangent
to the object boundary and our equivalent view (right) as an m-rep:
a curve (sheet in 3D) of hubs at the sphere center and equal length
spokes normal to object boundary. The locus of the spoke ends forms
the medially implied boundary.

segmentations will result from using a representation
that is at multiple levels of scale and that at all but the
finest levels of scale is made from meshes of medial
atoms. We will show that this geometric representa-
tion, which we call m-reps, has advantages in measur-
ing both the geometric typicality and the geometry to
image match, in providing the efficiency advantages of
segmentation at multiple scales, and in characterizing
the object as an easily deformable solid.

Many authors, in image analysis, geometry, human
vision, computer graphics, and mechanical modeling,
have come to the understanding, originally promul-
gated by Blum (1967), that the medial relationship1

between points on opposite sides of a figure (Fig. 1) is
an important factor in the object’s geometric descrip-
tion. Biederman (1987), Marr (1978), Burbeck (1996),
Leyton (1992), Lee (1995), and others have produced
psychophysical and neurophysiological evidence for
the importance of medial relationships (in 2D projec-
tion) in human vision. The relation has also been ex-
plored in 3D by Nackman (1985), Vermeer (1994),
and Siddiqi (1999), and medial axis modeling tech-
niques have been applied by many researchers, includ-
ing Bloomenthal (1991), Wyvill (1986), Singh (1998),
Amenta (1998), Bittar (1995), Igarashi (1999) and
Markosian (1999). Of these, Bloomenthal and Wyvill
provided skeletal-based soft-objects; Singh provided
medial (wire-based) deformations; Amenta and Bittar
worked on medially based reconstruction; Igarashi
used a medial spine in 2D to generate 3D surfaces
from sketched outlines; and Markosian used implicit
surfaces generated by skeletal polyhedra.

One of the advantages of a medial representation
is that it allows one to distinguish object deforma-
tions into along-object deviations, namely elongations
and bendings, and across-object deviations, namely
bulgings and attachment of protrusions or indentations.

An additional advantage is that distances, and thus spa-
tial tolerances, can be expressed as a fraction of medial
width. These properties allow positions and orienta-
tions to be followed through deformations of elonga-
tion, widening, or bending. Because geometric typi-
cality requires comparison of corresponding positions
of an object before and after deformation and because
geometry to image match requires comparison of inten-
sities at corresponding positions, this ability to provide
what we call a figural coordinate system is advanta-
geous in segmentation by deformable models.

Medial representations divide a multi-object com-
plex into objects and objects into figures, i.e., slabs with
an unbranching medial locus (see Fig. 1). In the fol-
lowing we also show how they naturally divide figures
into figural sections, and how by implying a bound-
ary they aid in dividing the boundaries of these fig-
ural sections into smaller boundary tiles. This natu-
ral subdivision into the very units of medical interest
provides the opportunity for segmentation at multiple
levels of scale, from large scale to small, that pro-
vides at each scale a segmentation that is of smaller
tolerance than the previous, just larger scale. Such a
hierarchical approach was promulgated by Grenander
(1981). Such a multi-scale-level approach is required
for a segmentation that operates in time linear in the
number of the smallest scale geometric elements, here
the boundary tiles. The fact that at each level the units
are geometrically related to the units of relatively uni-
form tissue properties yields effective and efficient
segmentations.

Our m-reps representation described in Pizer (1999)
and Joshi (2001) (in the first reference called DSLs)
reverses the notion of medial relations descended from
Blum (1967) from a boundary implying a medial de-
scription to a mesh of medial atoms implying bound-
aries, i.e., from an unstable to a stable relation. The
radius-proportional ruler and the need to have locality
at the scale of the figural section require it to use a
width-proportional sampling of the medial surface in
place of a continuous medial sheet.2 These latter prop-
erties follow from the desire directly to represent shape,
i.e., object geometry of some locality that is similarity
transform invariant. The specifics are given later in this
section.

M-reps also extend the medial description to the
inclusion of a width-proportional tolerance, provid-
ing opportunities for stages of the representation with
successively smaller tolerances. Representations with
large tolerance can ignore detail and focus on gross
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Figure 2. M-reps: In the 2D example (left) there are 4 figures: a main figure, a protrusion, an indentation, and a separate object. Each figure
is represented by a chain of medial atoms. Certain medial atoms in a subfigure are interfigurally linked (dashed lines on the left) to their parent
figures. In the 3D example of a hippocampus (middle) there is one figure, represented by a mesh of medial atoms. Each hub with two line
segment spokes forms a medial atom (Fig. 3). The mesh is viewed from two directions, and the renderings below show the boundary implied by
the mesh. The example on the right shows a 4-figure m-rep for a cerebral ventricle.

shape, and in these large-tolerance stages discrete
samplings can be coarse, resulting in considerable ef-
ficiency of manipulation and presentation. Smaller-
tolerance stages can focus on refinements of the larger-
tolerance stages and thus more local aspects.

As described in Pizer (1999) and Joshi (2001), as
a result of the aforementioned requirements an m-rep
model of an object is a representation (data structure)
consisting of a hierarchy of linked m-rep models for
single figures (Fig. 2). A model for a single figure is
made from a net (mesh or chain) of medial atoms (hence
the name m-reps), each atom (Fig. 3) designating not
only a medial position x and width r , but also a lo-
cal figural frame F implying figural directions, and the
object’s local narrowing rate, given by an object angle
θ between opposing, corresponding positions on the
implied boundary. In addition, width proportionality
constants indicate net link length, boundary tolerance,
boundary curvature limits, and, for measuring the fit of
the atom to a 3D image, an image interrogation aper-
ture. As detailed in later papers, a multifigure model
of an object consists of a directed acyclic graph of fig-
ure nets, with interfigural links capturing information
about subfigural location along the parent figure’s me-
dially implied boundary, figural width relative to the
parent figure, and subfigural orientation relative to the
parent figure. The elements of the figural graph also
contain boundary displacement maps that can be used
to give fine scale to the model.

Sometimes one wishes to represent and then seg-
ment multiple disconnected objects at the same time.
An example is the cerebral ventricles, hippocampus,
and caudate in which the structures are related but one

Figure 3. Medial atoms, made from a position x and two equal
length boundary-pointing arrows �p and �s (for “port” and “star-
board”), which we call “spokes”. The atom on the left is for an
internal mesh position, implying two boundary sections. The atom
on the right is for a mesh edge position, implying a section of bound-
ary crest. The atoms are shown in the “atom-plane” containing x,
�p and �s. An atom is represented by the medial hub position x; the
length r of the boundary-pointing arrows; a frame made from the
unit-length bisector �b of �p and �s, the �b-orthogonal unit vector �n in
the atom plane, and the complementary unit vector �b⊥; and the “ob-
ject angle” θ between �b and each spoke. For a slab-like section of
figure, �p and �s provide links between the medial point and the im-
plied boundary (shown as a narrow curve), giving approximations,
with tolerance, to both its position and its normal. The implied figure
section is slab-like and centered on the head of the atom’s spokes,
i.e., it is extended in the �b⊥ direction just as it is illustrated to do in
the atom-plane directions perpendicular to its spoke.



88 Pizer et al.

is not a protrusion or an indentation on another. An-
other example are the pair of kidneys and the liver. In
our system these can be connected by one or more con-
nections between the representations of the respective
objects, allowing the position of one figure to predict
boundary positions of the other. This matter is left to a
paper covering the segmentation of multi-object com-
plexes (Fletcher, 2002).

In the remainder of this paper we first (Section 2.1)
detail the m-reps data structure and geometry, then
(Section 2.2) describe how a continuous boundary
and medial sheets are interpolated from the sampled
sheet directly represented in an m-reps figure, and then
(Section 2.3) detail the way in which the m-rep pro-
vides positional and orientational correspondences be-
tween models and deformed models. After brief discus-
sions in Sections 2.4 of model building from segmented
objects that serve for model training, in Section 3 we
discuss the method of segmentation by deformable
m-reps. In Section 4 we give results of segmentation of
kidneys, hippocampi, and a horn of the cerebral ven-
tricle by these methods, and in Section 5 we conclude
with a comparative discussion of our method and indi-
cations of future directions in which our segmentation
method is being developed.

