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ABSTRACT

This paper presents a novel method that effectively combines both
control variates and importance sampling in a sequential Monte
Carlo context while handling general single-bounce global illumi-
nation effects. The radiance estimates computed during the render-
ing process are cached in an adaptive per-pixel structure that defines
dynamic predicate functions for both variance reduction techniques
and guarantees well-behaved PDFs, yielding continually increasing
efficiencies thanks to a marginal computational overhead. While
remaining unbiased, the technique is effective within a single pass
as both estimation and caching are done online, exploiting the co-
herency in illumination while being independent of the actual scene
representation. The method is relatively easy to implement and to
tune via a single parameter, and we demonstrate its practical ben-
efits with important gains in convergence rate and applications to
both off-line and progressive interactive rendering.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray-tracing

1 INTRODUCTION

Global illumination effects are a key component to the plausible de-
piction of an environment and the ability to efficiently render these
phenomena has considerable scientific implications. Although real-
ism is often of concern to the movie and gaming industries of which
common tools include 1-bounce indirect lighting, such interest also
emerged in the visualization community where ambient occlusion
shading was shown to provide enhanced perceptual cues by better
conveying depth information and spatial relationships [16].

Despite their low order of convergence, Monte Carlo methods
are a very general and robust technique for stochastically estimat-
ing multi-dimensional integrals and have consequently been heav-
ily used in path-tracing to render complex global illumination ef-
fects. Several techniques were developed to reduce the variance of
such estimates including importance sampling, control variates and
(ir)radiance caching, sometimes trading noise for bias perceptually
less noticeable in order to yield plausible renderings with practical
computation times. Integrating the product of the cached radiance
and the BRDF must in general be done on the fly via resampling.
While realistic for a few coefficients, this becomes prohibitive for
refined representations making it hard to predict whether the reduc-
tion in variance will actually overcome the computational overhead.

Building on the previous concepts, this paper presents a novel
method for single-bounce illumination exploiting the coherency of
the integrand on displayed surfaces induced by the correlation of
primary rays. Radiance estimates computed during rendering are
cached in a per-pixel data structure designed as a directional grid of
adaptive resolution. This caching scheme provides dynamically re-
fined representations of two predicate functions allowing both con-
trol variates and importance sampling to be used in a sequential

Monte Carlo context. This context allows for increases in the order
of convergence (not just a constant noise reduction factor) of the es-
timation process. Since each new estimate is evaluated according to
a fixed snapshot of the two predicates, no bias is introduced, while
allowing the functions to evolve between samples.

This document starts by providing an overview of the related
work and theoretical background. The method is then presented
followed by both quantitative and qualitative results along with a
discussion of its limitations.

2 RELATED WORK

The pioneer work of Ward et al. [35] on irradiance caching intro-
duced an octree structure guided by the density of rays rather than
by the actual geometry. In this approximation model for diffuse
surfaces, irradiance estimates are computed by interpolating pre-
vious records if available. Otherwise, a new irradiance record is
estimated by sampling the hemisphere and cached. Ward et al. [34]
later refined the algorithm by using gradient information to com-
pute better interpolations. Smyk et al. [30] then proposed placing
irradiance samples more effectively by influencing their distribution
according to the estimated speed of illumination change. Tabellion
et al. [32] improved the original method using a modified irradiance
gradient caching technique combined with an approximate lighting
model. Christensen et al. [7] concurrently introduced a tiled 3D
MIP map (fixed-size grids nested in an adaptive octree) storing ir-
radiance values estimated from a photon tracing pre-pass, which are
interpolated and combined with final gathering during rendering.

Instead of caching irradiance, Chiu et al. [6] presented a fixed-
size 3D data structure initialized through a particle trace where each
cell contains a 2D directional field approximating the incoming ra-
diance. Neighboring ”light volumes” are then spatially averaged
to determine the local irradiance approximation. Greger et al. [15]
later described a more refined ambient term computation by storing
the radiances in a geometry-dependent bi-level grid of which cells
contain a fixed-size radiance field. The irradiance distribution func-
tion is pre-computed for a pre-defined set of directions and approxi-
mated during rendering by averaging the records. Christensen et al.
[8] proposed a hierarchical representation of the incoming radiance
based on Haar wavelets. The method relies on a final gathering step
and a secondary system is solved to guide importance-driven re-
finement. All these techniques represent the incoming radiance as
a discontinuous piecewise constant function.

