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Abstract

Despite their numerous applications, efficiently rendering participating media remains a challenging task due to

the intricacy of the radiative transport equation. As they provide a generic means of solving a wide variety of prob-

lems, numerical methods are most often used to solve the air-light integral even under simplifying assumptions. In

this paper, we present a novel analytical approach to single scattering from isotropic point light sources in homo-

geneous media. We derive the first closed-form solution to the air-light integral in isotropic media and extend this

formulation to anisotropic phase functions. The technique relies neither on pre-computation nor on storage, and

we provide a practical implementation allowing for an explicit control on the accuracy of the solutions. Finally,

we demonstrate its quantitative and qualitative benefits over both previous numerical and analytical approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Participating media model a wide variety of elements and the
ability to faithfully reproduce their characteristics has many
scientific applications. Although realistic rendering is often
of concern to the movie and gaming industries, such interest
also emerged among safety oriented research where typical
scenarios entail predicting the visibility of traffic signs in a
foggy weather or exit signs in a smoke-filled room.

However, efficiently simulating accurate light transport in
such media remains a challenging task due to the intricacy
of the equation governing radiative energy transfer. While
Monte-Carlo and finite element techniques made complex
problems tractable, generic numerical methods such as ray-
marching and volume-slicing are most often used to compute
a solution to the air-light integral even under simplifying as-
sumptions. Although simple and practical, these techniques
do not exploit the characteristics of the integrand of concern
and are prompt to under-sampling artifacts.

Considering optically thin media lit by isotropic light
sources, this paper presents an analytical approach to solv-
ing the single scattering air-light integral. It provides a novel
reformulation of the latter as to yield a closed-form solution

in terms of well-known functions for isotropic media, and
extends the previous results to anisotropic phase functions.

This document starts by providing an overview of the re-
lated work and theoretical background on the air-light in-
tegral. The derivation of the analytical solutions as well as
a practical implementation are then presented followed by
both quantitative and qualitative results along with a discus-
sion of the potential limitations of the method.

2. Related Work

Several techniques have been proposed in the computer
graphics literature for rendering participating media, rang-
ing from computationally expensive detailed simulations of
multiple scattering in complex environments to drastic ap-
proximations primarily concerned with interactivity. A good
survey of these methods is provided in [CPCP∗05].

Optically thin media were first investigated by Blinn
[Bli82] who introduced an analytical model for homoge-
neous media under the assumption of an infinitely distant
light source and viewer. Later, Max [Max86] proposed to
evaluate the air-light integral by fitting Hermite cubic poly-
nomials on adaptively subdivided intervals along the ray.
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Despite the conceptual simplicity of single scattering in
a homogeneous medium, numerical methods provide a con-
venient means of dealing with the actual complexity of the
corresponding integrand and many techniques based on ray-
marching or volume-slicing have consequently been devel-
oped. Considering anisotropic media lit by spotlights of
varying intensity, Nishita et al. [NMN87] proposed to bound
each light by a cone as to restrict ray-marching to illumi-
nated segments only. Dobashi et al. [DYN00] exploit the
GPU capabilities to perform hardware blending of view-
aligned slices mapped with textures describing the light
intensity and computed on the CPU. To reduce aliasing
without compromising interactivity, they [DYN02] subse-
quently proposed to approximate the integral of a product
as a product of integrals, allowing the low frequencies to be
coarsely evaluated on the CPU while higher-frequencies are
finely sampled via textured subplanes. Being also concerned
about the trade-offs between aliasing and cost, Imagire et
al. [IJTN07] proposed to divide the space into a set of sam-
pling hulls of which contributions are hardware-blended, al-
lowing for higher sampling rates while limiting read-write
memory accesses. In their paper [ET08], the authors also re-
sort to ray-marching to compute the final scattering intensity
of a pixel based on the number of lit samples, and build a
min-max MIP-MAP of the shadow map to allow finer sam-
pling in potentially high-frequency regions. Jittering of the
initial samples along each ray is used to remove aliasing ar-
tifacts from regular sampling, alas introducing noise instead.

