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Abstract -- Object descriptions used for 3D segmentation 
by deformable models and for statistical characterization of 3D 
object classes benefit from having intrinsic correspondences over 
deformation of the objects or multiple instances in the same 
object class. These correspondences apply over a variety of 
spatial scale levels and consequently lead to efficient 
segmentation and probability distributions of geometry that are 
trainable with an achievable number of training instances. This 
paper describes a figural coordinate system provided by m-reps 
models and shows how such coordinates not only provide the 
required positional correspondences, but also are intuitive and 
provide orientational and metric correspondences. Examples are 
given for the segmentation of kidneys from CT and for the 
statistical characterization of schizophrenia and control classes of 
cerebral ventricles and of hippocampus pairs.  
 
 

I. INTRODUCTION 
 
Consider the kidney bean object. Describing the relation 
between one bean and another requires that the tip of one bean 
correspond to the tip of another, that the middle of the crest 
along the backbone of one bean correspond to that position on 
another, etc. Moreover, moving along the bean requires 
following the curve of the bean, giving an orientational 
correspondence at corresponding positions of the two beans, 
even if one is straighter than the other. The same is true in 
moving across the bean from the crest on the convex curve to 
the crest on the concave curve of the bean.  Said another way, 
we discuss kidney beans best in an intrinsic kidney bean 
coordinate system. In this coordinate system, one of the 
coordinates should progress from one end of the bean to the 
other. Another coordinate should progress from the convex 
crest to the concave crest. A third coordinate would progress 
from one of the flattish sides of the bean to the other. 

The same argument applies for the fleshy main part of the 
hand with the palm on one of its sides and the apparent blood 
vessels on the other side, but it applies also for each of the 
fingers, except that the fingers have the special property of 
being attached to the main part of the hand, and moving from 
the attachment end to a fingertip end provides one the 
intrinsic coordinate directions desired. That is, we require a 
uniform coordinate system for the whole hand, describing not 
only the six individual parts (“figures”) just discussed but also 
how we pass from one part to another in the attachment 
region. This coordinate system needs to apply to the inside of 
the hand, the surface of the hand, and the region near to and 
outside the hand. 

What we have described is handled mathematically via a 
medial representation, because it provides both the 
subdivision into parts and the crest-to-crest, end-to-end, and 
cross-figural coordinates that we have sketched. We refer to 

such an object description so represented as an m-rep.  The m-
rep for an object consists of a discrete collection of 
interrelated medial sheets, and we call the part of the object 
associated with a particular sheet a figure. We refer to the 
whole object-intrinsic coordinate system we are describing as 
the figural coordinate system of an object. From our point of 
view these medial sheets form a component of the object 
description that is primitive, i.e., not derived from other 
descriptors such as the boundary. The correspondences across 
two conformations of an object obtained by having the same 
figural coordinates (Fig. 2) are helpful to relate deformable 
models in segmentation and to designate homologous points 
in statistical geometric description of a class of objects. 
Because these intrinsic coordinate systems provide the 
homology on which such statistical descriptions of geometry 
of populations must depend and because sampling from the 
resulting populations of m-reps yields a generated object from 
which both the internal space and the boundary can be 
produced and locally described, these m-reps based 
coordinates provide an effective means of generative object 
modeling. 

The focus of this paper and its new material are the 
detailing of the figural coordinates provided by m-reps and 
evidence of the usefulness of the correspondences provided 
by these object-intrinsic coordinates. M-reps themselves have 
been described elsewhere [Pizer 2002, Fletcher 2002], and the 
particular applications in segmentation and statistical 
characterization that are given here have also been reported 
recently in other papers, though not in regard to providing 
evidence in regard to the usefulness of the intrinsic 
coordinates that they provide.  

In section II we will focus on intrinsic coordinates for 
single-figure objects, those that are represented with a single 
medial sheet. This representation will also apply for the 
individual figures making up multifigure objects. Section III 
will then focus on intrinsic coordinates for multifigure 
objects, with an emphasis on the region where one figure, a 
subfigure, blends into a parent figure. We will also there face 
the issue of the relationship of neighboring, unattached 
figures, such as adjacent fingers in a hand.   

