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Abstract

Gradient domain processing remains a particularly computationally expensive technique even for relatively small
images. When images become massive in size, giga or terapixel, these problems become particularly trouble-
some and the best serial techniques take on the order of hours or days to compute a solution. In this paper,
we provide a simple framework for the parallel gradient domain processing. Specifically, we provide a parallel
out-of-core method for the seamless stitching of gigapixel panoramas in a parallel MPI environment. Unlike ex-
isting techniques, the framework provides both a straightforward implementation, maintains strict control over
the required/allocated resources, and makes no assumptions on the speed of convergence to an acceptable im-
age. Furthermore, the approach shows good weak/strong scaling from several to hundreds of cores and runs on a

variety of hardware.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics 1.3.3 [Computer Graphics]: Picture/Image Generation—

1. Introduction

Recently, cheap high-resolution cameras and inexpensive
robots to automatically capture image collections [Gigin],
have become increasingly accessible. As a result, mosaics
of hundreds of individual images are readily available on-
line captured by professionals and nonprofessionals alike.
Larger images, many gigapixels in size, are freely dis-
tributed online such as satellite imagery from the United
States Geological Survey (USGS) [USGin] and planetary
images from the High Resolution Imaging Science Exper-
iment (HiRISE) [HiRin]. Furthermore, all indications point
to a continuing increase in the interest toward such large im-
ages. Thus, research into processing and handling of these
large datasets is necessary as the size of current images al-
ready stresses the capabilities of modern methods.

Images acquired with inexpensive robots and consumer
cameras pose an interesting challenge for the image process-
ing community. Often, panorama robots can take seconds
between each photograph, causing gigapixel-sized images to
be taken over the course of hours. Due to this delay, images
can vary significantly in lighting conditions and/or exposure
and when registered can form an unappealing patchwork.
Images acquired by air or satellite also suffer from an ex-
treme version of this problem, where the time of acquisition
can vary from hours to days for a single composite. Creat-
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ing a single seamless image from this mosaic has been the
subject of a large body of work, for which gradient-domain
techniques currently provide the best solution.

Two methods exist to operate on the gradient-domain of
massive images: the streaming multigrid [KHO8] and pro-
gressive Poisson [SSJ*10] techniques. Although efficient in
their implementations, each can still take on the order of
hours to compute the solution for a gigapixel image on a sin-
gle system. One option to improve these timings is to see if
similar schemes can be designed to run in a distributed envi-
ronment. Consequently, there has been recent work to extend
the multigrid solver [KSH10] to a parallel implementation,
reducing the time to compute a gigapixel solution to mere
minutes for the first time. However, this approach is primar-
ily a proof-of-concept since It does not supply the classic
tests of scalability (weak or strong) nor is it tested signifi-
cantly. The implementation was optimized for a single dis-
tributed system and therefore is unlikely to port well to other
environments. Furthermore, like many out-of-core methods,
proliferation of disk storage requirements is a major draw-
back. For example, testing was only possible with a full 16-
node cluster for some of the paper’s test data due to exces-
sive storage demands. Finally, the technique assumes a small
number of predetermined iterations is sufficient to achieve a
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Figure 1: A comparison of a full analytical solution (left),
the progressive Poisson [SSJ*10] (middle), the streaming
multigrid method [KHOS] (right) on a portion of the Fall
panorama, 21201 x 24001 pixels, 485-megapixel. Note how
the progressive Poisson method’s solution is almost indistin-
guishable from the full analytical solution.

solution which may not always be the case as shown in Fig-
ure 1 (right).

In this paper we introduce a framework for paral-
lel gradient-domain processing inspired by Summa et
al.’s [SST* 10] progressive Poisson solver. Although an inher-
ently sequential, windowed, out-of-core scheme, we show
how a novel reformulation can provide an efficient paral-
lel distributed algorithm. This new framework has both a
straightforward implementation and shows both strong and
weak parallel scalability. When implemented in standard
MPI (Message Passing Interface), the same code base ports
well to multiple distributed systems. The parallel progres-
sive Poisson solver also inherits all of the benefits from the
previous work. In particular, it allows strict control over re-
quired resources which can be especially important when
using mixed hardware or modestly provisioned distributed
systems. It also makes no assumptions about the number of
iterations necessary for an adequate solution. In the follow-
ing sections, we will detail the algorithm and its MPI imple-
mentation as well as show the method both weak and strong
scaling from few to many cores on multiple distributed sys-
tems.