Arikan et al. [1] subsequently proposed a structure initialized via
a photon-map-based pre-pass only accounting for distant contribu-
tions of which incident radiance is expected to be smooth. The lat-
ter are approximated using spherical harmonics and combined with
nearby contributions evaluated using a visibility heuristic during
rendering. Křivánek et al. [24] also made use of (hemi)spherical
harmonics to approximate the diffuse term. Their method was
refined in [23] by reducing the artifacts due to the (ir)radiance
caching schemes based on perceptual criteria, trading correctness
for smoothness. Spherical harmonics are well-suited to represent
radiance but their global support requires all coefficients to be re-
computed at each update. Also, evaluating their integral implies a
linear-cost dot product prohibitive for large numbers of coefficients.



Considering volume properties, Blasi et al. [4] proposed to send
rays from the light sources during a first pass, computing the prob-
ability of interception at each step and storing the fraction of en-
ergy scattered isotropically in the corresponding voxels. The energy
stored is accumulated during the rendering pass where camera-rays
travel straight through the scene, yielding better estimates while
mainly benefiting phase functions with a dominant isotropy. Based
on radiosity, they [5] subsequently proposed to store data only on
the envelope of a medium during the first pass, which prevents the
observer from being inside the media and requires an increased
sampling rate for accurate renderings.

Other methods focused on using the cached values to guide the
sampling process more efficiently. When accurate computations
are needed, Jensen [20] proposed to use the samples in the pho-
ton map for importance sampling rather than directly computing
estimates from them. Dutré et al. [9] extended Lepage’s method
[26] to 2D using a k-D tree, modifying the support of equally sam-
pled bins rather than the sampling probability of predefined bins,
hence allowing for flexible stepwise probability density functions
(PDFs). The hierarchical nature of the algorithm subsequently de-
scribed in [10] is achieved by looking up neighboring piecewise
constant cells of fixed grids if the current cell has not converged
yet, which is particularly inefficient during the initialization pro-
cess. Instead, Pietrek et al. [28] used Haar wavelets to represent
adaptive hemispherical PDFs defined per surface patch. Their re-
sults showed little impact of the order of the representation on the
variance reduction for importance sampling purposes. Also, Hey et
al. [19] proposed to compute the PDFs as the sum of the footprint
of each particle. In order to guarantee non-zero stepwise repre-
sentations, the PDF values are customarily artificially clamped to a
minimal threshold.

Lafortune et al. [25] proposed to cache radiance values in a
duotricenary tree (the 5D extension of an octree) refined based on
the density of primary samples. In addition to guiding the sampling
process, the stepwise fixed-grid hemispherical representations built
via resampling are also used as control variates. Besides the unde-
sirable discontinuous nature of the resulting integrand, this double
usage actually does not yield to any further variance reduction as
discussed in the next section. Also, while they reported reductions
in variance but with unaffected convergence rates, the linear cost of
resampling induced large computational overheads. For each sam-
ple set drawn from the BRDF distribution, Szécsi et al. [31] pro-
posed to linearly combine via a variance-minimizing weight a clas-
sical importance sampled estimate and one using static approxima-
tions to direct light sources or environment maps as control variates.
This consistent (asymptotically unbiased) method privileges each
individual technique where it performs best, but the chosen PDF
does not correlate with the actual control variates integrand and the
techniques consequently do not directly benefit one another. In-
stead, Fan et al. [12] proposed an unbiased method defining a mix-
ture as a weighted sum of components, using one function for the
BRDF and one for each light source. While fixed coefficients drive
the sampling distribution, a linear system is assembled and solved
to compute the mixture coefficients defining the control variates.

Smyk et al. [29] and Gautron et al. [13] also investigated ways
to adapt such caching methods to the temporal change of incoming
radiance. Instead, sequential methods focusing on adaptation dur-
ing the rendering process itself recently received some attention in
the graphics community and the works of Fan [11] and Ghosh et al.
[14] showed promising applications of this framework.

