
Hybrid CPU-GPU Solver for Gradient Domain Processing of Massive Images

Sujin Philip, Brian Summa, Valerio Pascucci
Scientific Computing and Imaging Institute

Salt Lake City, USA
sujin, bsumma, pascucci@sci.utah.edu

Peer-Timo Bremer
Lawrence Livermore National Laboratory

Livermore, USA
bremer5@llnl.gov

Abstract—Gradient domain processing is a computationally
expensive image processing technique. Its use for processing
massive images, giga or terapixels in size, can take several
hours with serial techniques. To address this challenge, parallel
algorithms are being developed to make this class of techniques
applicable to the largest images available with running times
that are more acceptable to the users. To this end we target
the most ubiquitous form of computing power available to-
day, which is small or medium scale clusters of commodity
hardware. Such clusters are continuously increasing in scale,
not only in the number of nodes, but also in the amount of
parallelism available within each node in the form of multicore
CPUs and GPUs. In this paper we present a hybrid parallel
implementation of gradient domain processing for seamless
stitching of gigapixel panoramas that utilizes MPI, threading
and a CUDA based GPU component. We demonstrate the per-
formance and scalability of our implementation by presenting
results from two GPU clusters processing two large data sets.

Keywords-hybrid programming; gpgpu; cluster; gradient
domain; image processing

I. INTRODUCTION

Massive panoramic images are increasing in popularity
due to the availability of inexpensive robots to automate the
capturing process [1]. Extreme resolution imagery is also
available from sources such as the United States Geological
Survey (USGS) [2] for satellite imagery and the High
Resolution Imaging Science Experiment (HiRISE) [3] for
high resolution planetary images. Processing such images
requires significant computational resources and time. As
these images continue to grow, new methods must be devel-
oped to make their processing feasible in practice.

A common problem with such images is that they are
composed of hundreds of individual images taken over a
course of hours or even days. This results in the images
having greatly varying lighting conditions and/or exposure
and the composed image is an unappealing patchwork. Much
work has been done in removing the seams from these
images and currently gradient domain based approaches
provide the best solution.

Two methods have been proposed for gradient domain
processing of massive images: the streaming multigrid [4]
and progressive Poisson [5] techniques. These are sequential
methods and though efficient, still take several hours to

compute solutions for gigapixel images. Hence, some work
has been done recently to extend these methods to work
under a distributed environment in [6] and [7] respectively.
The implementation described in [7] has been shown to be
portable across different systems and has good scalability in
both the strong and weak sense. It processes the images in
a streaming, out-of-core fashion and provides strict control
over the required resources.

In this paper we extend the framework described in [7]
to also support GPUs, providing a hybrid implementation
that can efficiently utilize both CPUs and GPUs to speedup
the computation of the solution. In the following sections
we will provide an overview of our framework and will
detail the GPU implementation of the solver. We will provide
several variations of GPU implementations and compare
their performance with the base line CPU implementation.
Finally, strong and weak scaling of the framework is demon-
strated with results from runs on two different cluster and
on two large image datasets.

II. RELATED WORK

Gradient Domain Image Processing. Gradient domain im-
age processing is a technique where images are manipulated
in the gradient space, not on the direct pixel values. After
processing an image’s gradient field for the desired effect,
these methods attempt to find a smooth image that is closest
to the guiding gradient with a minimal least squared error.
Gradient domain processing has been used for applications
such as seamless cloning [8], drag-and-drop pasting [9],
matting [10] and seamless panorama stitching [4], [6]–
[8], [11], [12]. Other examples include compressing HDR
(High Dynamic Range) images for display on standard
monitors [13] and applications such as detection of light-
ing [14] or shapes [15] from images, shadow removal [16],
reflections [17], and artistic editing in the gradient domain
[18].

Poisson Solution. The problem of finding this smooth image
can be expressed as a 2D Poisson equation. Computing
the solution to Poisson equations efficiently has been the
focus of a large body of work. Direct solution of Poisson
equations can be computed using Fast Fourier Transform



Figure 1. Although the result is a seamless, smooth image, without coarse
upsampling the independent processing of the tiles will fail to account for
large trends that span beyond a single overlap and can lead to unwanted,
unappealing shifts in color.

(FFT) methods [18]–[21]. These methods are global in
nature and require special formulations for parallelization.
Furthermore, they have not yet shown to adapt well to an
out-of-core framework which is mandatory for extreme scale
images.

The accuracy of the solution is not crucial for some
applications and a coarse approximation may be sufficient to
achieve the desired results. For example, it has been shown
that Bilateral upsampling [22] produces good results for
tone-mapping of HDR images.