2. Related Work

Poisson Image Processing. Gradient-based methods,
though computationally expensive, have become a funda-
mental part of any advanced image editing application.
Given a guiding gradient field constructed from one or mul-
tiple source images, these methods attempt to find a smooth
image that is closest in a least squares sense to this guid-
ing gradient. This concept has been adapted for seamless
cloning [PGBO03], drag-and-drop pasting [JSTS06] as well as
matting [SJTS04]. Furthermore, gradient-based techniques
can reduce the range of HDR (High Dynamic Range) images
for display on standard monitors [FLWO02] or hide the seams
in panoramas [PGB03, LZPW04, ADA*04, KH08, KSH10].
Other applications include detecting lighting [Hor74] or
shapes from images [WeiOl], shadow removal [FHDO02]

or reflections [ARNLOS5], and artistic editing in the gra-
dient domain [MPO8]. An alternative to gradient based
methods using Mean-Value Coordinates (MVC) has been
introduced to smoothly interpolate the boundary difference
between images in order to mimic Dirichlet boundary
conditions [FHL*09]. Currently MVC has not been shown
to extend well to distributed systems for applications such as
panorama stitching due to the dependency between solved
images and their unsolved neighbors.

Poisson Solution. Gradient based image processing typi-
cally requires the solution to a 2D Poisson problem. Com-
puting the solution to Poisson equations efficiently, in paral-
lel, or on distributed systems has been the focus of a large
body of work; therefore we only offer a cursory review in
this paper. Methods exist to find a direct Poisson solution us-
ing Fast Fourier Transforms (FFT) [Hoc65,ACR05,ARCO06,
MPO8]. FFT methods are inherently global requiring a two
full image transformations which need special formulations
for parallel computation. These methods have not yet been
shown to work well out-of-core or in parallel for gradient
domain image processing when compared to state-of-the-art
techniques. Often the Poisson problem is simplified by dis-
cretization into a large linear system whose dimension is typ-
ically the number of pixels in an image. Methods exist to find
a direct solution to this linear system. We refer the reader to
Dorr [Dor70] who provides an extensive review on direct
methods and Heath et al. [HNP91] who provide a survey
on parallel algorithms. Often, especially in distributed sys-
tems, it is simpler to implement an iterative method to find
a solution. Iterative Krylov subspace methods, such as con-
jugate gradient, are often used due to their fast convergence.
However for larger linear systems, memory consumption is
a limiting factor and iterative methods such as Successive
Over-Relaxation (SOR) [Axe94] are preferred.

If accuracy is not crucial, a coarse approximation to the
Poisson solution may be sufficient to achieve the desired re-
sult. Extending a coarse solution to finer resolutions using
Bilateral upsampling [KCLUO7] has been shown to produce
good results for applications such as tonemapping. Such
methods have not yet been shown to handle applications
such as panorama stitching where the solution is typically
not smooth at the seams between images.

Often multigrid methods are used to aid the convergence
of an iterative solver. These techniques include precondition-
ers [GCO95, Sze08] and multigrid solvers [Bra77, BHMOO].
There exist different variants of multigrid algorithms using
either adaptive [BC89, KBH06, BKBHO07, Aga07, Ric08] or
non-adaptive meshes [Kaz05,KH08,KSH10,SSJ*10]. There
has been a significant amount of work in distributed multi-
grid methods and we refer the reader to [CFH*06] for a sur-
vey of current methods.

Recently, it has been shown that combining upsampling
and the coarse-to-fine half of a multigrid cycle results in
high quality results for imaging [SSJ*10]. In this paper, it
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was shown that an initial coarse solution, when upsampled
and used as the initialization of an iterative solver, produces
results visually indistinguishable from a direct solution. See
Figure 1 (middle) for an example.