Section IV will face the notion of multiscale coordinate 
systems. Such coordinates not only integrate, for example, the 
figural coordinate systems with the object coordinate system 
but also allow a coarse-to-fine succession of representations 
for a single figure as well as a fine scale (or set of scales) of 
representations of the boundary detail. In that section we will 
explain why a representation with many scale levels is 
necessary for both 3D segmentation by deformable models 
and statistical geometric characterization of 3D object classes. 
Section V will give example results from each of these classes 
of driving problem, with special focus on the usefulness of 



intrinsic correspondences in these problems. In deformable 
model segmentation the correspondence goes across 
deformation and affects both the geometric typicality term of 
the objective function being optimized in deformable model 
segmentation and the term measuring the match of the target 
image against model-relative templates. In statistical 
geometric characterization the correspondence forms the 
homology between instances of the population. Section VI 
will close the paper with the relation of our figural coordinate 
system to other intrinsic coordinate systems and other 
discussion and conclusions.  
 
II.  SINGLE-FIGURE INTRINSIC COORDINATES BASED 

ON M-REPS 
 

While m-reps have been described in detail elsewhere, they 
provide the foundation for the intrinsic coordinate system that 
is the main subject of this paper, so we briefly describe them 
here. An m-rep for a generic figure in our system is a 2-
manifold of medial atoms (Fig. 1), where an interior medial 
atom is a medial position at which two vectors (called port 
and starboard sails) of equal length r share a tail and where a 
mesh-edge medial atom in addition is equipped with a 
bisector vector of the two sails of length greater or equal to 
the common sail length. This medial representation implies 
(as opposed to being implied by) a boundary that is incident 
to and orthogonal to the sail tips for each sail and at the 
bisector vector tip. The locus of bisector tips for sheet-edge 
medial atoms forms the crest cycling the boundary of the 
figure. The two coordinates along and across the manifold 
provide the along-figural parametrization that is needed, and 
the along-sail directions provide the cross-figural coordinate.  
In the examples shown here the medial manifold is sampled 
into a quad-mesh, but the sampling issues will not be 
emphasized in this paper.  
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
Fig. 1.  Top: an m-rep for a hippocampus, viewed from two 
directions. Each ball with two line segment sails forms a medial 
atom. Shown are a quad-mesh of samples of the continuous 2-
manifold of medial atoms. Center: an internal medial atom and a 
sheet-edge medial atom, each with their implied boundaries. Bottom: 
The boundary implied by the m-rep, viewed from the two directions. 

 
We will denote by (u,v) the coordinates along the medial 
manifold. These coordinates can be visualized as moving on 
the positional locus forming the skeleton of the figure. For 
single figures we will arbitrarily visualize v as describing the 
most elongated direction of the manifold, and for subfigures 
we will let v describe the direction away from the end of the 
manifold that is attached to the parent figure. Realizing that 
the crest is geometrically special, we will denote by t the 
coordinate that describes the side of the figure corresponding 
to either the starboard sails (t=+1) or the port sails (t=-1) and 
that takes one around the crest (at t=0) by passing from t=-1 
continuously to t=+1. The final coordinate, measuring 
distance along the sail directions will be denoted by τ.  In 
order to allow the inside of the figure to be easily 
distinguished from the outside, we will place the origin for τ 
to be at the medially implied figural boundary. That is, τ<0 in 
the interior of the figure, and τ>0 in the exterior of the figure. 
Points on the medially implied boundary, where τ=0, are 
described the coordinates (u,v,t). Each boundary point thereby 
carries a normal in the direction of the sail abutting there, two 
linearly independent directions in the tangent plane to the 
boundary corresponding to moving in the figural u and v 
coordinates respectively, and a ruler r(u,v). 

For the (u,v,t,τ) coordinate system to be locally useful for 
shape description and thus be locally similarity transform 
invariant, all distances must scale proportionally. Since the 
medial width r is the basic distance for a medial atom, the u,v 
coordinate pair must be set up so that geodesic distances 
along the skeleton are in r-proportional units. Similarly, 
distances along the sails, i.e., along τ, must be in r-
proportional units. This leads to the natural situation of τ=-1 
at the skeleton and of |τ| in the interior measuring the 
proportion of the way in from the medially implied boundary 
to the skeleton. 

          
Fig. 2. Medially implied correspondences between a typical figure 
and a deformed figure for figural boundary positions (leftmost), for 
positions interior and exterior to the boundary (center), and for the 
boundary collar (right), which is particularly relevant for intensity 
correspondences between a template image and a target image. 
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M-reps provide orientation correspondence as well as 
positional and metric correspondence. By metric 
correspondence we mean that at corresponding positions in 
two instances of an object there is a homology between 
distances from that point in one object with distances from the 
corresponding point in the other object.  By orientation 
correspondence we mean the homology at the corresponding 
positions between directions from that point in one object and 
directions from the corresponding point. For example, the 
direction along one kidney bean from one point inside the 
bean should correspond to the direction along another kidney 
bean at the corresponding internal position. Along the medial 
sheet, and by implication at all locations (u,v,t,τ) with the 
same (u,v,t), this correspondence is provided by the ∇r 
direction, which bisects the sails, as well as by the orthogonal 
direction on the medial locus tangent plane and the sail 
direction on the side of the medial sheet given by t. 
 