Often a Poisson solution is found by discretizing the
equations into a large linear system. These systems can then
be solved by finding a direct solution or through iterative
methods. An extensive review of direct solution methods
can be found in [23] and Heath et al. [24] provide a survey
of parallel algorithms for direct solution. Iterative methods
for solving linear systems include conjugate gradient meth-
ods and Successive Over-Relaxation (SOR) [25]. Conjugate
gradient methods have fast convergence but for large linear
systems memory consumption can sometimes be a limiting
factor and SOR is then the preferred method. Szeliski et al
present a fast method of Poisson blending [26] that takes
advantage of the smoothness of each individual image’s
offset map to represent them using low-dimensional splines.
This reformulation results in a much smaller linear system
than the original.

Multigrid iterative methods can be used to provide faster
convergence. These techniques include preconditioners [27],
[28] and multigrid solvers [29], [30]. Multigrid meth-
ods could use either adaptive [31]–[35] or non-adaptive
meshes [4]–[6], [36]. Chow et al. [37] provide a survey of
current methods for distributed multigrid solver.

Summa et al. [5] provide a method where upsampling and
the coarse-to-fine half of a multigrid cycle are combined to
produce high quality results for imaging. In this approach, it
was shown that an initial coarse solution, when upsampled
and used as the initialization of an iterative solver, produces
results visually indistinguishable from a direct solution.

Out-of-Core Methods. Toledo [38] provides a survey of
general out-of-core algorithms for solving linear systems.
Most of them require that at least the solution be kept in the
main memory which is not possible for gigapixel imagery.
The streaming multigrid method [4], [6] and the progressive

Poisson method [5], [7] are the only methods that have been
shown to be able to handle images at this scale.

Tile-Based Methods. Large images are often stored as
multi-resolution tiles, therefore methods which operate di-
rectly on this format would be ideal. Stookey et al. [39]
use a tiled based approach to compute an over-determined
Laplacian PDE. The method uses overlapping tiles and
solves the PDE on these tiles independently. It then blends
the solutions, using a weighted average, to get the final
solution. Since the tiles are solved locally and independently,
the final solutions do not account for large scale trends in
the image and may introduce unwanted shifts as shown in
Figure 1. Philip et al.’s tile based approach [7] uses the
corresponding portion of an upsampled, coarse, full solution
as the initial values for the tiles and therefore can account
for these trends.

III. GRADIENT DOMAIN REVIEW

Gradient based techniques manipulate an image’s gradient
field instead of its color values. The resulting gradient field is
then solved to obtain a smooth image that fits the gradient
field with minimal least squared error. That is - given a
gradient field ~G(x, y), defined over a domain Ω ⊂ <2, its
corresponding image P (x, y) is to be found such that its
gradient ∇P fits ~G(x, y).

In order to minimize ‖∇P − ~G‖ in a least squares sense,
one has to solve the following optimization problem:

min
P

∫∫
Ω

‖∇P − ~G‖2 (1)

Minimizing equation (1) is equivalent to solving the Poisson
equation ∆P = div ~G(x, y) where ∆ denotes the Laplace
operator ∆P = ∂2P

∂x2 + ∂2P
∂y2 and div ~G(x, y) denotes the

divergence of ~G. For discrete images, we adapt the above
equations using a standard finite difference approach which
approximates the Laplacian as:

∆P (x, y) = P (x + 1, y) + P (x− 1, y) +

P (x, y + 1) + P (x, y − 1)− 4P (x, y)(2)

and the divergence of ~G(x, y) = (Gx(x, y), Gy(x, y)) as:

div ~G(x, y) = Gx(x, y)−Gx(x− 1, y) +

Gy(x, y)−Gy(x, y − 1)

We then discretize the differential form ∆P = div ~G(x, y)
using finite differences into a sparse linear system: Lp = b.
Each row of the matrix L stores the weights of the standard
five point Laplacian stencil, p is the vector of pixel colors,
and b encodes the guiding gradient field. Both L and b
encode boundary conditions as well.

The guiding gradient field and the boundary conditions
are chosen based on the application. For example, seamless



1 1

11

9 9

99

5 5

55

2 2

22

10 10

1010

6 6

66

3 3

33

11 11

1111

7 7

77

4 4

44

12 12

1212

8 8

88

Image

1 1

11

5 5

55

2 2

22

6 6

66

3 3

33

4 4

44

Figure 2. Our tile-based approach: (left) An input image is divided into
equally spaced sub-tiles. (center) In the first phase after a symbolic padding
by a column and row in all dimensions, a solver is run on a tile denoted
by a collection of 4 labeled sub-tiles. (right) Data is sent and collected for
the next phase to create new data tiles with 50% overlap.

cloning uses Dirichlet boundaries set to the color values
of the background image and uses the foreground image’s
gradient as the guiding field [8]. Panorama stitching uses
Neumann boundary conditions and the guiding gradient field
is computed as a composite of the gradients from the source
images. At image boundaries, where an unwanted, large
gradient exists (the seams), the gradient is averaged or set
to zero [4], [5], [8], [11], [12]. Another interesting example
is gradient domain painting [18] which uses artistic input as
the guiding field.