Out-of-Core. Toledo [Tol99] provides a survey of general
out-of-core algorithms for linear systems. Most algorithms
surveyed assume that at least the solution can be kept in main
memory, though this is rarely the case for large images. For
out-of-core processing of large images, the streaming multi-
grid method of Kazhdan and Hoppe [KHOS8] and the progres-
sive Poisson method [SSJ*10] have so far provided the only
solutions. Recently, streaming multigrid has been extended
to a distributed environment [KSH10] and has reduced the
time to process gigapixel images from hours to minutes. Out-
of-core methods often achieve a low memory footprint at
the cost of significant disk storage requirements. For exam-
ple, the multigrid method [KHO8] requires auxiliary storage
often an order of magnitude greater than the input size, al-
most half of which is due to gradient storage. The distributed
multigrid requires 16 bytes/pixel of disk space in temporary
storage for the solver as well as 24 bytes/pixel to store the so-
lution and gradient constraints. For [KSH10]’s terapixel ex-
ample, the method had a minimum requirement of 16 nodes
in order to accommodate the needed disk space for fast lo-
cal caching. In contrast, the approach outlined in this paper
needs no temporary storage and is implemented in standard
MPI. Streaming multigrid also assumes a precomputed im-
age gradient, which would add substantial overhead in ini-
tialization to transfer the color float or double data. Our ap-
proach is initialized using original image data plus an extra
byte for image boundary information which equates to 1/3
less data transfer in initialization than the previous method.
Data transfers between the two phases, while floating point,
only deal with the node boundaries which is substantially
smaller than the full image and therefore are rarely required
to be cached to disk. The multigrid method [KHOS, KSH10]
may also be limited by main memory, since the number of
iterations of the solver is directly proportional to the mem-
ory footprint. For large images, this limits the solver to only
a few Gauss-Seidel iterations and therefore may not neces-
sarily converge for challenging cases. Our method’s mem-
ory usage is independent of the number of iterations and can
therefore solve images that have slow convergence.

Often large images are stored as tiles at the highest reso-
lution; therefore methods that exploit this structure would be
advantageous. Stookey et al. [SXC*08] use a tiled base ap-
proach to compute an over-determined Laplacian PDE. By
using tiles that overlap in all dimensions, the method solves
the PDE on each tile separately and then blends the solution
via a weighted average. Unfortunately this method cannot
account for large scale trends beyond a single overlap and
therefore can only be used on problems which have no large
(global) trends. Figure 2 illustrates this problem and why the
coarse upsampling in our method is necessary.
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Figure 2: Although the result is a seamless, smooth image,
without coarse upsampling the final image will fail to ac-
count for large trends that span beyond a single overlap and
can lead to unwanted, unappealing shifts in color.

3. Gradient Domain Review

Rather than operating directly on the pixel values, gradient
based techniques manipulate an image based on the value of
a gradient field. Seamless cloning, panorama stitching, and
high dynamic range tone mapping are all techniques that be-
long to this class. Given a gradient field é(x, y), defined over
a domain Q C %2, we seek to find an image P(x,y) such that
its gradient VP fits G(x, y).

In order to minimize || VP — G|| in a least squares sense,
one has to solve the following optimization problem:

min/ |vP— G2 1
P JQ

Minimizing equation (1) is equivalent to solving the Pois-
son equation AP = div G(x,y) where A denotes the Laplace
operator AP = ‘3275 + 32—; and div G(x,y) denotes the diver-

gence of G.

To adapt the equations shown above to discrete images,
we apply a standard finite difference approach which ap-
proximates the Laplacian as:

AP(x,y) = P(x+1,y)+Px—1,y)+
P(x,y+1)+P(x,y—1)—4P(x,y) (2
and the divergence of G(x,y) = (G*(x,y),G"(x,)) as:
divG(x,y) = G*(x,y)—G"(x—1,y) +
G (xy) =G (xy—1).
For images, we discretize the differential form AP =

div é(x,y) using finite differences into the following sparse
linear system: Lp = b.