Besides the image post-processing technique of Mitchell
[Mit07], several analytical approaches have also been pro-
posed. Hoffman et al. [HP02] and Riley et al. [REK∗04] de-
rived such models for single atmospheric scattering of di-
rectional sun light in constant and exponentially decreas-
ing medium densities respectively. Considering point light
sources, Lecocq et al. [LMAK00] presented an angular for-
mulation of the radiative transport equation and expand the
resulting integrand into a Taylor series allowing each term to
be analytically integrated. Biri et al. [BMA03,BAM06] sub-
sequently combined this angular formulation with volumet-
ric shadows by expressing the ray integral as a difference of
contributions along each segment. While presenting theoret-
ical advantages, the derivation of each term of the Taylor ex-
pansion however usually requires a human intervention and
the method consequently does not lend itself to well-defined
precision requirements. In their paper, Sun et al. [SRNN05]
rederive Lecocq’s formulation using a different notation and
perform an additional linear change of variable to simplify it
further. The integral is then tabulated via numerical precom-
putation and cheaply interpolated on the GPU during render-
ing, hence trading computation for storage. Also, while the
angular coordinate of this 2D table is bounded, the second
degree of freedom is a distance of which extent might not be
known in advance. Wyman et al. [WR08] subsequently com-
bined this approach with ray-marching as to handle light-
shafts and anisotropic light sources.

3. An Analytical Solution to Single Scattering

This section starts by describing the mathematical formu-
lation of the air-light integral in homogeneous participating
media under the assumption of an isotropic light. An ana-
lytical solution for isotropic media is subsequently derived
before extending this result to anisotropic phase functions.

3.1. The Air-Light Integral

Figure 1: Illustration of the terms involved in the computa-

tion of the air-light integral.

For a given wavelength, the radiative transport equation
(RTE) describes the change of radiance L along a ray of di-
rection ~ω through a medium as [SH81]

∂L(x,~ω)

∂x
= κa(x)(Le(x,~ω)−L(x,~ω))+

κs(x)(Li(x,~ω)−L(x,~ω)), (1)

where κa is the absorption coefficient, κs the scattering co-
efficient, Le the emitted radiance, and Li the in-scattered ra-
diance. Defining the boundary condition as the background
radiance Lb, the extinction coefficient as κt = κa +κs and the
optical thickness as τ(xa,xb) =

R xb

xa
κt(x)dx, the RTE accepts

an integral form which at a point xa reads

L(xa,~ω) = e
−τ(xa,xb)Lb(xb,~ω)+ (2)

Z xb

xa

e
−τ(xa,x)(κa(x)Le(x,~ω)+κs(x)Li(x,~ω))dx.

Assuming a homogeneous non-emitting medium of phase
function Φ illuminated by an isotropic point light source of
intensity I, the in-scattered radiance reads [NMN87]

Li(x,~ω) = I
e−κt d(x,~ω)

d(x,~ω)2 Φ(φ(x,~ω)) (3)

= I
e−κt

√
h2+(x−xh)2

h2 +(x− xh)2 Φ
(

arctan
(

x− xh

h

)

+
π

2

)

where h is the distance from the light to the given ray and xh

the coordinate of its projection onto it, both being constant
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for a given orientation along the ray as illustrated in figure 1.
Defining Lm as the medium radiance, equation 2 becomes

L(xa,~ω) = e
−κt (xb−xa)Lb(xb,~ω)+ (4)

Iκse
κt xa

Z xb

xa

e
−κt

(

x+
√

h2+(x−xh)2
)

h2 +(x− xh)2 Φ
(

arctan
(

x− xh

h

)

+
π

2

)

dx

︸ ︷︷ ︸

Lm(xa,xb,~ω)

.

In this work, the impact of the medium on surface shading
is assumed to be dominated by extinction phenomena and
the background radiance is therefore computed as follows

Lb(xb,~ω) = I
e−κt d(xb,~ω)

d(xb,~ω)2 β(~ω,~ωi,~n) ~ωi ·~n, (5)

where ~n is the surface normal at xb, ~ωi is a vector directed
towards the light source and β is the bidirectional reflectance
distribution function (BRDF). The evaluation of the medium
radiance is addressed in the remainder of this document.

3.2. Analytical Reformulation

We start by simplifying the formulation of the medium ra-
diance such that the integrand becomes a function of only 2
parameters. For this, we make the following change of vari-
able u = x−xh

h , and define the optical distance from the light
source to the ray as H = κth, which yields

Lm(xa,xb,~ω) = (6)

I
κs

h
e

κt (xa−xh)
Z

xb−xh
h

xa−xh
h

e−H(u+
√

1+u2)

1+u2 Φ
(

arctan(u)+
π

2

)

du.

