
An Analytical Approach to Single Scattering

for Anisotropic Media and Light Distributions

Vincent Pegoraro 1 Mathias Schott 1 Steven G. Parker 1,2

1 University of Utah 2 NVIDIA Corporation

ABSTRACT

Despite their numerous applications, efficiently rendering partici-
pating media remains a challenging task due to the intricacy of the
radiative transport equation. While numerical techniques remain
the method of choice for addressing complex problems, a closed-
form solution to the air-light integral in optically thin isotropic
media was recently derived. In this paper, we extend this work
and present a novel analytical approach to single scattering from
point light sources in homogeneous media. We propose a combined
formulation of the air-light integral which allows both anisotropic
phase functions and light distributions to be adequately handled.
The technique relies neither on precomputation nor on storage, and
we provide a robust and efficient implementation allowing for an
explicit control on the accuracy of the results. Finally, the per-
formance characteristics of the method on graphics hardware are
evaluated and demonstrate its suitability to real-time applications.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1 INTRODUCTION

Participating media are used to model a wide variety of elements
and the ability to faithfully reproduce and predict their character-
istics has many scientific applications. Although realistic render-
ing is often of concern to the movie and gaming industries, such
interest also emerged in industrial design and safety-oriented re-
search where typical scenarios entail predicting the visibility of traf-
fic signs in a foggy weather or exit signs in a smoke-filled room.

However, efficiently simulating accurate light transport in such
media remains a challenging task due to the intricacy of the equa-
tion governing radiative energy transfer. While numerical methods
such as Monte-Carlo and finite element techniques made complex
problems tractable, analytical approaches to solving the air-light in-
tegral in optically thin media recently received some attention in the
graphics community and showed to be a promising alternative to
traditional ray-marching/slice-based volume rendering techniques.

Building on the concepts introduced in [15], this paper ex-
tends that work by considering the light distribution of anisotropic
sources and provides a novel complementary reformulation of the
single-scattering air-light integral as to yield a more robust evalua-
tion scheme via domain partitioning. In addition, a more efficient
and numerically stable implementation is provided, allowing inter-
active performance to be achieved on graphics hardware.

This document starts by providing an overview of the related
work and theoretical background on the air-light integral. The
derivation of the analytical reformulations as well as a practical
implementation are then presented followed by some results along
with a discussion of the potential limitations of the method.

2 RELATED WORK

Several techniques have been proposed in the computer graphics
literature for rendering participating media, ranging from compu-
tationally expensive detailed simulations of multiple scattering in
complex environments to drastic approximations primarily con-
cerned with interactivity. [5] provides a survey of these methods.

Optically thin media were first investigated by Blinn [4] who in-
troduced an analytical model for homogeneous media assuming an
infinitely distant light source and viewer. Later, Max [12] proposed
to evaluate the air-light integral by fitting Hermite cubic polynomi-
als on adaptively subdivided intervals along the ray.

Despite the conceptual simplicity of single scattering in a homo-
geneous medium, numerical methods provide a convenient means
of dealing with the actual complexity of the corresponding in-
tegrand and many techniques based on ray-marching [14, 8] or
volume-slicing [6, 7, 10] have consequently been developed. Al-
though simple and practical, these techniques are essentially based
on Riemann sums inherently prompt to under-sampling artifacts.

Besides the image post-processing technique of Mitchell [13],
several analytical approaches have also been proposed. Concerned
with flight simulators, Willis [19] presented a simple model for ho-
mogeneous media solely considering a constant in-scattering term.
Hoffman et al. [9] and Riley et al. [16] derived such models for sin-
gle atmospheric scattering of directional sun light in constant and
exponentially decreasing medium densities respectively. Consider-
ing point light sources in homogeneous media, Lecocq et al. [11]
presented an angular formulation of the radiative transport equa-
tion. The resulting integrand is expanded into a Taylor series al-
lowing each term of the polynomial to be analytically integrated
for isotropic light sources while relying on numerical precompu-
tation for anisotropic distributions. Biri et al. [3, 2] subsequently
combined this angular formulation with volumetric shadows by ex-
pressing the ray integral as a difference of contributions along each
segment. In their paper, Sun et al. [18] rederive Lecocq’s formu-
lation using a different notation and perform an additional linear
change of variable to simplify it further. The integral is then tabu-
lated via numerical precomputation and cheaply interpolated on the
GPU during rendering. Besides trading computation for storage,
the second degree of freedom of this 2D table is a distance coordi-
nate of which the extent might not be known in advance. Wyman et
al. [20] subsequently combined this approach with ray-marching as
to handle light-shafts and anisotropic light distributions.