Each row of the matrix L stores the weights of the stan-
dard five point Laplacian stencil, p is the vector of pixel
colors, and b encodes the guiding gradient field. Both L
and b encode boundary conditions as well. Gradient do-
main techniques are typically defined by how the guiding
gradient field is computed and what boundary conditions
are chosen. For instance, seamless cloning uses Dirichlet
boundaries set to the color values of the background im-
age and the foreground image’s gradient as the guiding field
(see Perez et al. [PGBO03] for a detailed description). For
panorama stitching, Neumann boundary conditions are used
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and the guiding gradient field is computed as a composite
of the gradients from the source images. At image bound-
aries, where an unwanted large gradient exists (the seams),
the gradient between images is averaged or considered to be
zero [PGB03,LZPWO04, ADA*04, KHO8, SSJ*10]. Another
interesting example is gradient domain painting [MPO8]
which uses artistic input as the guiding field.

4. Parallel Gradient Domain Blending

In the following, we provide details of our parallel progres-
sive Poisson algorithm and MPI implementation.

4.1. Parallel Solver

Commonly, large images are stored as tiles, which gives
one an underlying structure to divide an image amongst
the nodes/processors for a distributed solver. Tile-based dis-
tributed solvers have been shown to work well when only
local trends are present. Seamless stitching commonly con-
tains large scale trends where a naive tile-based approach
will provide poor results. (see Figure 2). The addition of
the progressive Poisson method’s coarse upsampling, allows
for a simple, tile-based parallel solver that can account for
large trends. Our algorithm works in two phases: The first
phase performs the progressive upsample of a precomputed
coarse solution for each tile. The second phase solves for
a smooth image on tiles that significantly overlap the solu-
tion tiles from the first phase. In this way, the second phase
smooths any seams not captured or even introduced by the
first phase, producing a complete, seamless image.

Data distribution as tiles. Although a tile-based approach
leverages a common image storage format, it is not typi-
cally how methods are designed to handle seamless stitch-
ing of large panoramas. For instance, methods like streaming
multigrid [KHO8, KSH10] often assume precomputed gradi-
ents for the whole image. Our system is designed to take
tiles directly as input and therefore must be able to handle
the gradient computation on-the-fly. An important and often
undocumented component of panorama stitching is the map
or label image. Given an ordered set of images which com-
pose the panorama, the map image gives the correspondence
of a pixel location in the overall panorama to the smaller
image that supplies the color. This map file is necessary to
determine the difference between actual gradients and those
due to seams. This map also defines the boundaries of the
panorama, which are commonly irregular. This file along
with each individual image that composes the mosaic are
needed for a traditional, out-of-core scheme [KH08,SSJ*10]
for gradient computation. If the gradient across the seams
is assumed to be zero, which is a common technique we
adopt for this solver, each tile can be composited in advance
and the map file is only needed to denote image seams or
boundary. As noted above, this composited tile is often al-
ready provided if used in a traditional large image system.
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Figure 3: Our tile-based approach: (top-left) An input im-
age is divided into equally spaced tiles. (top-center) In the
first phase after a symbolic padding by a column and row
in all dimensions, a solver is run on a window denoted by a
collection of 4 labeled tiles. (top-right) Data is sent and col-
lected for the next phase to create new data windows with
a 50% overlap. (bottom) An example tile layout for the Fall
Panorama example.

The map file can then be encoded as an extra channel of
color information, typically the alpha channel. For mosaics
of many hundreds of images, such as the examples in this pa-
per, we cannot encode an index for each image in a byte of
data. Though in practice each tile has very little probability
of having more than 256 individual images, therefore each
image is given a unique 0-255 number on a per tile basis.

We have chosen an overlap of 50% in both dimensions for
the second phase windowing scheme of the parallel solver
for simplicity in implementation. Each window is composed
of a 2 x 2 collections of tiles. To avoid undefined windows
in the second phase, we add a symbolic padding of one
row/column of tiles to all sides of the image which the solver
regards as pure boundary. Figure 3 gives an example of a tile
layout. The overlapping window size used for our testing
was 1024 x 1024 pixels (assuming 512 x 512 tiles) which
we found to be a good compromise between a low memory
footprint and image coverage. Each node receives a parti-
tion of windows equivalent to a contiguous sub-image with
no overlap necessary between nodes during the same phase.
Data can be distributed evenly across all nodes in the case of
a homogeneous distributed system or dependent on weights
due to available resources in the case of a heterogeneous
hardware. We provide a test case for a heterogeneous sys-
tem in Section 5.