3 THEORETICAL BACKGROUND

This section provides an overview of the related theoretical back-
ground, including variance reduction techniques for Monte Carlo
integration and the main concepts of radiative energy transfer. The
reader is referred to classic texts for further details.

3.1 Monte Carlo Integration

Monte Carlo methods are a general and robust technique for
stochastically evaluating multi-dimensional integrals. The basic
method computes the integral F of a function f on a domain D
as F = ‖D‖ f̄ , the mean value f̄ of f being evaluated as the sample
mean. To reduce the variance of the estimates, several techniques
were developed [18, 22].

The control variates method assumes the knowledge of a func-
tion g approximating the integrand f and of which integral G can
be analytically computed. If f − g is nearly constant, the variance
will be reduced as the original integral is rewritten

F =
∫

D
f (~x)d~x =

∫

D
[ f (~x)−g(~x)]d~x+G. (1)

Instead, importance sampling assumes a normalized PDF p ≥ 0
correlated with f and such that p 6= 0 whenever f 6= 0. If f /p is
nearly constant (ideally F), the variance will be reduced. Defining

a continuous random variable ~X distributed according to p and the
expectation E, the original integral is reformulated as

F =
∫

D
f (~x)d~x =

∫

D

f (~x)

p(~x)
p(~x)d~x = E

[
f (~X)

p(~X)

]
. (2)

Both techniques can be combined [27] by estimating the integral
term of equation 1 using importance sampling, yielding the unbi-

ased estimator F̂ of standard deviation σ [F̂], reading for N samples

F = E

[
f (~X)−g(~X)

p(~X)

]
+G ⇒ F̂ =

1

N

N

∑
i=1

f (~xi)−g(~xi)

p(~xi)
+G (3)

σ
[
F̂

]
=

√√√√ 1

N
V

[
f (~X)−g(~X)

p(~X)

]
=

1

N
1
2

σ

[
f (~X)−g(~X)

p(~X)

]
. (4)

Equation 3 shows that p should now resemble f −g rather than f .
As the sign of the integrand f −g might here vary while p ≥ 0 must
hold, an alternative is to correlate p with | f − g| instead [2]. Also,
if g is proportional to p, the previous estimator becomes identical
to the one with importance sampling alone. This implies that if
a function is used for importance sampling, using it as a control
variate as well will not yield any further variance reduction [33].

Equation 4 shows that when using static predicate functions p (as
when importance sampling from the BRDF) and g (as when g =
0 and p = 1/‖D‖ for basic Monte Carlo integration), the method

exhibits an order of converge of 1/2, meaning that n2 times as many
samples are necessary to reduce the expected error by 1/n. In this
context, these techniques yield a reduction of variance if V [( f −
g)/p] < V [ f‖D‖] (both constant with respect to N) corresponding
to a vertical translation on a logarithmic scale of the convergence
curves shown in figure 4 (division by a constant factor on a linear
scale). To affect the slope of these curves, i.e. the convergence rate,
sequential Monte Carlo methods are adequate.

In Markov chain Monte Carlo (MCMC) methods, the next state
solely depends on the present state, i.e. every future state is condi-
tionally independent of every prior state. Sequential Monte Carlo
(SMC) methods split the computation in stages such that the esti-
mator in a subsequent stage is adapted based on the information
gained during previous stages in the sequence. While this depen-
dent sampling may appear to introduce bias, it can be proven that
the result is unbiased and that the method can considerably increase
the rate of convergence of the estimation process [17]. This can
be illustrated by assuming adaptive predicates g and p such that
V [( f −g)/p] decreases with an order 2α with respect to V [ f ]. The
standard deviation then becomes

σ
[
F̂

]
=

√
1

N

1

N2α
V

[
f (~X)

]
=

1

N
1
2
+α

σ
[

f (~X)
]
. (5)



Figure 1: Per-color-channel coefficients stored in each directional
cell of a radiance cache (left) and 2D B-spline reconstruction of the
weighted incoming radiance defining predicate g (right).