Recently, Pegoraro et al. [15] derived a closed-form solution to
the air-light integral in isotropic media and extended their result to
anisotropic phase functions. Although the potential of the method
for accuracy over previous numerical and analytical methods was
demonstrated, several limitations remain such as the restriction to
isotropic light sources and the slow convergence of the Taylor series
representation of the phase function over the semi-infinite subset of
the new space of integration. Moreover, the evaluation of the in-
tegral exhibits a loss of efficiency as the optical thickness of the
medium increases eventually leading to numerical instabilities, and
a CPU implementation was solely considered. Building on the con-
cepts introduced by the authors, this paper extends their work by
addressing the various aforementioned limitations.



3 AN ANALYTICAL APPROACH TO SINGLE SCATTERING

This section starts by describing the mathematical formulation of
the air-light integral in homogeneous participating media under the
assumption of an anisotropic phase function and light distribution.
After simplification, two analytical reformulations are subsequently
derived, each yielding a bounded-to-unity and unbounded magni-
tude of the variable of integration over complementary intervals of
the domain. In order to yield rapid convergence of the Taylor expan-
sions with only a few terms, the combined model exploiting each
reformulation over its bounded semi-interval is finally presented.

3.1 Air-Light Integral

Figure 1: Illustration of the terms involved in the computation of the
air-light integral.

For a given wavelength, the radiative transport equation (RTE)
describes the change of radiance L at position x along a ray of di-
rection ~ω through a medium as [17]

∂L(x, ~ω)

∂x
= κa(x)(Le(x, ~ω)−L(x, ~ω))+

κs(x)(Li(x, ~ω)−L(x,~ω)), (1)

where κa is the absorption coefficient, κs the scattering coefficient,
Le the emitted radiance, and Li the in-scattered radiance. Defining
the boundary condition as the background radiance Lb formalized
in equation 7, the medium radiance as Lm, the extinction coefficient
as κt = κa +κs and the optical thickness as τ(xa,xb) =

∫ xb

xa
κt(x)dx,

the RTE accepts an integral form which at a point xa reads

L(xa, ~ω) = e−τ(xa,xb)Lb(xb, ~ω)+Lm(xa,xb, ~ω) (2)

Lm(xa,xb, ~ω) =
∫ xb

xa

e−τ(xa,x)(κa(x)Le(x, ~ω)+κs(x)Li(x, ~ω))dx.

Assuming a homogeneous non-emitting medium of phase func-
tion Φ with argument the angle φ illuminated by an anisotropic
point light source of intensity I located at position ~pl and param-
eterized by the angle θ with the normalized direction ~vl , the in-
scattered radiance formulated in [14] can be extended to a point
~pe + x~ve along the view ray of origin ~pe and direction~ve as

Li(x, ~ω)=
e−κt d(x,~ω)

d(x, ~ω)2
I

(

arccos

(

(~pe + x~ve −~pl) ·~vl

d(x, ~ω)

))

Φ(φ(x, ~ω))

(3)
where the distance from the light source to the point is defined

as d(x, ~ω) =
√

h2 +(x− xh)2, and where h is the distance from
the light to the ray and xh the coordinate of its projection onto it,

both being constant for a given orientation as illustrated in figure 1.
Defining del =~ve ·~vl and dlel = (~pe −~pl) ·~vl , and using a 3-variate
interval notation specifying the lower endpoint, light projection co-
ordinate and upper endpoint respectively of the space of integration,
equation 2 then reads the following where x ∈ (−∞,xh,∞)

L(xa, ~ω) = e−κt (xb−xa)Lb(xb, ~ω)+Lm(xa,xb, ~ω)

Lm(xa,xb, ~ω) = κse
κt xa

∫ xb

xa

e
−κt

(

x+
√

h2+(x−xh)2

)

h2 +(x− xh)2
(4)

I

(

arccos

(

delx+dlel
√

h2 +(x− xh)2

))

Φ

(

arctan

(

x− xh

h

)

+
π

2

)

dx.