We also note that almost all phase functions are expressed
in terms of the cosine of the angle and define Φc such that
Φ(φ) = Φc(cos(φ)). Plugging this into equation 6 gives

Lm(xa,xb,~ω) = (7)

I
κs

h
e

κt (xa−xh)
Z

xb−xh
h

xa−xh
h

e−H(u+
√

1+u2)

1+u2 Φc

(

− u√
1+u2

)

du.

We finally propose the following substitution v = u +√
1+u2 which uniquely defines u = v2−1

2v , and yields

Lm(xa,xb,~ω) = I
κs

h
e

κt (xa−xh)2
Z vb

va

e−Hv

1+ v2 Φc

(

1− v2

1+ v2

)

dv

(8)
where we note va = v(xa) and vb = v(xb) with

v(x) =
x− xh

h
+

√

1+
(

x− xh

h

)2
. (9)

While this formulation might still seem relatively convo-
luted, it is actually key to our approach and will allow the
derivation of analytical solutions to the air-light integral as
discussed in the subsequent sections.

3.3. Isotropic Phase Function

When considering an isotropic medium, the phase function

reads Φc

(
1−v2

1+v2

)

= 1
4π and equation 8 becomes

Lm(xa,xb,~ω) = I
κs

h
e

κt (xa−xh) 2
4π

Z vb

va

e−Hv

1+ v2 dv. (10)

Defining the imaginary entity ı2 = −1 and Ei as the ex-
ponential integral function [AS72], the resulting integrand
accepts an antiderivative known to be
Z

eav

1+ v2 dv =
ı

2

(

e
−ıa

Ei(av+ ıa)− e
ıa

Ei(av− ıa)
)

. (11)

Noting that Ei(z̄) = Ei(z) and expanding each term into
its real ℜ and imaginary ℑ parts, equation 11 simplifies into
a function that we refer to as i0 and which reads
Z

eav

1+ v2 dv=sin(a)ℜ(Ei(av+ ıa))− cos(a)ℑ(Ei(av+ ıa))

= i0(a,v). (12)

Defining I0(a,va,vb) = i0(a,vb)− i0(a,va), equation 10
can then be rewritten as follows

Lm(xa,xb,~ω) = I
κs

h
e

κt (xa−xh) 2
4π

I0(−H,va,vb)

= I
κs

h
e

κt (xa−xh) 2
4π

(13)
(

sin(−H)ℜ
(

Ei
(
−H(vb + ı)

)
−Ei

(
−H(va + ı)

))

−cos(−H)ℑ
(

Ei
(
−H(vb + ı)

)
−Ei

(
−H(va + ı)

))
)

.

To the best of our knowledge, this is the first closed-
form solution expressed in terms of well-known functions
proposed in the literature to the air-light integral under the
given assumptions. Although the solution involves a non-
elementary special function, namely the exponential inte-
gral, it demonstrates the theoretical foundations for how the
air-light integral relates to this standard mathematical entity.

3.4. Anisotropic Phase Function

We now show how the previous results can be extended to
anisotropic media. Since deriving a custom analytical solu-
tion for all existing phase functions is obviously impossible,
we seek a generic mechanism for them to expose a common
interface. For this, we propose to use an expansion into a
Taylor series as to express any phase function as a polyno-
mial. Please note that unlike Lecocq’s approach [LMAK00]
where the entire integrand is expanded via an often arduous
process into a series in order to easily approximate the in-
tegral, we only expand the phase function formulation as to
provide a common generic representation. Doing so yields

Φc

(
1−v2

1+v2

)

= ∑
N−1
n=0 cnvn and equation 8 then becomes

Lm(xa,xb,~ω) = I
κs

h
e

κt (xa−xh)2
N−1

∑
n=0

cn

Z vb

va

e−Hv

1+ v2 v
n

dv. (14)
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As an antiderivative for the resulting integrand did not ap-
pear in any of the standard tables of integrals we had access
to, we derived a generic solution on our own and verified
the formulations obtained with this potentially new result for
various individual values of n against the outputs provided
by Mathematica. This solution reads

Z

eav

1+ v2 v
n
dv = e

av
n−2

∑
j=0

v
j
c(a, j,n)+ (15)

1
2

(
1

ın−1 e
−ıa

Ei(av+ ıa)+ ı
n−1

e
ıa

Ei(av− ıa)

)

where

c(a, j,n) =
n−2− j

∑
i=(n−2− j) mod 2

i+=2

(−1)
n−i− j

2
(i+ j)!

j!