2. Representation of Objects by M-reps

2.1. M-reps Geometry

Intuitively a figure is a main component of an object
or a protrusion, an indentation, a hole, or an associated
nearby or internally contained object. In Pizer (1999)
we carefully define a figure, making it clear that the no-
tion is centered on the association of opposing points
on the figure called by Blum (1967) “medial involutes.”
Whereas Blum conceived of starting from a boundary
representation and deriving the medial involutes, our
idea is to start with a representation giving medial in-
formation and thus widths, and imply sections of fig-
ure bounded by involutional regions. As illustrated in
Fig. 3, in order for a medial atom m by itself to imply
two opposing sections of boundary, as well as the solid
region between them, we define m = {x, r , F, θ} to
consist of

(1) a position, x, the skeletal, or “hub,” position (this
requires 3 scalars for a 3D atom). x gives the central
location of the solid section of figure that is being
represented by the atom.

(2) a width, r , the distance from the skeletal position to
two or more implied boundary positions (1 scalar)
and thus the length of both �p and �s. r gives the
scale of the solid section of figure that is being
represented by the atom. That is, it provides a local
ruler for the object.

(3) a frame F = (�n, �b, �b⊥), implying the tangent plane
to the skeleton, via its normal �n, and �b, the partic-
ular unit vector in that tangent plane that is along
the direction of fastest narrowing between the im-
plied boundary sections. The medial position x and
the two boundary-pointing arrows, as illustrated
in Fig. 3, are in the (�n, �b) plane. The continuous
medial surface implied by the set of m must pass
through each x and have a normal of �n there. F
requires 3 scalars for a 3D atom. F gives the ori-
entation of the solid section of figure that is being
represented by the atom. That is, it provides a lo-
cal figural compass for the object. The frame is
given by first derivatives of x and r with respect to
distance along the tangent plane to x.

(4) an “object angle” θ that determines the angulation
of the implied sections of boundary relative to �b
�b is rotated by ±θ towards �n to produce normals
�p/r and �s/ to the implied boundary. θ is normally
between π/3 and π/2, the angle corresponding to
parallel implied boundaries.

In 3D, figures are generically slabs, though m-reps can
also represent tubes. A slab figure is a 2-sheet of me-
dial atoms satisfying the constraint that the implied
boundary folds nowhere. The constraint expresses the
relation that the Jacobian of the mapping between the
medial surface and the boundary is everywhere pos-
itive. A more complete, mathematical presentation of
the constraints of representations of which legal m-reps
are a subset can be found in Damon (2002).

In our representation a discrete m-rep for a slab is
a mesh {mij, 1 ≤ i ≤ m, 1 ≤ j ≤ n} of medial
atoms that sample a 2-sheet of medial atoms (Fig. 2).
We presently use rectangular meshes of atoms (quad-
meshes), even though creating and displaying m-reps
based on meshes of triangles (tri-meshes) have advan-
tages because of their relation to simplices. In slab fig-
ures the net is a two-dimensional mesh and internal
nodes of the mesh have a pair of boundary-pointing
vectors pointing from x to x + �p and x + �s.

Implied by the atoms in the mesh are

(1) a tolerance τ = βλr of boundary position normal
to the boundary,
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(2) the length of links to other primitives, approxi-
mately of length γ λr , with γ λ significant fraction
of 1.0, and

(3) a constraint δλr on the radius of curvature of the
boundary.

(4) a size ιλr of the image region whose intensity val-
ues directly affect the atom when measuring the
match of the geometric model to the image.

The constant λ specifies the scale of the figural repre-
sentation, which will vary from stage to stage in an
algorithm working among coarse and fine levels of
representation. The proportionality constants β, γ , δ,
and ι are presently set by experience (Burbeck, 1996;
Fritsch, 1997; McAuliffe, 1996), and, to maintain mag-
nification invariance, the constants βλ, γ λ, δλ, and ιλ

decrease in proportion as the scale decreases.
The successive refinement, coarse-to-fine, of a me-

dial mesh can provide a successive correction to the
medially implied object by interpolating atoms at the
finer spacing from those at the coarser spacing and
then optimizing the finer mesh (Yushkevich, 2001), al-
though we have not implemented this feature yet in the
m-rep models used in segmentation. This refinement
brings with it a decrease in tolerance of the implied
boundary and radius of curvature constraint, the ad-
dition of patches of medial deformations relative to a
figural (u, v) space (see Section 2.2) to handle heavily
bent sections of slab, as well as proportionately smaller
constant of radius proportionality, λ.

We call a figure represented via m-reps an m-figure.
The net of medial atoms contains internal nodes and
end nodes, as well. The end nodes for a slab are linked
together to form the boundary of the mesh. For an ob-
ject made from a single figure, the end nodes need
to capture how the boundary of the slab or tube is
closed by what is called a crest in differential geometry
(Koenderink, 1990). For example, a pancake is closed
at its sides by such a crest. Whereas the internal nodes
for a slab-like segment have two boundary-pointing
vectors, end nodes for slab-like segments have three
boundary-pointing vectors, with the additional vector
pointing from x in the �b direction to the crest. Thus �b
must cycle as one moves around the figural crest. Inter-
nal nodes for tubes have a circle of boundary-pointing
vectors, obtained by adding to x the full circle of rota-
tions in a full circle of �p about �b.

For slabs a sequence of edge atoms forms a curve
of a crest or a curve of a corner closing the slab. As
illustrated in Fig. 3, these segment closed ends may be

rounded with any level of elongation η: the vertex is
taken at x + ηr �b, and the end section in the principal
direction across the implied crest is described by an
interpolation using the position and tangent there and
at the two points x+ �p and x+�s and applying an inter-
polating function to produce a boundary crest with the
desired extent, tangency, and curvature properties. We
use this formulation for ends of end atoms represented
as {x, r , F, θ, η}, instead of the Blum formulation, in
which η = 1, in order to stabilize the image match at
ends as well as to allow corners, i.e., crests of infinite
curvature, to have a finitely sampled representation. Al-
though corners do not normally appear in medical im-
ages, they are needed to model manufactured objects.
Corner atoms have their vertex at x + r (1/ cos(θ ))�b.

2.2. Interpolated Medial Sheets
and Figural Rendering

As stated above, an m-rep mesh of medial atoms for
a single figure should be thought of as a represen-
tation for a continuous sheet of atoms and a cor-
responding continuous implied boundary. The sheet
extends to the space curve of points osculating the
crest of the implied figural boundary. We interpo-
late the m-rep mesh into this sheet parameterized by
(u, v) ∈ [( j, j + 1) × (k, k + 1)] for the mesh element
with the jkth atom at its lower left corner. The inter-
polation is obtained by a process that has local support
on these mesh elements and on the edge elements that
are bounded by edge atoms only. If the medial atoms
are separated by constant r -proportional distances, this
parametrization satisfies the objective of representing
shape locally.

The interpolation is achieved by applying a variant
of subdivision surface methods (Catmull, 1978) to the
mesh of implied boundary positions and normals given
at the spoke ends (including the crest spokes). The vari-
ant, described in detail in Thall (2003), makes the sub-
division surface match the position and the normal of
the spoke ends to within their tolerance. This bound-
ary surface (see Fig. 4) is C2 smooth everywhere but
the isolated points corresponding to the atoms at the
corners of the mesh. From this surface Thall’s method
allows the calculation of interpolated medial atoms.

As it stands, Thall’s method is unlikely to produce
folded boundaries but is not guaranteed against folds.
In our segmentation we penalize against the high cur-
vatures that are precursors to a deformation that yields
folds. The full avoidance of medial atoms that imply
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Figure 4. Left: A single-figure m-rep. Left middle: Coarse mesh of atom boundary positions for a figure. Right middle: Atom ends vs.
interpolated boundary. Right: interpolated boundary mesh at voxel spacing.

a folded boundary will be achievable using the mathe-
matical results found in Damon (2002).