3.2 Simplified Formulation

As in [15], we start by simplifying the formulation of the medium
radiance via the change of variable u = x−xh

h with u ∈ (−∞,0,∞)
mapping coordinates before xh to negative values and that beyond
xh to positive ones. Defining the optical distance from the light to

the ray as H = κth and the constant dc = del xh+dlel

h then yields

Lm(xa,xb, ~ω) =
κs

h
eκt (xa−xh)

∫

xb−xh
h

xa−xh
h

e−H(u+
√

1+u2)

1+u2
(5)

I

(

arccos

(

delu+dc√
1+u2

))

Φ
(

arctan(u)+
π

2

)

du.

We also note that almost all phase functions are expressed in
terms of the cosine of the angle and define Φc such that Φ(φ) =
Φc(cos(φ)). Without loss of generality, the same assumption is
made about the light distribution and we define Ic such that I(θ) =
Ic(cos(θ)). Plugging this into equation 5 gives

Lm(xa,xb, ~ω) =
κs

h
eκt (xa−xh)

∫

xb−xh
h

xa−xh
h

e−H(u+
√

1+u2)

1+u2
(6)

Ic

(

delu+dc√
1+u2

)

Φc

(

− u√
1+u2

)

du.

In this work, the impact of the medium on surface shading is
assumed to be dominated by extinction phenomena and the back-
ground radiance is therefore computed as follows

Lb(xb, ~ω) =
e−κt d(xb,~ω)

d(xb, ~ω)2
Ic(−~ωi ·~vl)β (~ω, ~ωi,~n) ~ωi ·~n, (7)

where~n is the surface normal at xb, ~ωi is a vector directed towards
the light source and β is the bidirectional reflectance distribution
function (BRDF). The evaluation of the medium radiance is ad-
dressed in the remainder of this document.

3.3 First Analytical Reformulation

Following the substitution proposed in [15], we define v = u +√
1+u2 where v ∈ (0,1,∞) which yields

Lm(xa,xb, ~ω) =
κs

h
eκt (xa−xh)2

∫ vb

va

e−Hv

v2 +1
(8)

Ic

(

del(v
2 −1)+2dcv

v2 +1

)

Φc

(

− v2 −1

v2 +1

)

dv

where we note va = v(xa) and vb = v(xb) with

v(x) =
x− xh

h
+

√

1+

(

x− xh

h

)2

. (9)



Since deriving a custom analytical solution for all existing phase
functions and light distributions is obviously impossible, we also
use an expansion into a Taylor series as to express any phase func-
tion and light distribution as a polynomial, hence providing a com-

mon generic representation. Doing so yields IcΦc = ∑N−1
n=0 cnvn and

equation 8 then becomes

Lm(xa,xb, ~ω) =
κs

h
eκt (xa−xh)2

N−1

∑
n=0

cn

∫ vb

va

e−Hv

v2 +1
vn dv. (10)

While referring the reader to [15] for the details of the deriva-
tion, we define the imaginary entity ı2 = −1 and Ei as the expo-
nential integral function [1], and recall the notations I0(a,va,vb) =
i0(a,vb)− i0(a,va) and I1(a,va,vb) = i1(a,vb)− i1(a,va) with

i0(a,v) = sin(a)ℜ(Ei(av+ ıa))− cos(a)ℑ(Ei(av+ ıa)) (11)

i1(a,v) = cos(a)ℜ(Ei(av+ ıa))+ sin(a)ℑ(Ei(av+ ıa)).

The solution to equation 10 then reads

Lm(xa,xb, ~ω)=
κs

h
eκt (xa−xh)2

N−1

∑
n=0

cn

(

(−1)⌊
n
2
⌋I(n mod 2)(−H,va,vb)

+
n−2

∑
j=0

(

e−Hvb v
j
b
− e−Hva v

j
a

)

c(−H, j,n)

)

(12)

where

c(a, j,n) =
n−2− j

∑
i=(n−2− j) mod 2

i+=2

(−1)
n−i− j

2
(i+ j)!

j!

(

−1

a

)i+1

. (13)

Because the expansion is expressed in terms of powers of the
variable of integration, the series will converge rapidly whenever
the magnitude of the latter is no greater than 1 and slowly otherwise.
Given the space of the variable v, the reformulation derived above
consequently yields quick convergence with a few terms on the first
half of the domain while requiring many terms on the second half.