 
 
 
 
 
 
 
 
 
Fig.3. Multiscale levels for the cerebral ventricles. Left, all colored 
items: the object complex level, describing two related  lateral 
ventricles.   At the object level, a right lateral ventricle is made up of 
4 separately colored figures. Those figures are the temporal, 
occipital, and lateral horns and the atrium of the ventricle.  Right: the 
figural section level, describing a through section of a figure, here 
the lateral horn. The triangle in the left figure is at the boundary 
level, describing detail on the boundary via tiling. 
 

Besides providing the needed correspondences, the 
figural coordinate system has the following advantages for 
representing objects involved in deformable model 
segmentation or shape characterization. 
1. Each medial atom represents an interior section of a 

figure, leading to a special capability for deformation of 
the interior. 

2. In medicine, our main application, since figures typically 
have anatomic names and each medial atom in the m-rep 
corresponds to an interior slab of the figure bounded by 
its immediately neighboring medial atoms, the geometric 
transformations involved in the deformation can be 
described with medical relevance and with appropriate 
locality. This property of there being intuitive, already 
named figures also holds in other applications. 

3. An m-rep lends itself directly to representation at 
multiple scale levels. There are additional important scale 
levels besides those already mentioned (object, figure, 
boundary). For objects consisting of more than one figure 
or for sets of objects [Fletcher 2000], situations not 
described in this paper, there are the larger scale multi-
object and object scale levels. Also described elsewhere 
[Yushkevich 2001], there are opportunities for multiple 
levels of meshing of each figure, with each mesh element 

corresponding to a figural section, i.e., a through-section 
of the figure capturing the region centered at a particular 
mesh medial atom and bounded by its neighboring mesh 
atoms (see Fig 3). 

 
III. INTRINSIC COORDINATES IN MULTIFIGURE 

OBJECTS 
 

Positions near or inside the figures making up a multifigure 
object are parameterized effectively in an object-intrinsic 
fashion by a label indicating which figure is the near one and 
the (u,v,t,τ) coordinates relative to that figure. In the region 
where a subfigure joins a parent figure, a different solution is 
necessary.  Whereas Blum (1978) described subfigures via a 
branching skeleton, the point of view that we have taken, in 
which a medial atom is a primitive that covers an infinitesimal 
section of the object interior, leads to seeing a subfigure as 
riding on the medially implied boundary of the parent figure. 
In this view every end coordinate of the subfigure that is on 
this “hinge” with the parent figure can be known by the 
figural coordinate (u,v,t) of the parent’s boundary point at 
which it is located and the orientation of the parent’s figural 
coordinate system there. The effect is that as the parent figure 
deforms, the location and normal of the point with the hinge 
(u,v,t) changes and so correspondingly does the atom at the 
subfigure end, and as a result the whole subfigure can 
translate, rotate, scale, and deform accordingly. 

But the subfigure will frequently meet the parent figure 
along a smooth boundary rather than forming an intersection 
with a sharp corner (see Fig. 4).  In this blending region, 
including parts of space nearest to this blend region we need a 
new coordinate system. Two of these coordinates, namely the 
u and t coordinates of the subfigure, will take us around the 
subfigure. Another coordinate, which we denote by w, is 
needed to pass from the subfigure to the parent figure. A final 
coordinate, again τ, is needed to measure an extension of the 
idea of r-proportional distance into the interfigural blend 
region. Thus the figural coordinate system in the region of the 
interfigural blend is  (u,w,t,τ), where u and t are the same 
object intrinsic coordinates as that of subfigure and w and τ 
have to appropriately blend the coordinates of the parent 
figure and the subfigure. 
 
 
 
 
 
 
 
 
 
 
Fig.4. Left: the vertical subfigure has a sharp corner with its parent 
figure (the smoothness parameter s=0). Right: the vertical figure has 
a smooth transition into its parent figure (s>0). 
 