Coarse Solution. As a first step, the first phase of
our solver will upsample via bilinear interpolation a 1-2
megapixel coarse solution. Much like the progressive Pois-
son method [SSJ*10], each node computes a solution in just
a few seconds using a direct FFT solver on a coarsely sam-
pled version of our large image. In tiled hierarchies, this
coarse image is typically already present and can be encoded
with the map information in much the same way as the tiles.

First phase: Progressive Solution. This phase computes
a progressive Poisson solution for each window which are
composed of tiles read off of a distributed file system. To
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progressively solve a window, an image hierarchy is neces-
sary. For our implementation a standard power-of-two image
pyramid was used. As a first step, the solver upsamples the
solution to a finer resolution in the image pyramid using a
coarse solution image and the original pixel values. An iter-
ative solver is then run for several iterations to smooth this
upsample using the original pixel gradients as the guiding
field. This process is repeating down the image hierarchy
until the full resolution is reached. The solver is considered
to have converged at this resolution when the L, norm falls
below 10~ which is based on the range of byte color data.
From our testing, we have found that SOR gives both good
running times and low memory consumption and therefore is
our default solver. As noted above, this window is logically
composed of four tiles, which are computed and saved in
memory for the next phase as floating point color data. This
leads to 12 bytes/pixel (3 floating point color data) to trans-
fer between phases. Given the data distribution, one node
may process many windows. If this is the case, only the tiles
which border a node’s domain are prepared to be transferred
to another node, thereby keeping data communication be-
tween phases to a relatively small zone.

Second phase: Overlap Solution. The second phase gath-
ers the four tiles (both solution and original) that make up the
overlapping window. After the data is gathered, the gradients
are computed from the original pixel values and an iterative
solver (SOR) is run after being initialized with the solutions
from the first phase. The iterative solver is constrained to
only work on interior pixels to prevent this phase from in-
troducing new seams at the window boundary. Technically,
there may be errors at the pixels around the midpoints of
the boundary edges of these windows, though we have not
encountered this in practice. Again, this solver is run until
convergence given by the L, norm. Note that even though the
tile gradients are computed in the first phase, we have chosen
to recompute them on the fly in the second phase. Passing
the gradients would cost at least an additional 12 bytes/pixel
overhead. As nodes increase, data transfer and communi-
cation becomes a significant bottleneck in most distributed
schemes therefore we chose to pay the cost of increased
computation and reading the less expensive byte image data
from the distributed file system instead of the costly transfer.

Parallel Implementation Details. Each node has one mas-
ter thread which coordinates all processing and communica-
tion. The core component of this thread is a priority queue
of windows and tiles to be processed. At launch, this queue
is initialized by a separate seeding thread with the initial do-
main of windows to be solved in the first phase. Because
of the separation of the main thread from the seeding of the
queue, the main thread can begin processing windows imme-
diately. Each window is given a first phase id, which is the
window’s row and column location in the sub-image to be
processed by a node. Communication between nodes need
only be one-way in our system, therefore we have chosen
for communication to be "upstream" between nodes, i.e. the
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Figure 4: Windows are distributed as evenly as possible
across all nodes in the distributed system. Windows assigned
to a specific node are denoted by color above. Given the
overlap scheme, data transfer only needs to occur one-way,
denoted by the red arrows and boundary above. To avoid
starvation between phases and to hide as much data transfer
as possible, windows are processed in inverse order (white
arrows) and the tiles needed by other nodes are transferred
immediately.

nodes operating on a sub-image with horizontal or vertical
location greater than the current node. In order to avoid star-
vation in the second phase, the queue is loaded with win-
dows in reverse order in terms of the tile id. Figure 4 gives
an example of the traversal and communication. All initially
seeded windows are given equal low priority in the queue.
In essence the initial queue operates much like a first-in-
first-out (FIFO) queue. As windows are removed from the
queue, the main thread launches a progressive solver thread
which is handed off to an intra-node dynamic scheduler. Our
implementation uses a HyperFlow [VOS*10] scheduler to
execute the solver on all available cores. HyperFlow has
been shown to efficiently schedule execution of workflows
on multi-core systems and therefore is the perfect solution
for our intra-node scheduling. In all there are two distinct
sequential stages in each phase: (1) loading of the tile data
and the computation of the image gradient and (2) the pro-
gressive solution. This flow information allows HyperFlow
to exploit data, task, and pipeline parallelism to maximize
throughput.