3.4 Second Analytical Reformulation

We now define a complementary reformulation and propose the

substitution w = u−
√

1+u2 with w ∈ (−∞,−1,0) which yields

Lm(xa,xb, ~ω) =
κs

h
eκt (xa−xh)2

∫ wb

wa

e
H
w

w2 +1
(14)

Ic

(

−del(w
2 −1)+2dcw

w2 +1

)

Φc

(

w2 −1

w2 +1

)

dw

where we note wa = w(xa) and wb = w(xb) with

w(x) =
x− xh

h
−

√

1+

(

x− xh

h

)2

. (15)

Expanding the phase function and light distribution into a Taylor

series yields IcΦc = ∑N−1
n=0 dnwn and equation 14 then becomes

Lm(xa,xb, ~ω) =
κs

h
eκt (xa−xh)2

N−1

∑
n=0

dn

∫ wb

wa

e
H
w

w2 +1
wn dw. (16)

While appendix A provides the details of the derivation,
we define J0(a,wa,wb) = j0(a,wb) − j0(a,wa), J1(a,wa,wb) =

j1(a,wb)− j1(a,wa) and Je(a,wa,wb) = Ei
(

a
wb

)

−Ei
(

a
wa

)

with

j0(a,w) = −sin(a)ℜ
(

Ei
( a

w
+ ıa

))

+ cos(a)ℑ
(

Ei
( a

w
+ ıa

))

(17)

j1(a,w) = cos(a)ℜ
(

Ei
( a

w
+ ıa

))

+ sin(a)ℑ
(

Ei
( a

w
+ ıa

))

−Ei
( a

w

)

.

The solution to equation 16 finally reads

Lm(xa,xb, ~ω) =
κs

h
eκt (xa−xh)2

N−1

∑
n=0

dn

(

(−1)⌊
n
2
⌋J(n mod 2)(H,wa,wb)(18)

+Je(H,wa,wb) H d(H,0,n)−
n−2

∑
j=0

(

e
H
wb w

j+1
b

− e
H
wa w

j+1
a

)

d(H, j,n)

)

where

d(a, j,n) =
n−2− j

∑
i=(n−2− j) mod 2

i+=2

(−1)
n−i− j

2
j!

(i+ j +1)!
ai. (19)

Because the space of the variable w exhibits properties that are
complementary to that of the variable from the previous section, the
reformulation derived above converges quickly on the second half
of the domain while requiring many terms on the first half.

3.5 Combined Formulation

In order for the Taylor expansions to converge rapidly over the en-
tire domain, each reformulation is used over its finite semi-interval
such that the variable of integration always has a magnitude smaller
than 1. Therefore, considering the simplified formulation given in
equation 6, the first reformulation is used if both bounds of the do-
main of integration are negative, while the second is used if both
are positive. In case the bounds have opposite signs, the integral is
split into 2 sub-integrals, each being estimated separately depend-
ing on the sign of its upper bound. If the latter is negative, the first
reformulation is used with a lower bound of 1, while the second
reformulation is used with a lower bound of −1 if it is positive.

Lm(xa,xb, ~ω) = Lm(xh,xb, ~ω)−Lm(xh,xa, ~ω) =
κs

h
eκt (xa−xh) (20)

(

∫

xb−xh
h

0

e−H(u+
√

1+u2)

1+u2
Ic

(

delu+dc√
1+u2

)

Φc

(

− u√
1+u2

)

du−

∫

xa−xh
h

0

e−H(u+
√

1+u2)

1+u2
Ic

(

delu+dc√
1+u2

)

Φc

(

− u√
1+u2

)

du

)

.

Although it might at first seem like a separate Taylor series is
required for each reformulation, the simple change of sign of the
cosine parameter between both representations actually makes the
correspondence between their respective expansions fairly trivial.
For even functions such as a Rayleigh phase function or a raising
to an even exponent as used to define a two-lobed spotlight distri-
bution, the two series of derivatives are actually identical and a sin-
gle expansion is therefore necessary. When considering a Henyey-
Greenstein phase function, the change of sign of the parameter is
essentially equivalent to a change of sign of the asymmetry coeffi-
cient, and here again, a single expansion is effectively sufficient.

Also, as the phase function parameter only depends on the vari-
able of integration, the coefficients can be computed once only from

an expansion in a fixed point, typically 1
2 for the first reformulation

and − 1
2 for the second. However, the light distribution parameter

also depends on external factors and the coefficients must conse-
quently be recomputed from the sequence of derivatives for each
individual view ray. We therefore propose to expand the function
in the mid-point of the given domain of integration, hence yielding
more accurate results at virtually no additional cost.