The coordinate w needs to measure the comparative 
distance between the parent figure, which we will call figure 
1, and the subfigure, which we will call figure 2. Since τ 1  

w 



measures the figural distance to the parent figure and τ 2  
measures the figural distance to the subfigure, w should be 
proportional to τ 2  - τ 1 . i.e., w = (τ 2  - τ 1)/T. Let the 
normalizing distance T be the figural distance at which we 
switch from a blended hinge-region distance τ 12  to the 
ordinary figural distance τ 1  or τ 2, respectively. Thus the 
blend region is defined as |w|<1, with w=-1 on the subfigure 
side (at the subfigure boundary τ 1  = T and τ 2  = 0) and w=+1 
on the parent figure side (at the parent figure boundary τ 1  = 0 
and τ 2  = T). The blend must be computed along w from    
(u,-1,t,τ 2) to (u,+1,t,τ 1) for each u,t pair. A parameter s can 
control the smoothness of the transition. 

We have achieved this blending and the computation of 
figural distances in two alternative ways: by interpolating 
blended distance τ 12  from the values of τ 1 and τ 2 and then 
defining the boundary implicitly as the zero of this distance 
[Pizer 2002], and by using an interpolating variant of 
subdivision surfaces to connect the discrete boundary tiles 
formed from the m-rep of the individual figures [Thall 2002].  

Points inside the figure and outside it but inside the 
caustic (focal) surface can also be put into correspondence in 
a figurally relative manner. Correspondences outside the 
caustic surface have also been defined via external medial loci 
and thus between separated object, between separated 
subfigures in an object, or between distant parts of a figure 
with concave boundary [Crouch 2001]. Such external 
correspondences can also involve measuring distances in a 
way reflecting convexification of the boundary by scale-based 
averaging in proportion to the point’s distance from that 
boundary. However, these issues are beyond the scope of this 
paper. These external correspondences can be used to describe 
the relation of the boundary of one figure with another and 
thus to prevent penetration between separated figures during 
deformation, as well as to separately measure the distance 
between the boundary of one figure and another and the 
distance of sliding of one object along another [Fletcher 
2002]. 
 
IV. INTRINSIC OBJECT COORDINATES AT MULTIPLE 

SCALE LEVELS 
 

We desire successful segmentation performance that is linear 
in the number of the smallest scale geometric primitives, for 
example the boundary tiles defining the segmented object’s 
surface or the voxels making up the object. We desire 
statistical description of object geometry that can be stably 
trained with a limited (e.g., some tens) of training instances. A 
description with multiple scale levels can achieve these 
objectives. Multiscale descriptions do so by representing 
geometric primitives at one scale level with neighbor 
relationships appropriate for that scale level and thus at 
distances roughly proportional to the scale and in relation to 
their parent geometric primitives at the next larger scale. 
Relationships between primitives at one scale and nearby ones 
at adjacent scales are also needed, and typically the 
relationship is taken to represent residues describing the 
description at one scale and at the collection of larger scales 
[Yushkevich 2001]. That is, figural coordinates undergo 

residue offsets (diffeomorphisms) from their values at the 
next larger scale. 

In our method the scale levels are object-intrinsic. That 
is, the levels are [1] the object complex scale level, [2] the 
object scale level, [3, 3a, 3b, …] the figural scale levels, [4, 
4a, 4b, …] the medial atom or figural section scale levels, [5, 
5a, 5b, …] the boundary atom scale levels, and [6] the voxel 
scale level. At all level numbers < 5 the objects are 
represented by medial atoms, at level 5, 5a, etc. these are 
augmented by boundary atoms, and at level 6 places in space 
are represented by a field of offsets specifying a further 
diffeomorhphism.    

Figural coordinates are defined with respect to a scale 
level and are produced by successive residues from the largest 
scale level to the scale level in question. 
 
V. INTRINSIC COORDINATES IN SEGMENTATION BY 
DEFORMABLE MODELS AND STATISTICAL OBJECT 

CLASS CHARACTERIZATION 
 

Deformable model segmentation proceeds by a series of 
stages producing deformations of a geometric model to 
optimize an objective function. At each stage the objective 
function reflects the match of the model to the target image, 
and the algorithm involves either constraints on the 
deformation or a term in the objective function measuring the 
geometric typicality of the deformed object. Measuring both 
the model to image match and geometric typicality requires 
positional correspondences that are well provided by intrinsic 
coordinates. 

Statistical object class characterization produces a 
description of the geometry of the population of objects in 
each class and the differences between classes. For example, 
the differences in the shape of the hippocampus pair between 
schizophrenic and control classes can give indications of the 
biological changes associated with the development of 
schizophrenia. Describing the geometric properties of the 
population of objects in a class requires correspondence of 
positions between objects in the same class and possibly 
between objects in a single person, e.g., between the left and 
right hippocampi. Describing the interclass differences 
requires correspondence of positions of objects in different 
classes. These correspondences are well provided by equality 
of intrinsic coordinate values. 