The result of Thall’s interpolation is that with each
boundary position we can associate a boundary figural
coordinate (Pizer, 2002) (Fig. 2), the figure number
together with a side parameter t (= −1 for port, = +1
for starboard, with t ∈ (−1, 1) around the crest) and the
parameters (u, v), describing which interpolated atom’s
spoke touches the boundary there. For each figure we
interpolate the atoms sufficiently finely that a set of
voxel-size triangular tiles represent the boundary. The
method computes the boundary position and associated
normal and r value for an arbitrary boundary figural
coordinate (u, v, t).

Points (x, y, z) in space can also be given a figural
coordinate by appending an r -proportional distance τ

(Fig. 1) to the figural coordinates of the closest me-
dially implied boundary point. To allow the distinc-
tion by the sign of the distance of the inside and the
outside of the figure, we take the distance to be rela-
tive to the medially implied boundary and to be neg-
ative on the interior of the figure. A procedure map-
ping arbitrary spatial positions (x, y, z) into figural
coordinates (u, v, t, τ ) has been written. Also, an ar-
bitrary fine triangular tiling of the medially implied
boundary can be computed. Rendering can be based
on these triangular tiles or on implicit rendering using

Figure 5. Correspondence over deformation via figural correspondence.

the τ function. As well, the correspondence under fig-
ural deformation given by figural coordinates is criti-
cally useful in computing the objective function used in
segmentation.

2.3. Correspondence Through Deformation

As previously described, figures are designed to pro-
vide a natural coordinate system, giving, first a position
on the medial sheet, second a figural side, and finally a
figural distance in figural width relative terms along the
appropriate medial spoke from a specified position. As
detailed in Section 3.3, this figural coordinate system
is used in our segmentation method to follow boundary
locations and other spatial locations through the model
deformation process.

In particular, as illustrated in Fig. 5, a boundary point
after deformation, identified by its figural coordinate
can be compared to the corresponding point before
deformation, and the magnitude of the r -proportional
distance between these points can be used to measure
the local deformation. Also, the intensity in the tar-
get image, at a figural coordinate relative to a puta-
tively deformed model can be compared to the intensity
in a training image (or training images) at the corre-
sponding figural coordinate relative to the undeformed
model.
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Figure 6. M-reps models. Heavy dots show hubs of medial atoms. Lines are atoms’ spokes. The mesh connecting the medial atoms is shown as
dotted curves. Implied boundaries are rendered with shading. Hippocampus: see Fig. 2. Left: kidney parenchyma + renal pelvis. Middle: lateral
horn of cerebral ventricle. Right: multiple single-figure objects in male pelvis: rectum, prostate, bladder, and pubic bones (one bone is occluded
in this view).

2.4. M-reps Model Building for Anatomic Objects
from Training Images

Model-building must specify of which figures an object
or multi-object complex is made up, the size of the mesh
of each figure, and the way the figures are related, and
it must also specify each medial atom. In this paper,
focused on single-figure objects, only the mesh size
and its medial atoms must be specified. Illustrated in
the panels of Fig. 6 are single-figure m-rep models of
a variety of anatomic structures that we have built.

Because an m-rep is intended to allow the repre-
sentation of a whole population of an anatomic object
across patients, it is best to build it based on a significant
sample of instances of the segmented object. Styner
(2001) describes a tool for stably producing models
from such samples. The hippocampus model shown in
Fig. 2 was built using this tool. We also have a design
tool for building m-rep models from a single training
3D-intensity data set and a b-rep from a previous seg-
mentation, e.g., a manual segmentation, of the object
in that image. The kidney model shown in Fig. 6 was
built using this tool.

It is obvious that effective segmentation depends on
building a model that can easily deform into any in-
stance of the object that can appear in a target image.
However, the production of models is not the subject
of this paper, so we assume in the following that a sat-
isfactory model can be produced and test this fact via
the success of segmentations.

3. Segmentation by Deformable M-reps

3.1. Visualizations

3.1.1. Viewing an M-rep. To allow appreciation of
the object represented by an m-rep, the m-rep and the
implied boundary must be viewable. To judge if an

m-rep adequately matches the associated image, capa-
bilities described in Sections 3.2 and 3.3 are needed
to visualize the m-rep in 3D relative to the associated
image. If the match is not good, the user needs a tool to
modify the m-rep, either as a whole or atom by chosen
atom, while in real time seeing the change in the im-
plied boundary and the relation of the whole m-rep or
modified atom to the image. After this seldom required
manual modification the m-rep or atom may then be
attracted by the image data.

As seen in Figs. 2, 4, and 6, we view an m-rep as a
connected mesh of balls, with each ball attached to a
pair of spokes and, for end atoms, to the crest-pointing
ηr �b vector. The inter-atom lines, the spokes, and the
crest-pointing vectors can be optionally turned off.
In addition, the implied boundary can be viewed as a
dot cloud, a mesh of choosable density, or a rendered
surface.

3.1.2. Visualization of the M-rep vs. a Target Image.
Visualization of greyscale image data must be in 2D;
only in 2D image cuts can the human understand the in-
teraction of a geometric entity with the image data. The
implied boundary of an m-rep can be visualized in 3D
versus one or more of the cardinal tri-orthogonal planes
(x, y; y, z; or x, z), with the choice of these planes dy-
namically changeable (Fig. 11). Other image planes in
which it is useful to visualize the fit of the m-rep to the
image data are the atom-based planes described in the
next paragraph. Showing the curve of intersection of
the m-rep implied boundary with any of these image
planes is useful.

The desired relationship of a single medial atom to
the image data is that at each spoke end there is in the
image a boundary orthogonal to the spoke. This rela-
tion is normally not viewable in a cardinal plane. In-
stead one needs to visualize and edit the atoms in cross
sections of the object that are normal to the boundary.
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Figure 7. The viewing planes of interest for a medial atom: Top: 3D views. Bottom: 2D views.

The spokes of a medial atom, if they have been
correctly placed relative to the image, are normal to
the perceived boundary, so they should be contained in
the cross section. We conclude that a natural view plane
should contain both of the boundary pointing arrows of
the medial atom, that is the plane passing through x of
the atom and spanned by (�n, �b) of the atom (if the object
angle is other than π /2). We call this the atom plane.
We can superimpose the medial atom, as well as the
medially implied boundary slice on the image in this
plane (Figs. 7(a), (b), and (c)) and visualize in-plane
changes in the atom and the boundary there.

On the other hand, the atom may be misplaced or-
thogonal to the atom plane or misrotated out of the atom
plane, so it needs to be viewed in an image plane or-
thogonal to the atom plane. There is no such plane that
contains both spokes, but if we could live with having
only one spoke in the atom-orthogonal plane, we could
view across the boundary to which the spoke should
be orthogonal. The desired plane is that spanned by the
atom’s �b⊥ and the chosen spoke of the atom. But we
would only need the half plane ending at x, the “port” or
“starboard half-plane.” Thus, we could draw simulta-
neously the two adjoining half planes for the respective
spokes (Fig. 7).

When an atom is selected, it implies visualization
planes, which can been chosen from among the atom
plane, the port spoke half-plane, and the starboard

spoke half-plane. The image data in the chosen plane(s)
can be viewed in the 3D viewing window, with the im-
age data texture rendered onto these planes (Fig. 7(a)
and (b)), and in respective 2D windows for the chosen
plane(s) (Figs. 7(c), (d) and (e)).

Manual editing of m-reps, should it be necessary,
can be done using these visualizations. The viewer can
point to positions in the three 2D viewing windows
where the spoke ends should be moved, and the atom
can be modified to as closely as possible meet these
requirements, based on the object being locally a lin-
ear slab. Also, tools for manually rotating, translating,
scaling, and changing the object angle and elongation
(for end atoms) are easily provided.