After a solution is computed, the progressive solver thread
partitions the window into the tiles that comprise it. This al-
lows the second phase to recombine the tiles needed for the
50% overlap window. All four tiles are loaded into the queue
with high priority. If the main thread removes a tile (as op-
posed to a window) from the queue and the tile is needed by
another node, the main thread immediately sends the data
asynchronously to the proper node. Otherwise, if the node
needs this tile for phase two, the second phase id of the win-
dow which needs the tile is computed and hashed with a
2D hash function the same size as the window domain for
the second phase. If all four tiles for a given second phase
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window have been hashed, the main thread now knows a
second phase window is ready and immediately passes the
window to a solver thread for processing. If the main thread
receives a solved tile from another node, this is also imme-
diately hashed.

5. Results

To demonstrate the scalability and adaptability of the ap-
proach, we have tested our implementation using two
panorama datasets, gigapixels in size. To illustrate the porta-
bility of the system, we have also shown its running times
and scalability on two distributed systems. Our main sys-
tem, the NVIDIA Center of Excellence cluster in the Scien-
tific Computing and Imaging Institute at the University of
Utah, consists of 60 active nodes with 2.67GHz Xeon X5550
Processors (8 cores), 24GB of RAM per node, and 750GB
local scratch disk space. The second system, the Longhorn
visualization cluster in the Texas Advanced Computer Cen-
ter at the University of Texas at Austin, consists of 256 nodes
(of which 128 were available for our tests) with 2.5GHz Ne-
halem Processors (8 cores), 4GB of RAM per node, and
73GB local scratch disk space. Weak and strong scalabil-
ity tests were performed on both systems. Given the proven
scalability of Hyperflow on one node, we have tested the
scalability of the MPI implementation from 2-60 and 2-128
nodes for the NVIDIA cluster and Longhorn cluster respec-
tively. Timings are taken as best over several runs to discount
external effects to the cluster from shared resources such as
the distributed file system.

Datasets used:

e Fall Panorama. 126,826 x 29,633, 3.27-gigapixel.
When tiled, this dataset is composed of 124 x 29 10242
sized windows. See Figure 5 for image results from a
NVIDIA cluster 480 core test run.

o Winter Panorama. 92,570 x 28,600, 2.65-gigapixel.
When tiled, this dataset is composed of 91 x 28 10242
sized windows. See Figure 6 for image results from a
NVIDIA cluster 480 core test run.

NVIDIA Cluster. To show the MPI scalability of our frame-
work and implementation, strong and weak scaling tests
were performed for 2-60 nodes. As shown in Figure 7, both
datasets scale close to ideal and with high efficiency for
strong scaling. The Fall Panorama, due to it’s larger size be-
gins to lose efficiency at around 32 nodes when I/O overhead
begins to dominate. Even with this overhead, the efficiency
remains acceptable. For the Winter Panorama, the 1/0 over-
head does not effect performance up to 60 nodes and the im-
plementation maintains efficiency throughout the test. Weak
scaling tests were performed using a sub-image of the Fall
Panorama dataset. See Figure 8 for the weak scaling results.
As the number of cores increases so does the image reso-
lution to be solved. The sub-image was expanded from the
center of the full image and iterations of the solver for all

Figure 5: Fall Panorama - 126,826 x 29,633, 3.27-
gigapixel. (top) The panorama before seamless blending and
(bottom) the result of the parallel Poisson solver run on 480
cores with 124 x 29 windows and computed in 5.88 minutes.

Figure 6: Winter Panorama - 92,570 x 28,600, 2.65-
gigapixel. (top) The panorama before seamless blending,
(middle) the coarse panorama solution, and (bottom) the
result of the parallel Poisson solver run on 480 cores with
91 x 28 windows and computed in 6.02 minutes.

windows were locked at 1000 for testing to ensure no vari-
ation is due to slower converging image areas. As the figure
shows, our implementation shows good weak scaling effi-
ciency even for 60 nodes with 480 cores. In all, we have
produced a gradient domain solution to a dataset which in
previous work the best known methods [KHO08,SSJ* 10] took
hours to compute.