These two uses of intrinsic coordinates are described 
below, in sections V.A and V.B, respectively, with 
illustrations of the success of the resulting methods. 
 
A. Segmentation by deformable m-rep models via intrinsic 

coordinates 
 

We summarize the deformable m-rep 3D segmentation 
method, described in detail elsewhere [Pizer 2002]. In doing 
so, we emphasize the use of the object-intrinsic coordinates. 

 The deformable m-reps method operates from large to 
small scale levels, at each level k deforming the represented 
object m by optimizing an objective function Fk(m, Itarget) 
over the set of geometric transformations available at that 
scale level. As with many deformable model based 



segmentation methods, each objective function Fk is the sum 
of two terms, one measuring the geometric typicality of m 
and the other measuring the match of m to the target image 
Itarget. At each stage of the algorithm the geometric typicality 
is the negative of the deviation from the deformed model that 
is the result of the previous stage. With figural intrinsic 
coordinates this can be measured for any position with figural 
coordinates (u,v,t,τ) (or (u,w,t,τ) for interfigural blend 
regions) by the negative of the Euclidean distance between 
that point in the model and that point in the deformed model 
(Fig.2), in units of the local ruler, i.e, scaled by the r value 
associated with the model point (u,v,t,τ). In our method the 
square of this distance is averaged over the boundary points 
(i.e., τ =0) of the figure, group of figures, atom-related figural 
section, or boundary section associated with the geometric 
primitive being optimized. This mean is measured between 
the version of the deformed model produced at the next larger 
level of scale and the newly deformed candidate m. 

As is common, the match of m to the target image is 
measured in a region near the object boundary that we call a 
boundary collar (Fig. 2). m is matched to Itarget at collar 
positions with the same intrinsic coordinates (u,v,t,τ) (or 
(u,w,t,τ) for interfigural blend regions), before and after 
deformation of the model into m. The template image is 
defined on the model. The template can be an ideal image, 
e.g., defined by directional derivatives of a Gaussian, or it can 
be the training image from which the model was built, or it 
can be based on the statistics of a set of training images from 
which the model was built. In all three cases the template 
width varies with collar boundary position in proportion to the 
associated r, and in the latter two cases the template benefits 
from having a different functional profile at different 
boundary positions. In our method the template to target 
image match is computed via normalized correlation with an 
equally spaced sampling of τ  between –k and +k (k = 0.33 is 
a typical value), but other measures of template match, such 
as normalized mutual information are possible [Willis 2001]. 
We have implemented such a training image template for 
collars of half-width r/3.  

The algorithm presently begins with a manual placement 
the model in the 3D image, thereby choosing a similarity 
transform. The initial models m0 used in this work (Figs. 1 & 
5) were developed by automatic analysis of the geometry of a 
training set of hand segmented instances of the object over a 
variety of patients [Styner 2001a] or by manual construction 
on a single training image according to set of rules determined 
by the mathematics of medial geometry [Damon 2002]. 

We have tested this method for the extraction of three 
anatomic objects well modeled by a single figure: the lateral 
cerebral ventricle, the kidney parenchyma + pelvis, and the 
hippocampus.  Results of a kidney segmentation are 
visualized in Fig. 5. For 24 kidneys we were able to extract 
the kidney with an median accuracy of boundary position of < 
1 voxel as compared to human manual segmentations. More 
results can be found on the webpage 
midag.cs.unc.edu/projects/defmreps. We ascribe the good 
quality of these results to three factors: 1) the multiple scale 
level approach with geometric typicality at each stage 
depending on the result of the previous stage, 2) the ability of 

the m-rep representation to provide object-intrinsic 
correspondences at the figural and figural section stages, 3) 
the availability of the training intensity template for the more 
difficult cases. 
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Fig.5. Kidney model and segmentation results from CT after 
m-rep deformation followed by boundary displacement  using 
a single figure model. The three curves on the rendered 
kidney boundary show the location of the slices shown in the 
top row below (white curves are the intersection of the 
segmentation with the slice). The slices in the lower row 
below are the coronal and sagittal slices through the kidney. 
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Thus, we take the success of this segmentation method as 

evidence for the object-intrinsic correspondences on which 
both its geometric typicality measurement and its geometry-
to-image match measurement are based. Moreover, these 
correspondences will also allow the improvement of the 
method by replacing the present measures by Bayesian, 
statistical log probability measures, founded on statistical 
characterizations that depend on the object-intrinsic 

http://www.cs.unc.edu/Research/Image/MIDAG/defmreps


homology. Such statistical characterization of geometry is 
discussed in section B, which follows immediately. 
 