IV. HYBRID GRADIENT DOMAIN PROCESSING

To provide the necessary flexibility to exploit all available
resources we have chosen a tile based approach for our
implementation. The input image is divided into tiles and
distributed among the various nodes and processing units
within a node. These tiles are then processed independently
and in parallel. Traditionally, tile based solvers have been
used only when global trends could be ignored. Otherwise,
as discussed above, independent processing of tiles may
introduce unwanted shifts (Figure 1). To avoid these shifts,
we employ the method described in [5], [7], where it has
been shown that using an upsampled coarse solution as the
initial value for an iterative solver produces visually pleasing
results. Independent processing of the tiles may also intro-
duce inconsistencies at the boundaries of the tiles, resulting
in new seams in the solution. We smooth out these seams by
running a second pass with tiles that significantly overlap the
tiles from the first pass, as shown in Figure 2. The second
pass is constrained to work only in the interior pixels of the
tiles so as to not introduce any more seams. In this section,
we will provide an overview of our framework for seamless
panorama stitching and describe our implementation of the
iterative solver on the GPU.

Seamless Panorama Stitching. In the initialization phase,
the image is logically divided into a set of tiles and dis-
tributed among the various nodes of the cluster. If the cluster
contains heterogeneous nodes, the tiles can be distributed
based on the amount of computing resources on each
node [7]. The nodes then load a (very) coarse version of
the image and compute its full solution using a direct FFT
solver.

An important component in seamless panorama stitching
is the map or label image. Each pixel in the map stores
an identifier to the source image which gives the color
value or stores a flag indicating that the pixel falls outside
the boundary of the panorama. This map is necessary to
identify the boundary of the panorama, which is typically
irregular, and also the boundaries between the source images.
Furthermore, the information provided by the map is used
for computing the gradient field.

Each node streams its domain of tiles from the disk to a
pipeline which computes the solution. After the first pass the
image is re-tiled for the second pass. The re-tiling is done in
such a way that there is a 50% overlap in processing between
the two passes (see Figure 2). This will remove any seams
that may be produced in the first pass of the solution. We
chose an overlap of 50% because it simplifies the re-tiling
logic. A node may have to exchange overlapping portions of
tiles in the boundary of its domain with its nieghbors during
the re-tiling process. After the data exchange and re-tiling,
the new tiles are again passed to the pipeline for the second
pass and the final solution is written to disk.

The solver pipeline runs on every node and consists
of two main stages. One computes the divergence of a
tile, using the input image and map file. The other solves
the tile with an iterative solver using the divergence and
the upsampled coarse solution, which it uses as the initial
value. For the iterative solver we have chosen to implement
Successive Over-Relaxation (SOR) for its simplicity and fast
convergence. The stages of the pipeline are dynamically
scheduled to execute on the available resources (CPUs and
GPUs). For our implementation we have chosen to use the
scheduler describe in [40], [41] as it has been shown
to be an efficient single-node scheduler. This scheduler
allows the programmer to specify execution pipelines in
the form of directed graphs consisting of various processing
modules. These modules can have multiple implementations
for different types of resources. The programmer only has
to provide these different implementations and the scheduler
takes care of managing the resources and load balancing
by dynamically choosing the appropriate implementation at
runtime.

A detailed explanation of the framework can be found
in [7]. In this work, we have extended the implementation
described in that paper to include support for processing on
the GPUs in addition to multi-threaded CPUs on each node.

GPU SOR Implementation. We tested several implemen-
tations of SOR solver for the GPU, starting with a simple
adaptation of the CPU implementation. This base imple-
mentation was then incrementally modified with different
optimizations and its performance was recorded. Figure 3
shows a comparison of the performance of the various
implementations tested. The kernels were developed and



Kernel Performance
Implementation Avg. Time (sec)

CPU 52.171
Kernel #1 3.810
Kernel #2 2.103
Kernel #3 1.529
Kernel #4 1.421
Kernel #5 2.016

Figure 3. The performance results for the kernels we tested. Kernel #1 is
the base kernel, Kernel #2 processes the color channels separately, Kernel
#3 uses shared memory for solution and divergence, Kernel #4 uses shared
memory for solution and texture for divergence, and Kernel #5 uses red-
black iterations.

tested on NVIDIA devices with compute capability 1.3,
on machines running cuda version 3.2. The baseline GPU
performance tests were run on image tiles of dimension
1024×1024 pixels for a fixed 1000 iterations and the average
time taken was recorded.