4 IMPLEMENTATION

This section starts by addressing the implementation of the
complex-valued and real-valued exponential integral respectively.
A discussion of the evaluation of the introduced functions is then
presented before providing a pseudo-code illustration summarizing
the various steps involved in the overall algorithm.



4.1 Complex-Valued Exponential Integral

An efficient implementation for optically thin media was provided
in [15] which allows for both a relative and an absolute control
on the precision of the results. However, this implementation is
solely based on the power series representation of the complex ex-
ponential integral which converges slowly in optically thick media,
eventually leading to numerical instabilities. As the exponential in-
tegral belongs to the class of non-elementary special functions and
is not part of the standard C/C + + libraries, we here provide a
more robust implementation that additionally relies on the asymp-
totic series representation, albeit only allowing for a control on the
absolute error of the results.

Assuming z /∈ (−∞,0], the convergent power series reads

Ei(z) = γ + ln(z)+
∞

∑
k=1

zk

k k!
(21)

where the Euler-Mascheroni constant is defined as γ ≈
0.577215664901532860606512 . . . [1]. Formulating a complex
number z = x + ıy into its exponential form z = ρeıϕ where ρ =

|z| =
√

x2 + y2 and ϕ = Arg(z) = atan2(y,x) gives

ℜ(Ei(z)) = γ + ln(ρ)+
∞

∑
k=1

ρk

k k!
cos(kϕ) (22)

ℑ(Ei(z)) = ϕ +
∞

∑
k=1

ρk

k k!
sin(kϕ). (23)

Assuming z /∈ (−∞,∞), the divergent asymptotic series reads

Ei(z) ≈ ez
K

∑
k=1

k!

k zk
+ ı sign(ℑ(z))π (24)

where K = ⌊ρ⌋+1 and from which follows that

ℜ(Ei(z)) ≈ ex
K

∑
k=1

k!

k ρk
cos(y− kϕ) (25)

ℑ(Ei(z)) ≈ ex
K

∑
k=1

k!

k ρk
sin(y− kϕ)+ sign(y)π. (26)

As the asymptotic series imposes a bound on the achievable ac-
curacy for a given z, the choice of the series to be used to reach
a well defined precision requirement is a crucial factor. Since the
definition of such criterion was however absent from all the litera-
ture that we could consult, we derived a rule on our own based on
a mathematical analysis of the behavior of the asymptotic series.
As the derivation of this criterion is well beyond the scope of the
current document, we readily report our result below which reads

1 ≤ ρ ∧ x−⌊ρ⌋ < ln(ε)−1 (27)

where the term on the right-hand side of the second inequation is
constant for a given tolerable absolute error ε . If the condition is
satisfied the asymptotic series should be used while the power series
should be preferred otherwise. Given that the complex exponential
integral is at the heart of our approach, pseudo-code for its evalua-
tion based on the preceding formulations is provided in figure 2.

4.2 Real-Valued Exponential Integral

Regarding the real-valued exponential integral appearing in the def-
inition of Je, we note that the parameters are here always negative.
Given that Ei(−x) =−E1(x) for x > 0 with E1 being the Theis well
function, the approximations available to the latter [1] can be used
and are recalled below for completeness purposes.

1. Ei(x, y, precision, maxIterations)

2. ρ = sqrt(x∗ x+ y∗ y);
3. ϕ = atan2(y,x);
4. i f (1 ≤ ρ && x−floor(ρ) < log(precision)−1)
5. eix = 0;

6. eiy = (0 < y) ? PI : −PI;

7. term = exp(x)/ρ;

8. maxIterations = min(maxIterations,floor(ρ)+1);
9. f or(k = 1;k ≤ maxIterations;k ++)

10. angle = y− k ∗ϕ ;

11. eix+ = term∗ cos(angle);
12. eiy+ = term∗ sin(angle);
13. i f (term < precision)break;

14. term∗ = k/ρ;

15. else

16. eix = γ + log(ρ);
17. eiy = ϕ ;

18. pow f ac = 1;

19. f or(k = 1;k ≤ maxIterations;k ++)
20. pow f ac∗ = ρ/k;

21. term = pow f ac/k;

22. angle = k ∗ϕ ;

23. eix+ = term∗ cos(angle);
24. eiy+ = term∗ sin(angle);
25. i f (term < precision)break;