3.2. Multi-Scale-Level Model Deformation Strategy
for Segmentation from Target Images

Our method for deforming m-reps into image data al-
lows model-directed segmentation of objects in volume
data. The deformation begins with a manually chosen
initial similarity transform of the model. To meet the
efficiency requirements of accurate segmentation, the
segmentation process then follows a number of stages
of segmentation at successively smaller levels of scale
(see Table 1). At each scale level the model is the
result of the next larger scale level and we optimize



Deformable M-Reps for 3D Medical Image Segmentation 93

Table 1. Geometry by scale level.

Scale Transformation
level k Geometric entity Transformation Sk Primitive zk

i parameters ωk
i Neighbors N (zk

i )

1 Object ensemble Similarity Object ensemble pose 7: 3D sim transf params None

2 Object Similarity Object pose 7: 3D sim transf params Adjacent objects

3 Main figure Similarity plus elongation Figure pose 8: 3D sim transf params,
1 elongation param

Adjacent figures

3 Subfigure (attached
to a host to
represent a
protrusion or
indentation)

Similarity in figural
coordinates of its host’s
figural boundary, plus
hinging and elongation

Figural pose in host’s
cords and elongation

6: 4 2D sim transf
params, 1 hinging
param, 1 elongation
param

Adjacent figures,
possibly
attached to
same host

4 Through section of
figure (medial
atom)

Medial atom change Medial atom value 8 (or 9): medial atom
params (+η for
external atoms)

2–4 adjacent
medial atoms

5 Boundary vertex Displacement along
medially implied normal

Boundary vertex
position

1: displacement param Adjacent
boundary
vertices

an objective function of the same form: the sum of a
geometric typicality metric (detailed later in this sec-
tion) and a geometry to image match metric (detailed in
Section 3.3). At each scale level there is a type of geo-
metric transformation chosen appropriate to that scale
and having only at most 9 parameters.

The deformation strategy, from a model to a candi-
date obtained by geometrically transforming the model,
follows two basic geometric principles, according to
the conceptual structure presented in Sections 1 and 2.

(1) In both the geometric typicality and the model to
image match metrics all geometry is in figurally
related terms. Thus

• model-relative and candidate-relative positions
correspond when they have common figural co-
ordinates, and

• all distances are r -proportional.

(2) Calculating geometric typicality at any scale level
is done in terms of the relations relevant to that
scale, i.e., relative to its values predicted by the
previous, next larger, scale and by its neighbors
at its scale. The neighborhood of a medial atom
is made up of its immediately adjacent atoms, and
the neighborhood of a boundary tile vertex is made
up of the adjacent boundary tile vertices.

To describe the algorithm in detail, we make a number
of definitions.

The process begins with a model z that is manually
translated, rotated, and uniformly scaled into the image
data by the user to produce an initialized model z0.
z0 is successively transformed through a number of
scale levels into deformed models zk until z5 is the
final segmentation. The details and descriptions of the
primitives, their neighbor relations, and the associated
transformations at each scale level are given in Table 1.

Let zk be the geometric representation at scale level
k. Let zk

i be the representation of the i th primitive at
scale level k. At all scale levels k ≤ 4, each zk

i is repre-
sented as a collection of medial atoms, and a geomet-
ric transformation on zk

i is computed by applying that
transformation to each medial atom in its representa-
tion. Each primitive zk

i for k > 1 has a small set of
neighbors N(zk

i ) at scale level k and a geometric entity
at the next larger scale (k − 1) that contains zk

i . We call
this containing entity the parent primitive P(zk

i ). While
P(zk

i ) is at scale level k − 1, it is of the same type as
zk

i . That is, for k ≤ 4 P(zk
i ) is represented as a superset

of the set representing zk
i , and for k = 5 the parent of

a boundary vertex is the corresponding vertex on the
medially implied surface with zero displacement. Also
associated with scale level k is a type of transformation
Sk such that zk

i = Sk P(zk
i ). Let the parameters ωk

i be the
parameters of the particular transformation Sk applied
to P(zk

i ) at scale level k−1 to produce zk
i at scale level k.

The similarity transform S consisting of translation
by t , rotation O and uniform scaling α applied to a
medial atom m = {x, r , F, θ} produces S ◦ m =
{αOx+t, αr, O ◦ F, θ}. Figural elongation by ν leaves
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fixed the medial atoms at a specified atom row i (the
hinge end for subfigures) and successively produces
translations and rotations of the remaining atoms in
terms of the atoms in the previously treated, adjacent
row i−, as follows:

S3(ν) ◦ mi j = {
xi− j + ν(xi j − xi− j ), ri j ,

(
Fi j F−1

i− j

)ν

◦ Fi− j , θi j
}

The subfigure transformation applies a similarity trans-
form to each of the atoms in the hinge. This transfor-
mation, however, is not in Euclidean coordinates but
in the figural coordinates of the boundary of the par-
ent. That transformation is not used in this paper, so its
details are left to Liu (2002). The medial atom trans-
formation S4 translation by t , rotation O , r scaling α,
and object angle change �θ applied to a medial atom
m = {x, r , F, θ} produces S4(t, O, α, �θ ) ◦ m =
{x + t, αr, O ◦ F, θ + �θ}. The boundary displace-
ment transformation τ applied to a boundary vertex
with position y, medial radial width r , and medially
implied normal �n yields the position y + τr �n.

The algorithm for segmentation successively modi-
fies zk−1 to produce zk . In doing so it passes through the
various primitives zk

i in zk and for each i optimizes an
objective function H(zk , zk−1, I) = wk(-Geomdiff(zk ,
zk−1)) + Match(zk , I). Geomdiff(zk , zk−1) measures the
geometric difference between zk and zk−1, and thereby
-Geomdiff(zk , zk−1) measures the geometric typicality
of zk at scale level k. Match(zk , I) measures the match
between the geometric description zk and the target
image I. Both Geomdiff(zk , zk−1), and Match(zk , I) are
measured in reference to the object boundaries Bk and
Bk−1, respectively implied by zk and zk−1. The weight
wk of the geometric typicality is chosen by the user.

For any medial representation z, the boundary B is
computed as a mesh of quadrilateral tiles as follows,
with each boundary tile vertex being known both with
regards to its figural coordinates u and its Euclidean
coordinates y. For a particular figure, u = (u, v, t),
as described in Section 2.2. When one figure is an at-
tached subfigure of a host figure, with the attachment
along the v coordinate of the subfigure, there is a blend
region whose boundary has coordinates u = (u, w, t),
where u and t are the figural coordinates of the subfig-
ure and w ∈ [−1, 1] moves along the blend from the
curve on the subfigure terminating the blend (w = −1)
to the curve on the host figure terminating the blend
(w = +1). This blending procedure is detailed in Liu
(2002).

As mentioned in Section 2.2, the computation of
B is accomplished by a variation of Catmull-Clark
subdivision (Catmull, 1978) of the mesh of quadrilat-
eral tiles (or, in general, tiles formed by any polygon)
formed from the two (or three, spoke ends of the medial
atoms in z. Thall’s variation (2003) produces a limit sur-
face that iteratively approaches a surface interpolating
in position to spoke ends and with a normal interpo-
lating the respective spoke vectors. That surface is a
B-spline at all but finitely many points on the surface.
The program gives control of the number of iterations
and of a tolerance on the normal and thus of the close-
ness of the interpolations. A method for extending this
approach to the blend region between two subfigures
is presently under evaluation.

Geomdiff(zk , zk−1) is computed as the sum of two
terms, one term measuring the difference between the
boundary implied by zk and the boundary implied by
zk−1, and, in situations when N(zk

i ) is not empty, an-
other term measuring the difference between boundary
implied by zk and that implied by zk with zk

i replaced
by its prediction from its neighbors, with the predic-
tion based on neighbor relations in P(zk

i ). The second
term enforces a local shape consistency with the model
and depends on the fact that figural geometry allows a
geometric primitive to be known in the coordinate sys-
tem of a neighboring primitive. The weight between
the neighbor term and the parent term in the geomet-
rical typicality measure is set by the user. In the tests
described in Section 4, the neighbor term weight was
0.0 in the medial atom stage and 1.0 in the boundary
displacement stage.