In SOR, the map image is only used to identify whether
the corresponding pixels fall outside the boundary of the
panorama. To save both memory and transfer cost to the
GPU, we chose to encode this information in the divergence
itself. The divergence at a pixel is set to a special, very large
value (floating point NaN), if it falls outside the boundary
of the panorama. The kernels refer the divergence buffer,
instead of the map, to check if a particular pixel is outside
the boundary.

An important factor in kernel performance is the thread-
block dimension. Each iteration of SOR has relatively little
computation compared to the amount of memory accessed.
Global memory accesses are very expensive as they reside
in the off-chip graphics RAM. The GPU’s warp-scheduler (a
warp is a set of 8 threads executing in SIMD manner) tries
to hide memory access latencies by scheduling other warps
while the memory request is being processed [42]. There-
fore, blocks should contain sufficient number of threads for
the warp scheduler to hide memory access latencies. The
devices tested support a maximum block dimension of 512
threads but for our implementation we settled on a block
dimension on 16 × 16 or 256 threads to avoid register
spillage.

Initially, we started with a straight forward implemen-
tation of SOR for the GPU. In this first incarnation, the
data was stored with interleaved RGB values in float3
variables. This gave poor performance due to bad memory
coalescing and locality. The first optimization applied was
to split the channels into different buffers and process them
independently. This significantly improved the performance
of the kernels as shown in Figure 3 for kernel #2.

The next optimization was to copy each block’s portion
of solution and divergence to the on-chip, per-block shared
memory buffers. This was based on the observation that
there is a significant amount of reuse for these values. Each

0 1 2 3 4 5 6 7 8 9 A B C D E FBanks: 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E FBanks: 0 1 2 3 4 5 6 7 8 9 A B C D E F 0

Figure 4. Avoiding bank conflict in red-black iterations: The figures show
one row of a block’s window. In the default configuration (top), two pixels
of the same color are mapped to each bank resulting in bank conflicts when
the threads try to simultaneously access them. (bottom) by adding a buffer
of one pixel at column 16, the bank conflict is avoided since now each
pixel of the same color occupy different banks.

pixel is referred by up to four of its neighbors and moving
these values into the fast shared memory can improve the
performance significantly. The values were loaded into the
shared memory in parallel and in a coalesced manner. The
outer-neighbors of the boundary pixels of a block were
still accessed from global memory since they were only
accessed once per launch. Next we noted that there are
only read-only accesses to the divergence. By using read-
only texture memory to store the divergence, we could
free important shared memory space. Furthermore, texture
memory accesses are cached and their use can provide
performance on par with, or better than, shared memory
depending upon the access patterns. As the graph shows,
there is a slight performance improvement between kernel
#3 and kernel #4.

Finally, we implemented red-black iterations for the solver
to increase its convergence speed. In red-black iterations,
pixels are assigned to either red or black groups so as to
form a red-black checkerboard pattern. First the red pixels
are solved using the values of the black pixels and then
the black pixels are solved using the updated values of
red pixels. Implementing red-black iterations efficiently has
some challenges because the red-black access pattern is bad
for memory coalescing. The block dimension was set to
16 × 16 and each block worked on a window of 32 × 32
pixels. At each iteration, the 16 threads of a thread row
would first operate on the red pixels of two rows and then
black pixels of the two rows. The solution pixels were stored
in a shared memory buffer of dimensions 32× 32 which is
copied to and from the global memory in parallel and in a
coalesced manner. There are 16 banks in the shared memory
of devices with compute capability 1.3. The shared memory
stores consecutive four-bytes values in consecutive banks.
Due to these banks, shared memory accesses to 16 con-
secutive floats can be performed in parallel. Bank conflicts
occur when two or more threads try to access the same bank.
The default shared memory configuration resulted in bank
conflicts because the interleaved access pattern of the red-
black iterations caused two threads to access common banks.
To avoid bank conflicts, the configuration was modified to
33 × 32 and the image columns 16 − 31 were mapped to
17 − 32 columns of the shared memory buffer. Figure 4
details this shared memory configuration. There are still



some bank conflicts in cases where the pixels of columns
15 and 16 need to access their right and left neighbors
respectively. For the red-black implementation the above
and bellow neighbors of the first and last rows were also
loaded into shared memory. This is due to the fact that even
though they are accessed only once, they could be loaded
into the shared memory beforehand in coalesced manner,
slightly improving the performance.

Figure 3 for kernel #5 shows the performance of the
red-black kernel. The performance of this kernel is slower
than the previous implementation because of the higher
number of global memory accesses per thread, but our
tests have shown that it converges faster than the previous
implementation. Even with this faster convergence, we have
found that the overall performance of the kernel #4 is faster
than the performance of the red-black kernel. Therefore, we
have chosen to use kernel #4 for the GPU solver.