26. return (eix,eiy);

Figure 2: Pseudo-code for evaluating the Exponential Integral in the
complex plane excluding the real axis

For 0 < x ≤ 1, the following polynomial approximation exhibits
|ε(x)| < 2 ·10−7

E1(x) = a0 +a1x+a2x2 +a3x3 +a4x4 +a5x5 − ln(x)+ε(x) (28)

a0 = −0.57721566 a3 = +0.05519968
a1 = +0.99999193 a4 = −0.00976004
a2 = −0.24991055 a5 = +0.00107857

(29)

For 1 < x < ∞, the rational approximation yields |ε(x)|< 2 ·10−8

E1(x) =
e−x

x

(

a0 +a1x+a2x2 +a3x3 + x4

b0 +b1x+b2x2 +b3x3 + x4
+ ε(x)

)

(30)

a0 = 0.2677737343 b0 = 3.9584969228
a1 = 8.6347608925 b1 = 21.0996530827
a2 = 18.0590169730 b2 = 25.6329561486
a3 = 8.5733287401 b3 = 9.5733223454

(31)

4.3 Functions I0, I1, J0, J1 and Je

We now highlight the identities below

j0(a,w) = −i0

(

a,
1

w

)

(32)

j1(a,w) = i1

(

a,
1

w

)

−Ei
( a

w

)

(33)

from which follows that

J0(a,wa,wb) = −I0

(

a,
1

wa
,

1

wb

)

(34)

J1(a,wa,wb) = I1

(

a,
1

wa
,

1

wb

)

− Je(a,wa,wb). (35)



Given the recurrence of functions I0 and I1, pseudo-code for their
evaluation based on the implementation of the exponential integral
previously presented is provided in figure 3 which can be readily
used in place of the implementation from [15].

1. I01(a, va, vb, precision, maxIterations)

2. (eixa,eiya) = Ei(a∗ va,a, precision,maxIterations);
3. (eixb,eiyb) = Ei(a∗ vb,a, precision,maxIterations);
4. eixb− = eixa;

5. eiyb− = eiya;

6. cosa = cos(a);
7. sina = sin(a);
8. I0 = sina ∗ eixb − cosa ∗ eiyb;

9. I1 = cosa ∗ eixb + sina ∗ eiyb;

10. return (I0, I1);

Figure 3: Pseudo-code for computing I0(a,va,vb) and I1(a,va,vb)

It is also worth noting that the terms I0 and I1 in equation 12
and the terms J0, J1 and Je in equation 18 are independent of the
value of the iterator n and can consequently be computed once only
before entering the loops.

4.4 Overall Algorithm

High-level pseudo-code summarizing the various steps involved in
the overall algorithm is finally provided in figure 4. The coeffi-
cients of the Taylor expansions that appear on lines 6 and 11 can be
computed using the series of derivatives provided in appendix B.

1. ComputeEyeRadiance()

2. Compute Lm;

3. Compute bounds of integral in equation 6;

4. If both are negative, use first reformulation;

5. Compute bounds va and vb as in equation 9;

6. Compute coefficients cn for arguments in equation 8;

7. Compute I0 and I1 as in section 4.3;

8. Compute Lm using equations 12 and 13;

9. If both are positive, use second reformulation;

10. Compute bounds wa and wb as in equation 15;

11. Compute coefficients dn for arguments in equation 14;

12. Compute J0, J1 and Je as in section 4.3;

13. Compute Lm using equations 18 and 19;

14. If they have opposite signs, use combined formulation;

15. Compute each sub-integral based on upper bound sign;

16. Compute Lm as in first part of equation 20;

17. Compute Lb as in equation 7;

18. Compute L as in first part of equation 4;

Figure 4: Pseudo-code of the overall algorithm

5 RESULTS

The method was first implemented in a software ray-tracer making
use of the first 6 terms of the Taylor expansions. In order to assess
the robustness of the combined formulation, we designed scenes
with relatively wide extents of integration. Figure 5(a) illustrates
the results obtained for a Rayleigh phase function and shows the
limitations of the first analytical reformulation proposed in [15],
while when combined with our second analytical reformulation, re-
sults become virtually indistinguishable from the reference solu-
tion. The extension of the first reformulation to anisotropic lights
was also evaluated in figure 5(b) where artifacts are clearly visible
while the new combined formulation proves to be fairly accurate.