Longhorn Cluster. To show the portability and MPI scal-
ability of our framework and implementation, strong and
weak scaling tests were performed on the largest dataset
(Fall Panorama) on a second cluster. The strong scalling
tests were perfromed from 2-128 nodes and the weak scall-
ing tests, limited by the size of the image, were perform
from 2-64 nodes. As shown in Figure 10, our implemen-
tation maintains very good efficiency and timings for our

(© The Eurographics Association 2011.



S. Philip et al. / Parallel Gradient Domain Processing of Massive Images

Strong Scaling - Fall Panorama - NVIDIA Cluster Strong Scaling - Fall Panorama - NVIDIA Cluster
wg S — 100% Nodes Cores Ideal’ Actualt Efficiency Overhead % Overhead
’ - 2 16 | 7935 | 7935 | 100.00% 18.80 23.69%
P - 4 32| 39.68 | 40.08 | 97.08% 9.05 22.15%
o § 8 64 | 19.84 | 2083 | 95.22% 7.28 34.96%
- 16| 128 | 992 | 1143 | 78.93% 6.50 51.72%
) o 32| 256 | 4.96 6.20 | 53.81% 6.20 67.27%
. ——" 48 | 384 | 331 6.40 | 51.66% 6.40 100.00%
e 60 | 480 | 2.65 5.88 | 44.96% 5.88 100.00%
Strong Scaling - Winter Panorama - NVIDIA Cluster Strong Scaling - Winter Panorama - NVIDIA Cluster
o T e TrRemen o0 Nodes | Cores Ideal” | Actual? | Efficiency | Overhead® | % Overhead
o r\ - 2 16 | 128.87 | 128.87 | 100.00% 8.63 6.70%
) - 4 32| 6443 | 77.68 | 82.94% 470 6.05%
- 8 64 | 3222 | 4063 | 79.29% 428 10.54%
o © 16| 128 | 1611 | 21.17 | 76.10% 4.17 19.69%
o - 32| 256 8.05 | 10.88 | 74.00% 408 37.52%
) - 48 | 384 5.37 698 | 76.89% 4.10 58.71%
S 60 | 480 430 6.02 | 71.39% 4.00 66.48%

Figure 7: The strong scaling results for the Fall and Winter Panorama run on the NVIDIA Cluster from 2-60 nodes up to a
total of 480 cores. Overhead due to MPI communication and 1/0 is also provided along with its percentage of actual running
time. (top) The Fall Panorama, due to it’s larger size begins to lose efficiency at around 32 nodes when I/O overhead begins to
dominate. Even with this overhead, the efficiency remains acceptable. (bottom) For the Winter Panorama, the I/0 overhead does
not effect performance up to 60 nodes and the implementation maintains efficiency throughout all of our runs. (1 All timings

are in minutes.)

Weak Scaling - NVIDIA Cluster Weak Scaling - Longhorn Cluster

Nodes | Cores | Size (MP) | Time (min.) | Efficiency Nodes | Cores | Size (MP) | Time (min.) | Efficiency
2 16 100.66 5.55 100.00% 2 16 75.5 5.50 100.00%

4 32 201.33 5.55 100.00% 4 32 151 6.13 89.67%

8 64 402.65 5.53 100.30% 8 64 302 6.15 89.43%

16 128 805.31 5.68 97.65% 16 128 604 6.15 89.43%

32 256 1610.61 5.77 96.24% 32 256 1208 6.13 89.67%

60 480 3019.90 6.57 84.52% 64 512 2416 6.15 89.43%

Figure 8: Weak scaling tests run on the NVIDIA Cluster for
the Fall Panorama dataset. As is shown, our implementation
shows good efficiency even when running on the maximum
number of cores.

strong scaling test up to the full 1024 cores available on the
system. Much like the NVIDIA Cluster, weak scaling tests
were performed on a portion of the Fall Panorama and iter-
ations of the solver were locked at 1000. To ensure that each
node got a resonably sized sub-image to solve, the tests were
limited to 64 nodes. Figure 9 demonstrates our implementa-
tions ability to weak scale on this cluster, maintaining good
efficiency for up to 512 cores.