The prediction of the value of one geometric prim-
itive zk

j in an m-rep from another zk
i at the same scale

level using the transformation Sk is defined as follows.
Choose the parameters of Sk such that Sk applied to
the zk subset of zk−1 is close as possible to zk in the
vicinity of zk

j . Apply that Sk to zk to give predictions
(Sk zk) j . Those predictions depend on the prediction
of one medial atom by another. Medial atom z4

j = {x j ,
r j , F j , θ j} predicts medial atom z4

i = {xi , ri , Fi , θi}
by recording T = {(x j − xi )/r j , (r j − r j )/r j , F j F

−1
i ,

θ j − θi}, where F j F
−1
i is the rotation that takes frame

Fi into F j . T takes z4
i into z4

j and when applied to a
modified z4

i produces a predicted z4
j .

The boundary difference Bdiff(z1, z2) between two
m-reps z1 and z2 is given by the following average
r -proportional distance between boundary points that
correspond according to their figural coordinates, al-
though it could involve points with common figural
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coordinates other than at the boundary and it will in
the future involve probabilistic rather than geometric
distance measures.

Bdiff(z1, z2) =
[
−

∫
B2

∥∥y
1
− y

2

∥∥2

2(σr (y
2
))2

d y

]/
area(B2).

The r -value is that given by the model at the present
scale level, i.e., the parent of the primitive being trans-
formed. The normalization of distance by medial radius
r makes the comparison invariant to uniform scaling of
both the model and the deformed model for the local
geometric component being adjusted at that scale level.

Finally, the geometry to image match measure
Match (zk , I) between the geometric description zk

and the target image I is given by
∫ τmax

−τmax

∫
Bk G(τ )

Itemplate(y, τ ) Î (y′, τ ) d ydτ where y and y′ are bound-
ary points in B(zk) and B(zk

template) that agree in figural
coordinates, G(τ ) is a Gaussian in τ , Î is the target
image I rms-normalized with Gaussian weighting in
the boundary-centered collar τ ∈ [−τmax, τmax] for the
deformed model candidate (see Fig. 8), and the tem-
plate image Itemplate and the associated model ztemplate

are discussed in Section 3.3.1.
In summary, for a full segmentation of a multi-object

complex, there is first a similarity transformation of the
whole complex, then a similarity transform of each ob-
ject, then for each of the figures in turn (with parent
figures optimized before subfigures) first a similarity-
like transform that for protrusion and indentation
figures respects their being on the surface of their par-
ent, then modification of all parameters of each medial
atom. After all of these transformations are complete,
there is finally the optimization of the dense boundary

Figure 8. The collar forming the mask for measuring geometry to image match. Left: in 2D, both before and after deformation. Right: in 3D,
showing the boundary as a mesh and showing three cross-sections of the collar.

vertices implied by the medial stages. Since in this pa-
per we describe only the segmentation of single figure
objects, there are three stages beyond the initialization:
the figural stage, the medial atom (figural section)
stage, and the boundary displacement stage.

For all of the stages with multiple primitives (in the
case tested in this paper, the medial atom stage and
the boundary stage), we follow the strategy of iterative
conditional modes, so the algorithm cycles among the
atoms in the figure or boundary in random order until
the group converges. The geometric transformation of
a boundary vertex modifies only its position along its
normal [1 parameter]; the normal direction changes as
a result of the shift, thus affecting the next iteration of
the boundary transformation.

3.3. The Optimization Method
and Objective Function

Multiscale segmentation by deformable models re-
quires many applications of optimization of the objec-
tive function. The optimization must be done at many
scale levels and for increasingly many geometric prim-
itives as the scale becomes smaller. Efficient optimiza-
tion is thus necessary. We have tried both evolutionary
approaches and a conjugate gradient approach to opti-
mization. The significant speed advantages of the con-
jugate gradient method are utilizable if one can make
the objective function void of nonglobal optima for the
range of the parameters being adjusted that is guaran-
teed by the previous scale level. We have thus designed
our objective functions to have as broad optima as pos-
sible and chosen the fineness of our scale levels and
intra-level stages to guarantee that each stage or level
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produces a result within the bump-free breadth of the
main optimum of the next stage or level.

When the target image is noisy and the object con-
trast is low, the interstep fineness requirement just
laid out requires multiple substages of image blurring
within a scale level. That is, at the first substage the
target image must be first blurred before being used in
the geometry to image match term. At later substages
the blurring that is used decreases.

At present the largest scale level involved in a seg-
mentation requires a single user-selected weight, be-
tween the geometric typicality term and the geometry
to image match term. All smaller scale stages require
two user-selected weights, the one just mentioned plus
a weight between the parent-to-candidate distance and
the neighbor-predictions-to-candidate distance. How-
ever, we intend in the future that our objective func-
tion be a log posterior probability. When this comes
to pass, both terms in the objective function will be
probabilistic, as determined by a set of training im-
ages. These terms then would be a log prior for the
geometric typicality term and a log likelihood for the
geometry to image match term. In this situation there
is no issue weighting the geometric typicality and ge-
ometry to image match terms. However, at present our
geometric typicality term is measured in r -proportional
squared distances from model-predicted positions and
the geometry to image match term is measured in rms-
proportional intensity squared units resulting from the
correlation of a template image and the target image,
normalized by local variability in these image intensi-
ties. While this strategy allows the objective function
to change little with image intensity scaling or with
geometric scaling, it leaves the necessity of setting the
relative weight between the geometric typicality term
and the geometry to image match term.

The remainder of this section consists of a subsec-
tion detailing the geometry-to-image match term of the
objective function, followed by a section detailing the
boundary displacement stage of the optimization.

3.3.1. The Geometry-to-Image Match Measure. It is
useful to compute the match between geometry and the
image based on a model template. Such a match is en-
abled by comparing the template image Itemplate and the
target image data I at corresponding positions in fig-
ural coordinates, at figural coordinates determined in
the model. The template is presently determined from
a single training image Itemplate, in which the model z
has been deformed to produce ztemplate by applying the

m-reps deformation method through the medial atom
scale level (level 4) on the characteristic image corre-
sponding to a user-approved segmentation. In our im-
plementation the template is defined only in a mask
region defined by a set of figural coordinates, each
with a weight of a Gaussian in its figural distance-to-
boundary, τ , about the model-implied boundary. The
standard deviation of the Gaussian used for the results
in this paper is 1/2 of the half-width of the collar. The
mask is choosable as a collar symmetrically placed
about the boundary up to a user-chosen multiple of r
from the boundary (Fig. 8) or as the union of the object
interior with the collar, a possibility especially easily
allowed by a medial representation. In the results re-
ported here we use a boundary collar mask. The mask is
chosen by subdividing the boundary positions affected
by the transformation with a fixed mesh of figural co-
ordinates (u, v) and then choosing spatial positions to
be spaced along each medial spoke (implied boundary
normal) at that (u, v). These along-spoke positions are
equally spaced in the figural distance coordinate τ up to
a plus or minus a fixed cutoff value τmax chosen at mod-
eling time. For the kidney results reported in Section 4,
this cutoff value was 0.3, so the standard deviation of
the weighting Gaussian in the intensity correlation is
0.15.