Figure 5: (a) A bench in a park covered in anisotropic mist, and (b)
a concert stage lit by 3 colorful spotlights, rendered using (from top
to bottom) the first analytical reformulation as proposed in [15], our
combined formulation, and Monte Carlo integration.

Figure 6(a) shows the impact of the point of expansion for
anisotropic sources. While plausible results are obtained by ex-
panding the light distribution at fixed positions, artifacts remain
such as an erroneous darkening above the streetlamp and inaccu-
rate brightening around the car. On the other hand, a custom expan-
sion in the mid-point of the bounds of each integral yields results
matching the reference image more closely.

Finally, the method was implemented in a fragment shader using
OpenGL and Cg running on an NVIDIA GeForce 8800 GTX un-
der Windows XP 32-bit. The integral was evaluated independently
for each color channel, hence 3 times per fragment, using the first
4 terms of the Taylor expansions due to hardware-specific limita-
tions. Figure 6(b) provides a comparison of the performance char-
acteristics for a scene containing an optically thick medium with
an isotropic phase function and light source. While rendering at
70 FPS in about 33 iterations, the implementation provided in [15]
leads to numerical instabilities inducing exceptional floating-point
values, e.g. NaN or Inf, here flagged as saturated pixels. In contrast,
our new implementation proves to be much more robust and yields
a frame rate of 226 FPS while converging in about 23 iterations.
Performance characteristics for anisotropic light sources were also
evaluated and despite the extra computation involved, interactivity
was maintained at 39 FPS.



Figure 6: (a) A car driving on a foggy road illuminated by anisotropic
headlights and a streetlamp, rendered using (from top to bottom) our
combined formulation with an expansion in a fixed point, our com-
bined formulation with an expansion in the mid-point of the integra-
tion domain, and Monte Carlo integration. (b) A lighthouse in thick
brume rendered in real-time using (from top to bottom) an isotropic
light with the implementation from [15] compared against our numer-
ically stable implementation, and an anisotropic two-lobed spotlight.

6 DISCUSSION AND FUTURE WORK

While the proposed combined formulation substantially increases
the accuracy of the method, relying on a Taylor expansion in-
duces inherent limitations. Besides the need for human interven-
tion, many terms are required to accurately model functions with
high frequency features, and strongly peaked phase functions or
very focused light beams are problematic in practice.

In addition to the coupling with a shadow volume algorithm to
render light shafts as in [2], the extension to inhomogeneous media
could also be addressed as to make the method suitable to a broader
spectrum of applications, and the impact of in-scattering on surface
shading considered as in [18] in order to increase realism.

7 CONCLUSION

In this paper, we have presented a novel analytical approach to
single scattering from point light sources in homogeneous media.
We have shown how to derive a combined formulation of the air-
light integral providing more accurate evaluations of anisotropic
phase functions and which is, to the best of our knowledge, the
first method to handle anisotropic light distributions analytically.

The technique relies neither on precomputation nor on storage,
and we have provided a practical implementation yielding numeri-
cally stable results more efficiently. Moreover, the adequacy of the
method to graphics hardware was illustrated and its suitability to
real-time applications demonstrated.
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A ANTIDERIVATIVES

As an antiderivative for the resulting integrand did not appear in
any of the standard tables of integrals we had access to, we derived
a solution on our own and provide this potentially new result below

∫
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w

w2 +1
wndw = Ei
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w

)
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a
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In order to express formula 36 in terms of real entities, we in-

troduce two other antiderivatives. Noting that Ei(z̄) = Ei(z) and
expanding each term into its real ℜ and imaginary ℑ parts, these
simplify into functions that we referred to as j0 and j1 respectively
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Exploiting the periodicity of ın−1, it then follows that
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B TAYLOR SERIES COEFFICIENTS

We finally provide series of derivatives for sample anisotropic func-
tions which can be readily used to compute the coefficients of the
Taylor representations. Considering a Rayleigh phase function, the
first 6 terms of the expansion are described by

f (0)(x) =
3

4
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Using the short-hand notation a = del and b = 2dc, the following
series describes the first 4 terms of a two-lobed light distribution
which raises the cosine parameter to an even power p, and reads
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The derivatives yield the coefficients of the truncated power se-
ries centered in x0. The polynomial coefficients can then be com-
puted in-place from the latter in order of increasing index n by use
of the binomial theorem to finally yield cn or dn as follows
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