(

−1
a

)i+1

.(16)

In order to express formula 15 in terms of real entities, we
introduce the following antiderivative
Z

eav

1+ v2 vdv=
1
2

(

e
−ıa

Ei(av+ ıa)+ e
ıa

Ei(av− ıa)
)

=cos(a)ℜ(Ei(av+ ıa))+ sin(a)ℑ(Ei(av+ ıa))

= i1(a,v). (17)

Exploiting the periodicity of ın−1 and expanding each
term into its real and imaginary parts, it then follows that

Z

eav

1+ v2 v
n
dv = e

av
n−2

∑
j=0

v
j
c(a, j,n)+ (18)

(−1)⌊
n mod 4

2 ⌋
i(n mod 2)(a,v).

Defining I1(a,va,vb) = i1(a,vb)− i1(a,va), the solution
to equation 14 finally reads

Lm(xa,xb,~ω) = I
κs

h
e

κt (xa−xh)2
N−1

∑
n=0

cn

(
n−2

∑
j=0

(

e
−Hvb v

j
b
− e

−Hva v
j
a

)

c(−H, j,n)+

(−1)⌊
n mod 4

2 ⌋
I(n mod 2)(−H,va,vb)

)

. (19)

4. Implementation

Although several libraries provide implementations of the
exponential integral, the latter belongs to the class of non-
elementary special functions and is not part of the standard
C/C ++ libraries. Therefore, we chose to implement a cus-
tom solution optimized for the application of concern by
amortizing computational efforts in a single iterative loop.

The exponential integral is most often evaluated via the
following convergent series assuming z /∈ {−∞,0}

Ei(z) = γ+ ln(z)+
∞
∑
k=1

zk

k k!
(20)

where the Euler-Mascheroni constant is defined as γ ≈
0.577215664901532860606512 . . . [AS72]. Formulating a
complex number z = x+ ıy into its exponential form z = ρeıϕ

where ρ = |z|=
√

x2 + y2 and ϕ = Arg(z) = atan2(y,x) gives

ℜ(Ei(z)) = γ+ ln(ρ)+
∞
∑
k=1

ρk

k k!
cos(kϕ) (21)

ℑ(Ei(z)) = ϕ+
∞
∑
k=1

ρk

k k!
sin(kϕ). (22)

Defining zv = av + ıa = ρveıϕv where ρv =
√

a2(v2 +1)
and ϕv = atan2(a,av), equations 12 and 17 become

i0(a,v) = sin(a)(γ+ ln(ρv))− cos(a)ϕv

+
∞
∑
k=1

ρk
v

k k!
sin(a− kϕv) (23)

i1(a,v) = cos(a)(γ+ ln(ρv))+ sin(a)ϕv

+
∞
∑
k=1

ρk
v

k k!
cos(a− kϕv) (24)

from which follows that

I0(a,va,vb) = sin(a) ln

(
ρvb

ρva

)

− cos(a)(ϕvb −ϕva)

+
∞
∑
k=1

1
k k!

(
ρk

vb
sin(a− kϕvb)−ρk

va
sin(a− kϕva)

)
(25)

I1(a,va,vb) = cos(a) ln

(
ρvb

ρva

)

+ sin(a)(ϕvb −ϕva)

+
∞
∑
k=1

1
k k!

(
ρk

vb
cos(a− kϕvb)−ρk

va
cos(a− kϕva)

)
. (26)

To exploit the similarities between the formulations of I0
and I1, we implemented a single function computing both re-
sults simultaneously and of which pseudo-code is provided
in figure 2. The quality of the results is determined by line
25. interrupting the iterative process if the convergence test
is satisfied. As the sine and cosine terms in the increments
might reach local minima and provide an erroneous indica-
tion of the actual state of convergence, the test is performed
on a distinct indicator being a conservative estimate of the
potential amplitude of the increments obtained when the two
terms have opposite signs. Depending on the needs, the indi-
cator might be directly compared against the desired preci-
sion to provide a control on the absolute error or its product
with each integral for a control on the relative error. Also, it
is worth noting that the terms I0 and I1 in equation 19 are in-
dependent of the value of the iterator n and can consequently
be computed once only before entering the loop.