V. RESULTS

We have tested our implementation using two gigapixel-
sized panorama datasets. We have also run the tests on
two clusters: an HP Cluster and a Dell Cluster. The HP
Cluster consists of nodes configured with 2.67GHz Xeon
X5550 Processors (8 cores), 24GB of RAM and 2 NVIDIA
Tesla T10 GPUs. The Dell Cluster is comprised of nodes
configured with 2.5GHz Nehalem Processors (8 cores),
48GB of RAM and 2 NVIDIA Quadro FX 5800 GPUs.
We have tested both strong and weak scalability of our
implementation running from 2-60 nodes on the HP Cluster
and 2-64 nodes on the Dell Cluster. To discount the effects
due to other jobs running and accessing the shared resources
on the cluster, the timings were taken as the best over several
runs. The datasets used are:

• Fall Panorama. 126, 826 × 29, 633, 3.27-gigapixel.
When tiled, this dataset is composed of 124×29 10242

sized windows. See Figure 5 for image results from a
HP Cluster 32 node test run.

• Winter Panorama. 92, 570 × 28, 600, 2.65-gigapixel.
When tiled, this dataset is composed of 91× 28 10242

sized windows. See Figure 6 for image results from a
HP Cluster 32 node test run.

HP Cluster. Strong and weak scaling tests were performed
for 2-60 nodes. The strong scaling results are shown in
Figures 7 and 8. We can see good strong scaling results
for up to 16 nodes. Beyond 16 nodes the efficiency of the
system falls to 50% due to the relatively small size of the
image which is not able to keep the processors busy and
hide the IO and message passing latencies. To see if the
efficiency improves with a larger data set, we scaled the
fall dataset to 12-gigapixels and ran strong scaling tests. As
Figure 12 shows, we are getting a good efficiency of 64%
even for 60 nodes. For weak scaling, the size of the image

Figure 5. Fall Panorama - 126, 826× 29, 633, 3.27-gigapixel. (top) The
panorama before seamless blending and (bottom) the result of the parallel
Poisson solver run on 32 nodes with 124× 29 windows.

Figure 6. Winter Panorama - 92, 570 × 28, 600, 2.65-gigapixel. (top)
The panorama before seamless blending, (bottom) the result of the parallel
Poisson solver run on 32 nodes with 91× 28 windows.

to be solved increases with the number of nodes. The image
region to be solved was expanded from the center of the
scaled dataset and the number of iterations for the solver
were locked to 1000 for testing to discount variations in
timings due to slower converging regions. As Figure 9 (left)
shows, our implementation has good weak scalability and
the efficency never falls bellow 80%.
Dell Cluster. Both strong and weak scalability tests were
also run on this system for 2-64 nodes. Figures 10 and 11
show the strong scaling results. Similar to the HP Cluster,
good efficiency is maintained only up to 16 nodes. To test
that this is due primarily to the size of the image, we ran the
strong scaling tests on a up-scaled version of the data set
and as expected we maintain good efficiency of, above 69%
even for 64 nodes (see Figure 13). Figure 9 (right) shows
the weak scaling results and similar to the HP Cluster we
are getting good weak scalability.

VI. CONCLUSIONS

This paper extends the framework described in [7] to
utilize the processing power of GPUs, that are increas-
ingly becoming common on high-end clusters. We have
provided an efficient implementation of the Successive Over-
Relaxation method for GPU which has increased the perfor-



Weak Scaling - HP Cluster
Nodes Cores GPUs Size (MP) Time (m) Efficiency

2 16 4 75.5 5.07 100.00%
4 32 8 150.99 6.20 81.77%
8 64 16 301.99 5.52 91.85%

16 128 32 603.98 5.63 90.05%
32 256 64 1,207.96 5.50 92.18%
60 480 120 2,264.92 5.72 88.64%

Weak Scaling - Dell Cluster
Nodes Cores GPUs Size (MP) Time (m) Efficiency

2 16 4 75.5 4.95 100.00%
4 32 8 150.99 5.35 92.52%
8 64 16 301.99 6.08 81.41%

16 128 32 603.98 5.50 90.00%
32 256 64 1,207.96 6.23 79.45%
64 512 128 2,415.92 5.97 82.91%

Figure 9. Weak scaling tests run on the HP Cluster (left) and Dell Cluster (right) for the Fall Panorama dataset. Our implementation shows good efficiency
even when running on a large number of cores with many GPUs.