Heterogeneous Cluster. As a final test of portability and
adaptability, we presented our implementation with a simu-
lated heterogeneous distributed system. Our parallel frame-
work provides the ability to give weights to nodes which is
typically even and therefore results in an even distribution of
windows across all nodes. For this example, a simple weight-

(© The Eurographics Association 2011.

Figure 9: Weak scaling tests run on the Longhorn Cluster
for the Fall Panorama dataset.

ing scheme can easily load-balance this mixed network, giv-
ing the nodes with more resources more windows to com-
pute. Figure 11 gives an example mixed system of 2 8-core
nodes, 4 4-core nodes, and 8 2-core nodes. In all, this sys-
tem has 48 available cores. The weights for our framework
are simply the number of cores available in each node. This
network was simulated using the NVIDIA Cluster by over-
loading Hyperflow’s knowledge of available resources with
our desired properties. While this is not a perfect simulation
since the main thread handling MPI communication would
not be limited to reside on the desired cores, as shown in the
strong scaling tests even with evenly distributed data on 8-16
nodes the implementation is not yet I/O bound. Therefore we
should still have a good approximation to a real, limited sys-
tem. The figure details the window distribution and timings
for the Fall Panorama for all nodes in this test. As is shown,
we maintain good load balancing given proper node weight-
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strong Scaling - Fall Panorama - Longhorn Cluster Strong Scaling - Fall Panorama - Longhorn Cluster

o T e e o Nodes | Cores | Ideal (min.) | Actual (min.) | Efficiency
o 2 16 84.07 84.07 | 100.00%
“ e 4 32 42.03 43.18 97.34%
: | - 8 64 21.02 21.85 96.19%
gl - 16 | 128 1051 12.08 | 86.97%
» \\1 o 32 256 5.25 6.93 75.78%
e o 64 512 2.63 3.89 67.61%
* e 128 | 1024 1.31 2.73 48.06%

Figure 10: To demonstrate the portability of our implementation, we have run strong scalability testing for the Fall Panorama
on the Longhorn Cluster from 2-128 nodes up to a total of 1024 cores. As the numbers show, we maintain good scalability and

efficiency even when running on all available nodes and cores.

“ Total Windows Processed M Time (m)

1500 40.00
e 1000 | o B E . _ 30.00
'E 20.00 %
£ L g
2 [=

10.00
0 . 0.00
| 8cores || 4 cores || 2 cores
Heterogeneous System - Fall Panorama

Cores 8 4 2
Time (m) | 27.93 | 28.85 | 32.12 | 32.70 | 31.93 | 3252 | 1655 | 23.12 | 28.72 | 32.15 | 19.78 | 23.62 | 24.63 | 28.35
Windows 1239 1239 640 640 580 600 276 285 300 330 304 304 290 319

Figure 11: Our simulated heterogeneous system. This test example is a simulated mixed system of 2 8-core nodes, 4 4-core
nodes, and 8 2-core nodes. The weights for our framework are the number of cores available in each node. The timings and
window distributions are for Fall Panorama dataset. As you can see, with the proper weightings our framework can distribute
windows proportionally based on the performance of the system. The max runtime of 32.70 minutes for this 48 core system is
on par with timings for the 32 core (40.08 minutes) and 64 core (20.83 minutes) runs from the strong scaling test.

ing when dealing with heterogenous systems. The max run-
time of 32.70 minutes for this 48 core system is on par with
run time for the 32 core (40.08 minutes) and 64 core (20.83
minutes) strong scaling results.

6. Conclusions

This paper describes a new framework for parallel gra-
dient domain processing of massive images. The frame-
work provides both a straightforward implementation, main-
tains strict control over the required/allocated resources, and
makes no assumptions on the speed of convergence to an
acceptable image. Three important properties not present
in previous parallel gradient domain work. This framework
also provides a new parallel algorithm for gradient domain
processing which is detailed in this paper along with its MPI
implementation.

When implemented in standard MPI, this framework is
highly portable and scalable across a wide variety of dis-
tributed systems, for which this paper has provided two ex-
amples. Moreover, this paper has provided both strong and

weak scaling tests and has shown that this new framework
maintains good scalability and efficiency in both cases and
in the case of strong scaling, on multiple datasets. It was
also shown that this framework can be configured to handle
heterogeneous distributed systems given a proper tile distri-
bution scheme.
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