B. Statistical object class characterization via intrinsic 

coordinates 
 

In-vivo imaging studies of brain structures have 
examined disorders including neurodegenerative diseases 
and/or disorders of abnormal neurodevelopment. Driving 
clinical applications in our lab are neuroimaging studies of 
subcortical structures in schizophrenia, autism, and epilepsy. 
Structural imaging studies have so far most often focused on 
volumetric assessment of gross brain structures. With 
increasing evidence for structural changes in small subregions 
and parts of structures and the availability of improved three-
dimensional imaging techniques, there is a need for providing 
new image analysis techniques suitable for these tasks. For 
example, earlier studies of whole ventricular volumes have to 
be replaced by subfigural shape studies of parts of ventricles, 
and there is even evidence that regional shape analysis of the 
hippocampus structure could differentiate schizophrenics 
from controls whereas volume differences are not significant. 
Improved global and local structure characterization might 
help to explain pathological changes in neurodevelopment / 
neurodegeneration in terms of their biological meaning. 

The specific applications for which we give results below 
are the detection of group differences of amygdala-
hippocampal shapes in schizophrenia and the analysis of 
ventricular shape similarity in a mono/dizygotic twin study. 
These support our hypothesis that shape captures information 
on structural similarity or difference that is not accessible by 
volume analysis and that the intrinsic coordinates provided by 
m-reps provide the sensitivity, locality, and intuitiveness of 
results needed by neuroscientists. 

Statistical studies of the shape of anatomical structures 
requires models fitted for statistical analysis. That is, the 
geometric models themselves must be built to be suitable for 
the description of whole populations of example structures. 
The method devised by Styner is described in [Styner 2001b]. 
Beginning with experts’ segmentation of dozens of training 
images, the pipeline involves intermediate spherical harmonic 
(SPHARM) descriptions [Brechbühler 1995, Székely 1996, 
Kelemen 1999] and point distribution models  [Cootes 1995, 
Styner 2001b] as well as Voronoi medial axes [Naef 1996]. 
The pipeline determines the common topology of the skeleton 
that represents each individual shape up to a predefined 
approximation error and then the m-rep grid sampling that 
guarantees meeting a threshold of boundary location error for 
all objects in the statistical shape class and for a rather dense 
sample of the (u,v,t) intrinsic coordinates of the boundary. 
The medial atoms of the m-rep become the random variables 
for the statistical study to follow. 

Shape analysis has so far been applied to several clinical 
studies with several hundreds of anatomical objects. In all of 
these studies, anatomical objects for each group (e.g., healthy 
controls and schizophrenics) were segmented by automatic, 
model-based SPHARM segmentation [Kelemen 1999] or by 
manual expert's contour drawing. The m-rep models for each 
brain shape were calculated using the described automatic 
model-building framework, where global shape alignment is 

solved by Procrustes fit of homologous surfaces [Styner 
2001a,b, 2002, Gerig 2001a]. Deformable m-rep segmentation 
for various brain structures will soon replace the time-
consuming and tedious manual segmentation step. Right brain 
objects were flipped at the symmetry plane for joint analysis 
or analysis of asymmetry. The m-rep model fitting results in a 
homology of mesh medial atoms between left/right pairs but 
also among all shapes, which is used for both integrated 
global shape comparison and also local analysis.  
 
In the statistical analysis, radius and m-rep atom location was 
used to calculate local and global measures of radius 
difference (mean absolute difference of radii) and medial 
mesh deformation (Euclidean distance between corresponding 
mesh nodes’ medial positions). These shape difference 
measures were calculated for pairs in each group or as 
differences from the overall average shapes. Finally, we used 
standard statistical mean difference tests to determine 
significance of global and local shape differences. 
 
A.1. Amygdala-hippocampal shape asymmetry in 
schizophrenia 
 

In a collaborative study with the Brigham and Women's 
Hospital, Harvard [Shenton 2002], we studied hippocampal 
shape changes and asymmetry as a group comparison between 
healthy controls (N=15) and schizophrenics (N=15). Earlier 
findings demonstrated significant volume asymmetry of the 
hippocampus but not the amygdala hippocampal complex. 
Our results (Fig. 6) showed that neither shape asymmetry nor 
volume asymmetry was significant, but in the joint analysis 
using multivariate statistics [Gerig 2001b] a shape asymmetry 
was found. The major asymmetry was in the hippocampal tail. 
M-rep analysis nicely showed the type of shape difference, 
which was increased bending of the tail of the right 
hippocampal shape but not change of local width. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Average amygdala-hippocampus shape (left) and M-rep 
model. The size of the balls and their color represent the local width.