0.00%	  

25.00%	  

50.00%	  

75.00%	  

100.00%	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

2	   12	   22	   32	   42	   52	   62	  

Effi
ci
en

cy
	  

Ti
m
e	  
(m

)	  

Nodes	  

Strong	  Scaling	  -‐	  Fall	  Panorama	  -‐	  HP	  Cluster	  
Actual	  Time	   Ideal	  Time	   Efficiency	  

Strong Scaling - Fall Panorama - HP Cluster
Nodes Cores GPUs Actual (m) Ideal (m) Efficiency

2 16 4 36.00 35.38 100.00%
4 32 8 19.27 17.69 93.41%
8 64 16 10.13 8.85 88.85%

16 128 32 6.95 4.42 64.75%
32 256 64 6.77 2.21 33.23%
60 480 120 7.62 1.18 14.76%

Figure 7. The strong scaling results for the Fall Panorama run on the HP
Cluster from 2-60 nodes up to a total of 480 cores and 120 GPUs.

mance of the framework while maintaining its good strong
and weak scalability for sufficiently large data sets. We
have demonstrated the performance and scalability of our
framework with results from runs on two clusters and two
data sets.

Overall, this paper presents an efficient implementation
of a hybrid, distributed gradient domain image processing
framework that is capable of handling massive images.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foun-
dation awards OCI-0904631, OCI-0906379, IIS-1045032,
and CCF-0702817. This work was also performed under
the auspices of the U.S. Department of Energy by the
University of Utah under contract DE-SC0001922 and DE-
FC02-06ER25781 and by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.

0.00%	  

25.00%	  

50.00%	  

75.00%	  

100.00%	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

2	   12	   22	   32	   42	   52	   62	  

Effi
ci
en

cy
	  

Ti
m
e	  
(m

)	  

Nodes	  

Strong	  Scaling	  -‐	  Winter	  Panorama	  -‐	  HP	  Cluster	  
Actual	  Time	   Ideal	  Time	   Efficiency	  

Strong Scaling - Winter Panorama - HP Cluster
Nodes Cores GPUs Actual (m) Ideal (m) Efficiency

2 16 4 49.8 49.80 100.0%
4 32 8 27.45 24.90 90.71%
8 64 16 16.92 12.45 73.58%

16 128 32 8.90 6.23 69.94%
32 256 64 5.93 3.11 52.49%
60 480 120 10.28 1.56 25.85%

Figure 8. The strong scaling results for the Winter Panorama run on the
HP Cluster from 2-60 nodes up to a total of 480 cores and 120 GPUs.

REFERENCES

[1] GigaPan,, http://www.gigapan.org/about.php.

[2] USGS,, united States Geological Survey http://www.usgs.gov/.

[3] HiRISE, , high Resolution Imaging Science Experiment
http://hirise.lpl.arizona.edu/.

[4] M. Kazhdan and H. Hoppe, “Streaming multigrid for
gradient-domain operations on large images,” ACM ToG.,
vol. 27, no. 3, 2008.

[5] B. Summa, G. Scorzelli, M. Jiang, P.-T. Bremer, and
V. Pascucci, “Interactive editing of massive imagery made
simple: Turning atlanta into atlantis,” ACM Trans. Graph.,
vol. 30, pp. 7:1–7:13, April 2011. [Online]. Available:
http://doi.acm.org/10.1145/1944846.1944847

[6] M. Kazhdan, D. Surendran, and H. Hoppe, “Distributed
gradient-domain processing of planar and spherical images,”
ACM ToG. to appear, 2010.



0.00%	  

25.00%	  

50.00%	  

75.00%	  

100.00%	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

2	   12	   22	   32	   42	   52	   62	  

Effi
ci
en

cy
	  

Ti
m
e	  
(m

)	  

Nodes	  

Strong	  Scaling	  -‐	  Fall	  Panorama	  -‐	  Dell	  Cluster	  
Actual	  Time	   Ideal	  Time	   Efficiency	  

Strong Scaling - Fall Panorama - Dell Cluster
Nodes Cores GPUs Actual (m) Ideal (m) Efficiency

2 16 4 36.17 36.17 100.00%
4 32 8 18.97 18.09 95.33%
8 64 16 9.80 9.04 92.27%

16 128 32 6.07 4.52 74.49%
32 256 64 4.22 2.26 53.57%
64 512 128 2.65 1.13 42.65%

Figure 10. The strong scaling results for the Fall Panorama run on the
Dell Cluster from 2-64 nodes up to a total of 512 cores and 128 GPUs.

0.00%	  

25.00%	  

50.00%	  

75.00%	  

100.00%	  

0	  

50	  

100	  

150	  

200	  

250	  

300	  

4	   14	   24	   34	   44	   54	   64	  

Effi
ci
en

cy
	  

Ti
m
e	  
(m

)	  

Nodes	  

Strong	  Scaling	  -‐	  12	  Gigapixel	  Panorama	  -‐	  HP	  Cluster	  
Actual	  Time	   Ideal	  Time	   Efficiency	  

Strong Scaling - Scaled Fall Panorama - HP Cluster
Nodes Cores GPUs Actual (m) Ideal (m) Efficiency

4 32 8 245.45 245.45 100.00%
8 64 16 127.83 122.73 96.00%

16 128 32 66.82 61.36 91.84%
32 256 64 38.62 30.68 79.45%
60 480 120 23.78 15.34 64.50%

Figure 12. The strong scaling results for the Scaled Fall Panorama run
on the HP Cluster from 4-60 nodes.