The template to image match measure is choosable
in our tool from among a normalized correlation mea-
sure, with weights, and a mutual information measure,
with weights, but for all the examples here the cor-
relation measure has been used and the weight in all
mask voxels is unity. The correlation measure that we
use is an average, over the boundary sample points, of
the along spoke intensity profile correlations at these
sample points. For the geometry to correspond to the
volume integral of these point-to-corresponding-point
correlations, each profile must be weighted by the
boundary surface area between it and its neighboring
sample points, and the profile must be weighted by its
r -proportional length. In addition, as indicated above,
we weight each product in the correlation by a Gaus-
sian in τ from the boundary. Also, to make the intensity
profiles insensitive to offsets and linear compression in
the intensity scale, the template is offset to a mean
of zero and both the template and the target image are
rms-normalized. The template’s rms value is computed
within the mask in the training image, and the target
image’s rms value is computed for a region correspond-
ing to a blurred version of the mask after the manual
placement of the model.
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In our segmentation program the template is choos-
able from among a derivative of Gaussian, described
more precisely below, and the intensity values in the
training image in the region, described in more detail
in Section 4.2. In each case the template is normalized
by being offset by the mean intensity in the mask and
normalized in rms value.

The derivative of Gaussian template for model to im-
age match is built in figural coordinates in the space of
the model, i.e., the space of the training image. That
is, each along-spoke template profile, after the Gaus-
sian mask weighting, is a derivative of a Gaussian with
a fixed standard deviation in the figural coordinate τ ,
or equivalently an r -proportional standard deviation in
Euclidean distance. We choose 0.1 as the value of the
standard deviation in τ . Since this template is associ-
ated with the target image via common figural coordi-
nates, in effect the template in the target image space is
not a derivative of 3D Gaussian but a warped derivative
of 3D Gaussian, with the template’s standard deviation
in spatial terms increases with the figural width.

3.3.2. Boundary Displacement Optimization. The
boundary deformation stage is much like active sur-
faces, except that the geometric typicality term consists
not only of a term measuring the closeness of each
boundary displacement to that at each of the neigh-
boring boundary positions but also a term measuring
the log probability of these displacements in the me-
dially based prior. Since the tolerance of the medially
implied boundary is r -proportional, the log Gaussian
medially based prior, conditional on the medial es-
timate, is proportional to the negative square of the
r -normalized distance to the medially implied bound-
ary (Chen, 1999). The method of Joshi (2001), with
which we complete the segmentation, uses this com-
bined geometric typicality measure, and its boundary to
image match measure is a log probability based on the
object and its background each having normal intensity
distributions.

Figure 9. Segmentation results of the lateral horn of a cerebral ventricle at the m-rep level of scale (i.e., before boundary displacement) from
MRI using a single figure model.

4. Segmentation Results: Deformed Models

4.1. Segmenting the Kidney from CT;
Segmentation Accuracy

We have tested this method for the extraction of
three anatomic objects well modeled by a sin-
gle figure: the lateral cerebral ventricle, the kidney
parenchyma + pelvis, and the hippocampus. Extract-
ing the lateral ventricle from MR images is not very
challenging because the ventricle appears with high
contrast, but a single result using a Gaussian derivative
template is shown in Fig. 9.

Extracting the kidney from CT images is challenging
under the conditions of the work reported here for ra-
diation therapy treatment planning (RTP). The kidney
sits in a crowded soft tissue environment where parts
of its boundary have good contrast resolution against
surrounding structures but other parts have poor con-
trast resolution. Also, not too far away are ribs and
vertebrae, appearing very light with very high contrast
(Fig. 10). The typical CT protocol for RTP involves
non-gated slice-based imaging, without breath hold-
ing and without injecting the patient with a “dye” to
enhance the contrast of the kidney. During the time
interval between slice acquisition the kidneys are dis-
placed by respiratory motion, resulting in significantly
jagged contours in planes tilted relative to the slice
plane (Fig. 10). A combination of partial volume and
motion artifacts causes the poles to be poorly visual-
ized or spuriously extended to adjacent slices. Motion
and partial volume artifacts degrade the already poor
contrast between the kidney and adrenal gland, which
sits on top of the kidney.

The single figure m-rep used here includes part of
the pelvis along with the kidney parenchyma, mimick-
ing segmentation as performed for RTP. The complex
architecture of the renal pelvis acts as structure noise
for this m-rep. When using a Gaussian template that is
designed to give increased response at boundaries next
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Figure 10. Sagittal plane through a CT of the kidney, used in this
study, demonstrating significant partial volume and breathing ar-
tifacts. A human segmentation is shown as a green tint. Note the
scalloped boundary and spurious sections of the kidney, which were
segmented by one of two human raters but excluded by m-rep seg-
mentation. Note also the nearby high-contrast rib that can create a
repulsive force when a Gaussian derivative template is used.

to which are non-narrow strips of object with intensity
lighter than its background, the following behaviors are
noted. (1) If the geometric penalty weight is low, the
kidney m-rep can move inside a sequence of vertebral
bodies because the high contrast on only a portion of
the model results in a high model to image match value.

Table 2. Comparison of m-reps segmentation to manual segmentation for six examples selected from 24 kidneys (twelve kidney
pairs). Distances are in cm. The examples span the range, from best to worst, of human-m-rep volume overlap.

Kidney code Volumes compared Vol. Overlap 1st-Qtl∗ 2nd-Qtl∗ 3rd-Qtl∗ 〈Dist〉 Haussdorf distance

639 R A–B 0.947 0.000 0.200 0.200 0.117 0.693

A–C 0.940 0.000 0.000 0.200 0.124 1.342

B–C 0.940 0.000 0.200 0.200 0.123 1.183

646 L A–B 0.935 0.000 0.200 0.200 0.133 1.149

A–C 0.939 0.000 0.000 0.200 0.108 0.917

B–C 0.940 0.000 0.000 0.200 0.103 1.077

634 L A–B 0.953 0.000 0.000 0.200 0.103 0.600

A–C 0.903 0.000 0.200 0.200 0.182 0.894

B–C 0.899 0.200 0.200 0.283 0.191 0.849

633 L A–B 0.951 0.000 0.000 0.200 0.106 0.721

A–C 0.909 0.000 0.200 0.200 0.162 1.217

B–C 0.896 0.000 0.200 0.283 0.189 1.131

637 R A–B 0.957 0.000 0.000 0.200 0.079 0.566

A–C 0.843 0.000 0.200 0.400 0.272 1.789

B–C 0.840 0.000 0.200 0.400 0.280 1.897

635 L A–B 0.950 0.000 0.000 0.200 0.097 0.800

A–C 0.807 0.000 0.200 0.400 0.307 2.209

B–C 0.808 0.000 0.200 0.400 0.314 2.272

∗Quartile columns give the surface separation associated with each quartile, e.g., an entry of.200 in the 2nd-Qtl column means that
50% of all voxels on the surfaces of the compared segmentations are separated by no more than .200 cm. (.200 cm is the smallest
unit of measurement). 〈Dist〉 is the median distance between the surfaces of the compared segmentations.

This is easily prevented by an adequately high weight
for geometric typicality. (2) A portion of the implied
boundary of the kidney m-rep can move to include a
rib, as a result of the high contrast of the rib. (3) A
portion of the implied boundary of the kidney m-rep
can move to include part of the muscle. (4) The bound-
ary at the liver, appearing with at most texture contrast,
does not attract the implied m-rep boundary, with the
result that the geometric typicality term makes the kid-
ney not quite follow the kidney/liver boundary. In other
organs, parts of the edge with high contrast of opposite
polarity to other parts would repel the m-rep boundary.
Avoiding some of these difficulties necessitated replac-
ing the first post-initialization similarity transform by
a similarity transform augmented by an elongation for
the main figure. Despite these challenges, segmentation
using a Gaussian derivative template, built on a single
right kidney, is successful when compared against hu-
man performance.

An example deformation sequence is shown in
Fig. 11, showing the improved segmentation at each
stage. Results of a typical kidney segmentation are
visualized in Fig. 12. Comparisons between m-rep
segmentation (rater C) and human segmentation
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Figure 11. Stage by stage progress: all rows, from left to right, show results on Coronal, Sagittal and Axial CT slices. Each row compares
progress through consecutive stages via overlaid grey curves to show the kidney segmentation after stage N vs. white curves after stage N + 1.
Top row: stages are the initial position of the kidney model vs. the figural similarity transform plus elongation. Middle: the similarity transform
plus elongation vs. medial atom transformations. Bottom: medial atom transformations vs. 3D boundary displacements.