5. Results

The method was implemented in a software ray-tracer run-
ning on an Intel Xeon 3.00GHz processor desktop. Perfor-
mance characteristics for the various scenes are provided
in table 1. In order to evaluate the quality of the results
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1. I01(a, va, vb, precision, maxIterations)

2. ρva = sqrt(a∗a∗ (va ∗ va +1));
3. ρvb = sqrt(a∗a∗ (vb ∗ vb +1));
4. ϕva = atan2(a,a∗ va);
5. ϕvb = atan2(a,a∗ vb);
6. sina = sin(a);
7. cosa = cos(a);
8. logv = log(ρvb/ρva);
9. phiv = ϕvb −ϕva ;

10. I0 = sina ∗ logv − cosa ∗ phiv;
11. I1 = cosa ∗ logv + sina ∗ phiv;
12. k f ac = 1;
13. ρk

va
= 1;

14. ρk
vb

= 1;
15. f or(k = 1;k ≤ maxIterations;k ++)
16. k f ac∗ = k;
17. ρk

va
∗ = ρva ;

18. ρk
vb
∗ = ρvb ;

19. ϕkva
= a− k ∗ϕva ;

20. ϕkvb
= a− k ∗ϕvb ;

21. denom = 1/(k ∗ k f ac);
22. I0+ = (ρk

vb
∗ sin(ϕkvb

)−ρk
va
∗ sin(ϕkva

))∗denom;
23. I1+ = (ρk

vb
∗ cos(ϕkvb

)−ρk
va
∗ cos(ϕkva

))∗denom;
24. indicator = (ρk

vb
+ρk

va
)∗denom;

25. i f (Converged(indicator, precision, I0, I1))break;
26. return(I0, I1);

Figure 2: Pseudo-code of the function simultaneously com-

puting I0(a,va,vb) and I1(a,va,vb)

over a wide range of ray trajectories, we experimented with
an environment camera as shown in figure 3. When using
Lecocq’s method with the first 5 terms of the Taylor ex-
pansion as provided in [BMA03], ghosting artifacts occur
in directions opposite to the light sources where negative
estimates are generated followed by large over-evaluations.
While the artifacts are less dramatic when bi-linearly inter-
polating Sun’s 512x512 precomputed table made available
by the authors, white spots remain due to the inability of
the tabulated data to capture fine variations of the function.
Moreover, inaccuracies occur in places where the distance
parameter falls outside of the range of values handled by
their table causing an erroneous brightening mostly visible
under the arcades. On the other hand, our method automat-
ically adapts to the required accuracy as to faithfully match
the reference image. The quality of the results is highlighted
in figure 6 where the errors here visible in our results are ac-
tually due to noise yet remaining in the reference solutions.

Figure 4 shows a scene containing an isotropic fog in
which the air-light integral is evaluated independently for
each color channel. When adjusting the step size as to match
the rendering time of our approach, ray-marching yields se-
vere undersampling artifacts. While being less obvious than
previously, Lecocq’s method also induces inaccuracies most
noticeable around the glows of the light sources.

Figure 3 (1024x512) 4 (512x512) 5 (512x512)
Metric Time Error Time Error Time Error

Ray-Marching 35 s 4.2e-2
Lecocq 172 s 3.7e-2 29 s 3.6e-3 91 s 2.2e-2

Sun 168 s 3.4e-3
Our Method 189 s 1.9e-4 35 s 5.5e-4 98 s 3.5e-3

Our Method 6 100 s 3.2e-4
Iterations 15.944628 6.053324 10.951751

Table 1: Performance characteristics for the various scenes

rendered at the given resolution with 4 antialiasing samples

per pixel, including rendering time and average error for

ray-marching, Lecocq’s method, Sun’s method, and our an-

alytical solution (with 3 and 6 coefficients for anisotropic

media) along with the average number of iterations it re-

quired to reach an accuracy of 0.1%. Reference solutions

were computed using Monte Carlo integration in 48 hours.