[7] S. Philip, B. Summa, P.-T. Bremer, and V. Pascucci, “Parallel
Gradient Domain Processing of Massive Images,” in Euro-
graphics Symposium on Parallel Graphics and Visualization,
T. Kuhlen, R. Pajarola, and K. Zhou, Eds. Llandudno, Wales,
UK: Eurographics Association, 2011, pp. 11–19.

[8] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,”
ACM ToG., vol. 22, no. 3, pp. 313–318, 2003.

[9] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, “Drag-and-drop
pasting,” in SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers.
New York, NY: ACM, 2006, pp. 631–637.

0.00%	  

25.00%	  

50.00%	  

75.00%	  

100.00%	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

45	  

50	  

2	   12	   22	   32	   42	   52	   62	  

Effi
ci
en

cy
	  

Ti
m
e	  
(m

)	  

Nodes	  

Strong	  Scaling	  -‐	  Winter	  Panorama	  -‐	  Dell	  Cluster	  
Actual	  Time	   Ideal	  Time	   Efficiency	  

Strong Scaling - Winter Panorama - Dell Cluster
Nodes Cores GPUs Actual (m) Ideal (m) Efficiency

2 16 4 44.80 44.80 100.00%
4 32 8 23.58 22.40 95.00%
8 64 16 15.27 11.20 73.35%

16 128 32 8.83 5.60 63.42%
32 256 64 5.75 2.80 48.70%
64 512 128 3.78 1.40 37.04%

Figure 11. The strong scaling results for the Winter Panorama run on the
Dell Cluster from 2-64 nodes up to a total of 512 cores and 128 GPUs.

0.00%	  

25.00%	  

50.00%	  

75.00%	  

100.00%	  

0	  

50	  

100	  

150	  

200	  

250	  

4	   14	   24	   34	   44	   54	   64	  

Effi
ci
en

cy
	  

Ti
m
e	  
(m

)	  

Nodes	  

Strong	  Scaling	  -‐	  12	  Gigapixel	  Panorama	  -‐	  Dell	  Cluster	  
Actual	  Time	   Ideal	  Time	   Efficiency	  

Strong Scaling - Scaled Fall Panorama - Dell Cluster
Nodes Cores GPUs Actual (m) Ideal (m) Efficiency

4 32 8 219.77 219.77 100.00%
8 64 16 113.35 109.88 96.94%

16 128 32 59.18 54.94 92.83%
32 256 64 33.73 27.47 81.44%
64 512 128 19.70 13.74 69.72%

Figure 13. The strong scaling results for the Scaled Fall Panorama run
on the Dell Cluster from 4-64 nodes.

[10] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, “Poisson matting,”
ACM ToG., vol. 23, no. 3, pp. 315–321, 2004.

[11] A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image
stitching in the gradient domain,” in In Eighth European
Conference on Computer Vision (ECCV 2004. Springer,
2004, pp. 377–389.

[12] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker,
A. Colburn, B. Curless, D. Salesin, and M. Cohen, “In-
teractive digital photomontage,” in SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers. New York, NY, USA: ACM, 2004.



[13] R. Fattal, D. Lischinski, and M. Werman, “Gradient domain
high dynamic range compression,” in SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics
and interactive techniques. New York, NY, USA: ACM,
2002.

[14] B. K. P. Horn, “Determining lightness from an image,”
Comput. Graphics Image Processing, vol. 3, no. 1, pp. 277–
299, Dec. 1974.

[15] Y. Weiss, “Deriving intrinsic images from image sequences,”
in International Conference on Computer Vision, 2001, pp.
68–75.

[16] G. D. Finlayson, S. D. Hordley, and M. S. Drew, “Removing
shadows from images,” in ECCV ’02: Proceedings of the 7th
European Conference on Computer Vision-Part IV. London,
UK: Springer-Verlag, 2002, pp. 823–836.

[17] A. Agrawal, R. Raskar, S. K. Nayar, and Y. Li, “Removing
photography artifacts using gradient projection and flash-
exposure sampling,” in SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers. New York, NY, USA: ACM, 2005, pp. 828–
835.

[18] J. McCann and N. S. Pollard, “Real-time gradient-domain
painting,” in SIGGRAPH ’08: ACM SIGGRAPH 2008 papers.
New York, NY, USA: ACM, 2008, pp. 1–7.