(raters A and B) using our evaluation system Valmet
(Gerig, 2001) are given in Table 2 and Figs. 13–15.
Comparisons are given for 12 kidney pairs (12 right
kidneys and corresponding left kidneys. Manual seg-
mentation by A and B was performed slice-by-slice
using the program, Mask (Tracton, 1994). Within-slice
pixel size was approximately 1 mm, and slice thickness
varied image to image between 3 mm and 8 mm. Im-
ages were resampled for m-rep segmentation to yield
isotropic 2 mm voxels. At the comparison stage using
Valmet the segmented volumes, originally represented
by sets of contours for humans and as 3D surfaces for m-
reps, were scan converted to produce voxelized (2 mm
voxels) representations.

The median volume overlap for human segmenta-
tions, as measured by the overlap volume divided by
the union of the two volumes being compared, is 94%
(σ = 1.7%, min = 90%, max = 96%). The mean sur-
face separation, averaged over all kidneys, is 1.1 mm
(σ = 0.3 mm); the mean surface separation for a given
kidney is defined in terms of closest points, i.e., as
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Figure 12. Kidney model and segmentation results. (Segmentation results at the m-rep level of scale (i.e., before boundary displacement) on
kidneys in CT using a single figure model. The three light curves on the rendered m-rep implied boundary in the 3D view above right show the
location of the slices shown in the center row. On these slices the curve shows the intersection of the m-rep implied boundary with the slices.
The slices in the lower row are the sagittal and coronal slices shown in the 3D view).

where N1 and N2 are the respective numbers of bound-
ary voxels in the two kidneys being compared and
y1

i
and y2

j
are the coordinates of the boundary voxel

centers of the respective kidneys. The median volume
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Figure 13. Scattergram of median surface separations for all
kidneys.

overlap between human and m-rep segmentations is
89% (σ = 3.4%, min = 81%, max = 94%), and the
mean surface separation, averaged over all kidneys, is
1.9 mm (σ = 0.5 mm). The distinction between m-rep
to human comparison and human to human comparison
is statistically significant for average distance and max-
imum distance metrics, though from a clinical point of
view the distance differences are small. The average
surface separations (over each boundary vertex point
on the reference segmentation and, for each, the closest
point on the segmentation being evaluated) for human-
human and human-m-rep comparisons correlate well
with the pixel dimensions at segmentation with MASK
and m-reps respectively. Because Valmet measures off-
sets and overlaps only to the closest voxel (Table 2),
the image resampling and scan conversion steps in-
troduced a bias against m-reps which is thought to ac-
count for most of the difference between human-human
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Figure 14. Valmet pairwise comparisons for a left kidney. The comparison result is color-coded on a reference surface selected from human
(A or B) and m-rep segmentations (see Fig. 15). Green represents a subvoxel surface correspondence between the two compared segmentations.
Red represents a section where the surface of the reference segmentation is outside the compared surface. Blue represents a section where the
surface of the reference segmentation is inside compared surface. Left: Reference shape from human B, color coding from human A. Middle:
Reference shape from human B, color coding from m-reps. Right: Reference shape from m-reps, color coding from human B. In this case the
volume overlap for A and B was 93.5% and the m-rep overlap was 94.0% with both A and B.

Figure 15. Valmet comparisons for a kidney with significant motion artifacts (see Fig. 10), reflecting human segmentations’ preservation of
artifactual scalloping vs. the m-rep segmentations’ yielding a smooth surface. Left: Reference shape from human A, color coding from human
B. In this case both A and B contoured spurious sections at the top of the kidney, but rater A contoured one additional slice. Center: Reference
shape from m-reps, color coding from human A. Right: Color coding scheme.

and human-m-rep metrics. Also, consistencies in man-
ual segmentation also favorably bias human-human
comparison. For example 2D contouring tends to pre-
serve jagged edges (Fig. 10) caused by motion arti-
facts while 3D m-rep surfaces tend to smooth the edges
(Figs. 14–15).

Therefore the real median boundary accuracy is sub-
voxel and the human-m-rep overlap percentages are un-
derstated. We judge the best m-rep segmentations to be
at least as good as the most careful manual slice by slice
segmentation done for RTP in routine clinical practice.
Suboptimal performance is associated primarily with
insufficient training and shortcomings of the Gaussian
derivative template (Fig. 16).

4.2. Templates Made from a Training Image, and
Segmenting the Hippocampus

Objects that appear without high contrast over most of
their boundary cannot be extracted using a Gaussian
derivative template. For these the pattern of image in-
tensity profiles in the boundary-centered mask region
as a function of (figurally defined) boundary position
are frequently characteristic. As a result an intensity
template as function of figural position drawn from one
or more training images can be used as the correlate
for the target image in producing a geometry to image
match measurement. Our m-reps based segmenter can
use such training intensity templates. In what we report
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Figure 16. Correctable m-rep failure mistakenly included in our analysis (worst case in Table 1). Left: Valmet comparison with reference shape
from human B, color coding from m-reps. Center: Sagittal plane showing m-rep (blue) and human (red) surfaces. Two problems mentioned
in the text are illustrated. In the region labeled “A” the m-rep model deformed into structures related to the kidney pelvis that were poorly
differentiated from the kidney parenchyma. In the region labeled “B” the m-rep model did not elongate fully during the first transformation
stage. Right: Transverse plane illustrating the deformation of the m-rep model into peri-pelvic structures in region A. Even in this case there is
close correspondence between human and m-rep contours excluding regions A and B. After more careful user-guided initialization a successful
m-rep segmentation was obtained for this kidney, but those results were omitted in the analysis.

below, we use a template drawn from a single training
image with the m-rep fitted by the approach of this
paper into a slightly blurred version of the human’s
binary hand segmentation for that training image.
This m-rep fitted into the training segmentation also
formed the model used in these studies on four other
cases.

We first report on using the image intensity profile
method to fit a hippocampus m-rep from the training
case into the slightly blurred versions (Gaussian blur-
ring with std. dev. = 1 voxel width) of binary segmen-
tations for the four other hippocampi. This process
succeeded in all four cases (Fig. 17), suggesting two
conclusions. First, one can use such fitting of m-reps
to already segmented cases to provide statistical de-
scription of the geometry via the statistics of the fitted
m-reps (Styner, 2002). Second, the method of 3D de-
formable m-rep optimization via intensity templates is
geometrically sound.

We move on to the extraction of the left hippocam-
pus from MRI, an extraction that is very challenging
for humans and has great variability across human seg-
menters. The pattern of intensities across the boundary
of the left hippocampus is characteristic, to the extent
that the structures abutting or near the hippocampus
follow a predictable pattern, with each structure hav-
ing its typical intensity in MRI. However, because of
the variability of this structural pattern and thus the
variability of the intensity pattern, and because of the
indistinct contrast at both the tip and the tail of the hip-
pocampus, hippocampal segmentation from MRI pro-

vides a major challenge for automatic segmentation
of the hippocampus as a single object. The poor con-
trast makes it necessary to omit the boundary displace-
ment stage from the segmentation and so to stop after
the medial atom stage. Our method beginning from a
manually placed hippocampus model produced a rea-
sonable, hippocampus-shaped segmentation overlap-
ping with the human segmentation in 3 of the 4 cases
(Fig. 17), and in the remaining case, the structural pat-
tern around the hippocampus was so different as to
make the method fail. Moreover, in only 1 of the 3
semi-successful cases was the segmentation credible to
a human rater. However, in each of those 3 cases when
the same segmentation was begun from the m-rep fit-
ted to the human segmentation, it produced a successful
segmentation with a geometry to image match measure
higher than that achieved when starting from the man-
ually placed model. This result suggests that when the
contrast in the images is weak the optimization tech-
nique needs to be changed to avoid local optima or that
a better measure for geometry-to-image match must be
found or that multiple object geometry must be used
in the process. We are investigating all three of these
paths. In regard to geometry-to-image match, we judge
that the intensity template must really be statistical, re-
flecting the range of patterns in a family of training
images, and that is indeed a direction that, long since,
we have intended our method development to go. Our
figural coordinate system and correlation method is ex-
actly what is needed for such segmentation to be based
on principal components analysis, in a way analagous
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Figure 17. Hippocampus results using training intensity matches, for one of the three target images with typical results. The top image shows
the m-rep-segmented hippocampus from the blurred binary segmentation image. Each row in the table shows in three intersecting triorthogonal
planes the target image overlaid with the implied boundary of the m-rep hippocampus segmentation using the image template match. The top
row shows the segmentation from the blurred binary image produced from a human segmentation. The middle row shows the corresponding
segmentation using the mri image as the target and an intialization from a manual placement of the model determined from training image. The
bottom row shows the segmentation of the same target mri with both the initialization and the model being the segmentation result on the blurred
binary image for that case.

to the boundary point based segmentation methods of
Cootes and Taylor (1993).