Finally, figure 5 illustrates the results obtained for a
Rayleigh phase function. In such anisotropic medium, Sun’s
approach is not practical as it requires a table to be precom-
puted for each possible value of the parameters of each pos-
sible phase function. Using only the first 3 terms of the Tay-
lor expansion as reported by Biri et al. [BAM06], Lecocq’s
method leads to inaccuracies in the glow and to an erroneous
darkening of the left side of the image while with the same
number of terms, our approach matches the reference solu-
tion more closely. Also, the formulation of the terms used in
a Taylor expansion typically requires a cascading derivation
of the derivatives, generally through human intervention. In
Lecocq’s formulation, this process here becomes fairly in-
tractable beyond the first 3 terms. Because our method re-
lies on the expansion of the phase function only rather than
the entire integrand, additional terms could be easily derived
yielding results that here become virtually indistinguishable
from the reference solution as shown in figure 6.

6. Discussion and Future Work

Besides its obvious coupling with a shadow volume algo-
rithm as to naturally limit the integration domain to non-
occluded ray segments, thus allowing the rendering of light
shafts caused by the geometry as in [BAM06], we believe
that our method could be improved in several ways.

While we demonstrated the potential of the technique for
accuracy, we acknowledge that formulating the phase func-
tion in terms of a Taylor expansion might lead to preci-
sion issues, and further investigation is required to alleviate
this limitation. Moreover, the extension to anisotropic light
sources could be addressed as to make the method suitable
to a broader spectrum of applications.

Regarding performance, while integration bounds distant
from the light source might moderately affect the conver-
gence rate of the solution, the latter will be more prominently
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Figure 3: The Sibenik cathedral filled with isotropic dust

and illuminated by two white sources, rendered using (from

top to bottom) Lecocq’s method, Sun’s method, our analyti-

cal approach, and Monte Carlo integration.

impacted by the value of H. Therefore, the computational
cost will increase as rays get farther away from the light, or
in optically thick media but where the single-scattering as-
sumption gets violated in the first place.

Also, the many more relatively expensive iterations re-
quired by our technique to achieve high quality results ob-
viously entail a higher cost than Lecocq’s approximation
[LMAK00] or Sun’s table look-up [SRNN05] as illustrated
in the previous section. Furthermore, the reported timings

Figure 4: A bridge by a foggy night illuminated by two

colorful streetlamps, rendered using (top-left) ray-marching,

(top-right) Lecocq’s method, (bottom-left) our analytical ap-

proach, and (bottom-right) Monte Carlo integration.

are probably not representative of the relative performance
that would result from a GPU implementation and the afore-
mentioned techniques are likely to be more adequate when-
ever real-time performance prevails over accuracy. Note
however that the parameters of the integral in equation 8 can
be trivially expressed in terms of an angular-distance coordi-
nate pair (φ,H) via the relationship u = tan

(
φ− π

2

)
, and that

the proposed solution is therefore readily applicable in place
of numerical integration for efficiently precomputing Sun’s
2D table. Nevertheless, we hope that mathematical advances
on the study of special functions will allow the technique
in itself to become more suitable to interactive applications
in the near future, and have already shown its benefits over
traditional ray-marching approaches.

7. Conclusion

In this paper, we have presented a novel analytical approach
to single scattering from point light sources in homogeneous
media. We have shown how to derive what we believe to
be the very first closed-form solution expressed in terms of
well-known functions to the air-light integral in isotropic
media under the given assumptions, and discussed how this
solution can be extended to anisotropic phase functions.

The technique relies neither on pre-computation nor on
storage, and we have provided a practical implementation
allowing for an explicit control on the precision of the solu-
tion, consequently yielding more accurate results than previ-
ous numerical and analytical methods as demonstrated both
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Figure 5: The conference room filled with anisotropic smoke

illuminated by an emergency light, rendered using (top-left)

Lecocq’s method with 3 terms, (top-right) our analytical ap-

proach with 3 terms, (bottom-left) our analytical approach

with 6 terms, and (bottom-right) Monte Carlo integration.

Figure 6: Visualization of the absolute error mapped to hue

(from blue to red) of the results (left) from figure 3 for (from

top to bottom) Lecocq’s method, Sun’s method, and our an-

alytical approach, (middle) from figure 4 for ray-marching,

Lecocq’s method, and our analytical approach, and (right)

from figure 5 for Lecocq’s method with 3 terms, and our an-

alytical approach with 3 and 6 terms respectively.

quantitatively and qualitatively. Although not readily suit-
able to real-time applications, we believe such type of ana-
lytical approach to be a promising alternative to traditional
ray-marching/slice-based volume rendering techniques, and
hope it will inspire subsequent research in the field.
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