[19] R. W. Hockney, “A fast direct solution of Poisson’s equation
using Fourier analysis,” Journal of the ACM, vol. 12, no. 1,
pp. 95–113, Jan. 1965.

[20] A. K. Agrawal, R. Chellappa, and R. Raskar, “An algebraic
approach to surface reconstruction from gradient fields,” in
ICCV, 2005, pp. I: 174–181.

[21] A. K. Agrawal, R. Raskar, and R. Chellappa, “What is the
range of surface reconstructions from a gradient field?” in
ECCV, 2006, pp. I: 578–591.

[22] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele,
“Joint bilateral upsampling,” ACM ToG, vol. 26, no. 3, p. 96,
2007.

[23] F. W. Dorr, “The direct solution of the discrete poisson
equation on a rectangle,” SIAM Review, vol. 12, no. 2, pp.
248–263, April 1970.

[24] Heath, Ng, and Peyton, “Parallel algorithms for sparse linear
systems,” SIREV: SIAM Review, vol. 33, 1991.

[25] O. Axelsson, Iterative Solution Methods. New York, NY:
Cambridge Universty Press, 1994.

[26] R. Szeliski, M. Uyttendaele, and D. Steedly, “Fast poisson
blending using multi-splines,” in Computational Photography
(ICCP), 2011 IEEE International Conference on, april 2011,
pp. 1 –8.

[27] S. Gortler and M. Cohen, “Variational modeling with
wavelets,” in Symposium on Interactive 3D graphics, 1995,
pp. 35–42.

[28] R. Szeliski, “Locally adapted hierarchical basis precondition-
ing,” ACM ToG., vol. 27, no. 3, pp. 1135–1143, 2008.

[29] A. Brandt, “Multi-level adaptive solutions to boundary-value
problems,” Mathematics of Computation, vol. 31, no. 138, pp.
333–390, 1977.

[30] W. L. Briggs, V. E. Henson, and S. F. McCormick, A
Multigrid Tutorial, 2nd ed. SIAM, 2000.

[31] M. J. Berger and P. Colella, “Local adaptive mesh refinement
for shock hydrodynamics,” Journal Computational Physics,
vol. 82, pp. 64–84, 1989.

[32] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” in Eurographics Symposium on Geometry
Processing, 2006, pp. 61–70.

[33] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe, “Multilevel
streaming for out-of-core surface reconstruction,” in SGP ’07:
Proceedings of the fifth Eurographics symposium on Geom-
etry processing. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007, pp. 69–78.

[34] A. Agarwala, “Efficient gradient-domain compositing using
quadtrees,” in SIGGRAPH ’07: ACM SIGGRAPH 2007 pa-
pers. New York, NY, USA: ACM, 2007, p. 94.

[35] P. M. Ricker, “A direct multigrid poisson solver for oct-
tree adaptive meshes,” The Astrophysical Journal Supplement
Series, vol. 176, pp. 293–300, 2008.

[36] M. Kazhdan, “Reconstruction of solid models from oriented
point sets,” in Eurographics Symposium on Geometry Pro-
cessing, 2005, pp. 73–82.

[37] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M.
Yang, “A survey of parallelization techniques for multigrid
solvers,” in Parallel Processing for Scientific Computing, ser.
Software, Environments, and Tools, M. A. Heroux, P. Ragha-
van, and H. D. Simon, Eds. Philadelphia: SIAM, Nov. 2006,
vol. 20, pp. 179–201, ch. 10,.

[38] S. Toledo, “A survey of out-of-core algorithms in numerical
linear algebra,” in External memory algorithms, ser. Dimacs
Series In Discrete Mathematics And Theoretical Computer
Science. Boston, MA: American Mathematical Society,
1999, pp. 161–179.

[39] J. Stookey, Z. Xie, B. Cutler, W. R. Franklin, D. M. Tracy,
and M. V. A. Andrade, “Parallel ODETLAP for terrain
compression and reconstruction,” in GIS, W. G. Aref, M. F.
Mokbel, and M. Schneider, Eds. ACM, 2008, p. 17.

[40] H. T. Vo, D. K. Osmari, B. Summa, J. L. D. Comba,
V. Pascucci, and C. T. Silva, “Streaming-enabled parallel
dataflow architecture for multicore systems,” Comput. Graph.
Forum, vol. 29, no. 3, pp. 1073–1082, 2010.

[41] H. T. Vo, D. Osmari, L. Scheidegger, J. Comba, J. Shepherd,
and C. Silva, “Poster i06 - hyperflow: An efficient dataflow
architecture for multi cpu-gpu systems,” in NVIDIA Research
Summit, 2010.

[42] NVIDIA Corporation, NVIDIA CUDA C Programming
Guide, 2010, version 3.2.