A.2. Lateral ventricle shape in twin studies 
 
     Imaging studies of twins are becoming increasingly 
important to study the genetic factor of shape variability in 
healthy control populations but also to understand disease 
through identical twins discordant for disease (one twin 
subject diagnosed with disease, the paired twin not diagnosed 
but considered as a subject at risk). In close collaboration with 
a research group at NIMH (Daniel Weinberger), we 



segmented brain images of 40 twin pair datasets, with 20 
identical healthy controls, 20 non-identical healthy controls, 
and 20 identical subjects discordant for schizophrenia. Lateral 
ventricles were segmented by manually editing tissue 
classification maps, and m-rep representations were obtained 
using the procedure as outlined above [Gerig 2001a, Styner 
2001a,b, 2002]. Pairwise shape differences (bottom Fig. 7) of 
left and right ventricles were measured for identical twin 
pairs, non-identical twin pairs, nonrelated subjects, and the 
identical discordant pairs. M-rep shape analysis results in 
integrated and local measures of absolute radius difference 
(growth parameter) and of mesh deformation (bending). 
Results of the complete study are not yet published, but early 
tests show a significantly higher shape similarity of identical 
twin pairs in comparison to non-identical pairs, suggesting a 
genetic influence on the ventricle shape. However, this 
similarity was only significant after shapes were uniformly 
scaled by individual volumes, which raises important 
questions for future studies in regard to a task-dependent 
choice of size normalization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A.3. Hippocampal shape change in schizophrenia 
 
      The hippocampus is a structure of major interest in many 
brain diseases and mental illness, e.g. epilepsy, Alzheimer's 
disease, and schizophrenia. Current studies redirect the focus 
from volumetric measurements to localized assessment of 
hippocampal shape changes [Csernansky 1998]. In a most 
recent clinical study at UNC, we segmented the hippocampal 
structure in a control population (N=30) and a schizophrenic 
population undergoing different type of drug treat-met 
(N=60). M-reps of the 90 left and right hippocampal shapes 
were obtained using the procedure outlined above. Statistical 

group tests (Fig. 8) were calculated on integrated whole 
structure measurements and on local measurements at each 
medial atom for both difference in width (growth) and 
difference in mesh location (bending). Early results indicate 
that the major shape effect is found in the bending of 
hippocampal tail but not a width difference in the same 
region. This finding underlines the increased power of the m-
rep representation versus conventional surface description of 
shape changes, as shape changes can be expressed by a 
quantitative, intuitive description rather than 3D color 
graphics representation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8. Shape analysis of hippocampus structure in a control / 
schizophrenics study. Left: Surface display of the difference between 
group mean shapes with color-coded regions of major change (red: 
outwards, blue: inwards). Right: Local statistical analysis of m-rep 
representations presenting significant locations of grid deformation. 
The locations of significance difference are shown as red balls. 

      The usefulness and success of these studies requiring 
statistical characterization of populations of objects and 
discrimination of the populations by their geometry depend on 
the intrinsic coordinates given by m-reps. They thus provide 
further evidence for the usefulness of these particular object-
intrinsic coordinates. 

 
VI. DISCUSSION AND FUTURE PLANS 

 
A popular method for finding correspondence between 
anatomical images uses landmark-based transformations, 
computed from groups of manually chosen landmarks that 
have been statistically analyzed [Dryden 1998, Luo 1999]. 
These methods operate at a large scale only and provide 
global shape information. 

Fig. 7.  Shape comparison of ventricle shape in twin pairs: Top 
view of lateral ventricles (left), side views of right ventricles of 
twin A and twin B (middle), and difference of right ventricles 
between twin A and B. Width differences at homologous m-rep 
atom locations are shown with spheres of varying radius and 
clearly show the major difference in the atrium region of 
ventricles. 