We have found that the figural stage of segmentation
using a training image template is better when the train-
ing image intensity template as well as the target image
is rather blurred with a standard deviation of a signifi-
cant fraction of the average r of the object. This causes
small differences between the template image and the
target image in the relative positioning of the object
sought to surrounding structures to have only a small
effect. Thus when we apply the technique to kidney
segmentation, the fact that, for example, in the training
image the kidney nearly abuts the spinal column but is

somewhat separated from it in the target image causes
that portion of the kidney segmented from the target
image to move toward spine, but only to a small degree
if blurred images are used. With the hippocampus, this
same blurring approach was used, but since the hip-
pocampus is much narrower than the kidney, the level
of blurring used was correspondingly smaller.

4.3. Speed of Computation

The speed of a 3D segmentation is 2–4 minutes for a
15-atom kidney model on a Pentium 4, 1.8 GHz Dell
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Inspiron 8200 laptop computer, with

• preprocessing computations taking less than
1 second,

• the object similarity transform plus elongation stage
taking under 1 second per iteration and on the
average requiring 8 iterations for a total time
of 2 seconds to determine the object similarity
transform,

• the atom transformations taking on the average ap-
proximately 45 seconds per iteration through all of
the atoms for the kidney, with the time per iteration
roughly proportional to the surface area of the object,
and the number of iterations required for the kidney
being 2 to 3, and

• the boundary deformation stage taking approxi-
mately 3 seconds.

While the method’s speed has already benefited
strongly from moving much of the computation from
the deformation stage to the model building stage, there
is still much room for speedup by more medial levels
of coarse to fine and just by more careful coding.

5. Discussion and Conclusions

The main contribution of this paper is the detailing of
a method for 3D image segmentation that uses the me-
dial model representation called m-reps both to capture
prior knowledge of object geometry and as the basis
of measurement of model to image match. There are
number of other contributions. We have laid out how
to base the geometry in 3D of a figure on a new form
of medial atom that allows a spatially sampled rep-
resentation while carrying a local ruler and compass.
We have described a way of deriving the continuous
implied boundary of a single-figure object from that
representation. We have described a means of calcu-
lating a parametrization of space in terms of medially
relative positions and signed r -proportional distance
from this implied boundary and the usefulness of this
parameterization in computing geometric typicality via
correspondence at the object boundary and computing
geometry to image match via this correspondence and
the correspondence of distances from the boundary in
r -proportional terms. This space parametrization also
allows the interior of the object to be distinguished
as associated with a particular region or in the blend
region. An additional contribution is having a set of
object and figure based scale levels and the means of

optimal deformation at multiple scale levels by con-
sidering the model information at each relevant scale.
The initial successes of the segmentation method pro-
vide evidence of the usefulness of these ideas. M-rep
based visualizations of an object in both 3D and ver-
sus the 3D image relative to a medial atom were also
described.

Our quantitative validation on kidney segmentation
is encouraging: robust and accurate enough for clini-
cal use. A recent study on segmenting the kidney from
CT suggests that the result is very stable to variations
in the manual initialization. However, achieving full
human accuracy remains a goal. Controlled, quanti-
tated validations on other objects are needed. The re-
sults of such a study will be reported in a future paper.
We find the results so far, together with the theoret-
ical strengths of the deformable m-reps method, en-
couraging evidence that this approach will increase the
maximum robustness achievable in 3D segmentation
of anatomic objects or that it can do such segmentation
at a given level of robustness faster than alternative
methods.

At the same time, the method sometimes fails to
segment variants of an object that has significant vari-
ability in shape over the population. An example, is the
prostate, which varies across individuals in the degree
to which it bends to “saddlebag” around the rectum.
In situations of large saddlebagging, the ends of the
prostate are so distant from the model that the distance-
based geometric penalty prevents convergence to the
fully bent prostate at its ends. The solution, we guess,
lies in extending the transformation at each scale level
to include not only the transformation listed in Table 1
but also a first principal component transformation of
the collection of medial atoms associated with that
scale level, with the first principal component eigen-
mode being computed from a training set.

We have completed the programming for an early
version of computing optimal subfigural geometric
transformations, but have not put the program in the
form we are ready to test. Each subfigural transforma-
tion iteration will require roughly the fraction of the
time for the whole object iteration that the subfigure’s
boundary is of the whole object’s boundary. Moreover,
the number of iterations can be expected to be distinctly
lower than for the whole object, since the intialization,
based on the object’s transformation, will typically be
better than that for the object as a whole. Thus, each
subfigure transformation will typically take a few tens
of seconds.
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We have also implemented a means of deforming
multiple objects in a way that the position of one
object’s implied boundary in another object’s figu-
ral coordinates allows rewarding its relationship (e.g.,
abutment) to that controlling object (Fletcher, 2002).
We need to continue to test this method for the segmen-
tation of multiple abutting objects and thus to make the
segmentation method applicable to whole sections of
the body. With that development our segmentations will
form a means of elastic registration between an atlas
and a patient’s target image for the whole imaged body
section. Both the multifigure object segmentation and
multiobject segmentation methods and their validation
will be reported in later papers.

A very pervasive improvement will lie in replacing
both the geometric typicality measures and the geom-
etry to image match measures by statistical (log prob-
ability) objective functions based on multiple training
images. We expect improved performance by the use
of a geometric typicality term that is based not sim-
ply on distances from a model but instead reflecting
normal variability in a training set, and a geometry to
image match term reflecting image intensity variations
relative to the geometric model; moreover, that would
make it unnecessary to interactively choose a weight
for the geometric typicality term relative to the model
to image match term. The fact that the geometry to
image match module already computes the template
correlations that are used in computing the dot prod-
uct between an eigenmode and the target image within
the masked region will make this step straightforward,
once the training process is developed. Another direc-
tion for future development is the use of mechanical ge-
ometric typicality measures in place of statistical ones
when the transformation is intrapatient rather than be-
tween an atlas model and a patient. Here the medial
sampling provides promise for strides in efficiency of
mechanical modeling.

Another matter for the future is the evaluation of
the usefulness of multiple levels of sampling at the
medial stages (3 and 4) of the segmentation. Coarse
spacing will produce efficient operation but will not
accommodate small radii of curvature relative to the
object width. The accommodation of patches requir-
ing these larger curvatures can be done efficiently at
the finer scale medial substages, once the larger scale
optimization has been accomplished. We will need to
study when smaller scale wrinkles should be accom-
modated at a medial substage and when they can be
better represented by boundary displacements.
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Notes

1. The reader unfamiliar with the literature on the mathematics of
medial loci can find the relevant definitions, overview, and refer-
ences in Pizer (2003) in this issue.

2. This sheet has both a boundary and singular points in its interior,
so in mathematical terminology it is a “stratified set”. We will use
the phrase “medial sheet” to refer to this stratified set.
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