Another popular method for finding correspondence 
between anatomical images uses a registration transformation 
that maps the underlying coordinate system of an atlas image 
to the set of images under study to produce a diffeomorphic 
transformation h(x) mapping the coordinate systems of the 
different images, i.e., a correspondence [Yuille 1991, 
Christensen 1997, Joshi 2000]. The transformation is 
computed via an energy minimization with the energy being a 
sum of an image similarity measure and a regularization term, 
which constrains the transformation to be diffeomorphic. The 
regularization energetic in form of differential operator norms 
are usually motivated be continuum mechanical models. In 
this framework the underlying space is modeled either as 
elastic or a fluid medium. Although these methods provide a 
correspondence, they are not based on the intrinsic geometry 
of the constituent objects.  One of the most promising 



extensions suggested to the registration methods is to derive 
the regularization energetics from a model-based statistical 
analysis of a sample set of registration maps [Grenander 
1998].  

Object boundary points have provided a geometric means 
for producing correspondences to be used to obtain statistics 
of geometry. These diffeomorphisms are provided by global 
analysis of the boundary, e.g., via  Active Shape Models via 
point distribution representations [Cootes 1995, Wang 1998], 
via spherical harmonics [Kelemen 1999], and via meshes 
[Pentland 1991, Martin 1998, Delingette 1999].  

M-reps also provide a geometric means for producing 
correspondences, but unlike boundary-based methods they 
give advantages of locality and a natural multiscale sequence, 
and they give correspondences in the whole interior and 
nearby exterior of an object and not just on the boundary. 
Moreover, they give correspondences in orientation and in a 
distance metric across instances of an object. 

Among the limitations of medially based coordinate 
systems is their sensitivity in the case that the object is nearly 
circularly symmetric in one or two of the medial dimensions. 
That is, there are problems with nearly tubular structures, with 
near-pancakes, and with near-spheres. This is an inherent 
problem of objects with symmetries, not a problem related to 
a particular means of representation. 

We are working on unifying the m-rep based geometrical 
correspondence with the correspondences of a variety of 
geometric features learned through statistics. These features 
can result from geometric analysis in figural coordinates, e.g., 
of boundary bumps and nearby objects’ crests, and they can 
be defined using the energetic regularizing the registration 
transformation. The resulting small scale variations in 
correspondence can be represented by diffeomorphisms of the 
(u,v) figural coordinates. 
 
A. Future plans for segmentation 
 

The deformable m-reps method described here is by no 
means fully developed. The metrics, the segmentation 
algorithm, and the visualizations have already been extended 
to deal with objects made up of multiple attached figures 
which must be kept in the correct geometric relations as they 
deform. Examples are the cerebral ventricle, the vertebra, and 
the kidney subdivided into parenchyma and renal pelvis. 
Extension has also been made to deal with multiple 
nonoverlapping figures which must be kept in the right 
geometric relations and to remain noninterpenetrating. 
Examples are the pubic bones, bladder, prostate, and rectum 
in the male pelvis and the full set of cerebral ventricles. Early, 
incomplete trials of the extended versions of the code suggest 
that m-reps have particular advantages also with multiple 
attached figures and multiple nonoverlapping figures 
[Fletcher 2000]. 

The replacement of the geometric distance measures for 
geometric typicality and average intensity correlation for the 
geometry-to-image match measure by log probability 
measures [Cootes 1999] has two important advantages. First, 
the probabilities reflect the modes of variability in the 
respective population. Second, the arbitrary, manually 
selected weight between geometric typicality and geometry to 

image match is no longer necessary. We have begun work on 
methods for measuring these probabilities from training sets, 
at each of the relevant scale levels based on a Markov random 
field model, and for using them in the model deformation 
process. 
  
B.  Future plans for shape studies 
 
      Current studies clearly show a need for studying groups of 
anatomical object in combination rather than describing their 
shapes independently. Multi-object extension of the m-rep 
method will be applied for the hippocampus/ amygdala and 
caudate/ventricle objects as part of the prefrontal cortical-
hippocampal network. The increased sensitivity of the new 
tools has the potential of detecting brain structure differences 
between different forms of brain disease (neurodevelopmental 
and neurodegenerative) and even subtle changes within 
patients over the course of their illness. This will reveal a new 
insight into shape abnormalities of brain structures specific to 
schizophrenia, via exploring shape variations, anomalies and 
asymmetries in well-defined patient and control groups. 
 
C.    Conclusion 
 
We have argued and provided evidence that image analysis, 
especially image analysis via generative statistical models, 
depends strongly on good correspondences between positions, 
orientations, and metrics across members of the object 
population. We have found that the correspondences provided 
via the object representations given by m-reps have peculiar 
advantages in this regard and lead to successes in 3D object 
segmentation and in statistical discriminations of geometric 
properties between populations of 3D objects. 
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