3.2 Light Transport

The evolution of (spectral) radiance L as light interacts with a sur-
face is defined by the Rendering Equation (RE). For a given posi-
tion in space~x and direction ~ω , this equation reads [21]

L(~x, ~ω) = Le(~x, ~ω)+
∫

2π
L(~x, ~ωi)β (~ω, ~ωi,~n) ~ωi ·~n d~ωi. (6)

where Le is the emitted radiance, ~n the surface normal, and β the
bidirectional reflectance distribution function (BRDF) which must
satisfy

∫
2π β (~ω, ~ωi,~n) ~ωi ·~n d~ωi ≤ 1 to ensure energy conservation.

4 SMC ADAPTATION FOR RENDERING

This section describes how to carry the evaluation of integral 6 in
a sequential Monte Carlo context using both control variates and
importance sampling. We introduce a per-pixel 2D data structure
allowing for efficient estimations of integrals over solid angles in
which the samples computed during rendering are cached. The fol-
lowing subsections detail the caching schemes for each variance re-
duction technique as well as the adaptive refinement strategy before
explaining how this information is used for estimate evaluations.

4.1 Caching for Control Variates

The representation defining predicate g should provide low-cost
read/write access and efficient computation of G. B-splines meet
both criteria as their basis functions have local support and their in-
tegral evaluates to a simple sum of coefficients regardless of their
order, except at the domain boundaries. For this property to hold
in 2D, we regularly partition the normalized hemispherical coordi-
nates s = φ/2π and t = 1− cos(θ) to yield uniform solid angles.

Control variates lead to the new integrand f − g of which prop-
erties must be analyzed in correlation with the complexity of eval-
uating g. While order 0 B-splines are the cheapest (involving 1 co-
efficient), their piecewise constant representation artificially intro-
duces undesirable high-frequency discontinuities in the integrand,
therefore decreasing the potential benefit of the method. Order 1
B-splines (piecewise linear) consequently provide higher quality
estimates for a modest overhead (4 coefficients) while remaining
natural interpolants. B-splines of order 2 (piecewise quadratic) and
higher obviously entail a higher cost while being smoother and less
tight to the control points as the support of the basis functions in-
creases, usually yielding lower quality estimates. Order 1 B-splines
are consequently most suitable and a grid representation allows for
efficient interpolation.

We exploit the periodicity in s and introduce in t two polar val-
ues computed as the average of the boundary coefficients at t = 0
and t = 1 respectively. The first allows to eliminate discontinuities
at the pole when reconstructing g and to regularize the top bound-
ary with respect to integration. The bottom boundary is implied as

Figure 2: Color-mapped scalar values of predicate p at 2 different
refinement stages.

zero (due to the cosine term in the integrand) and the second po-
lar value allows for an efficient computation of G which evaluates
to its simple weighted subtraction to a hemispherical average. As
shown in figure 1, each directional cell holds a color of which chan-
nels represent the coefficients of the 2D B-splines defining pred-
icate g. Whenever a new sample is estimated, its color is aver-
aged with the corresponding cell’s coefficients while incrementing
its counter of cached records C which determines the respective
weights 1/(C +1) and C/(C +1). The hemispherical and polar av-
erages are maintained and updated at each write operation, allowing
the constant time computation of both g and G during estimations.

4.2 Caching for Importance Sampling

For efficiency reasons, the resolution used to represent predicate
p is set to be the same as the one for g. Drawing samples from
a given PDF can be done by inverting its cumulative distribution
function (CDF) defined as its partial integral. This favors cheap
low-orders while continuity is not crucial here. Order 0 B-splines
are therefore adequate. In addition to the radiance coefficients and
records counter, each cell contains a scalar estimate of the value of
| f − g| over the associated solid angle as shown in figure 2. When
a new sample of f is added to a cell, the value of g is determined
and f −g computed. Since the latter is a color, a scalar PDF sample
is generated by averaging the absolute values of its channels and
merged with the cell’s PDF coefficient.

To make the sampling process inexpensive, each cache maintains
a logical tree of partial sums [33] similar in spirit to a Huffman tree,
stored in a flat array of size 2N−1 with N being the number of cells.
Each node of this complete binary tree holds the sum of its 2 chil-
dren, starting with the cells’ values of p as the leaves up until the
root holding the sum of all PDF coefficients. While write operations
need to traverse the log2(2N) nodes of a branch, the space of basis
functions can now be sampled in log time given a random number.
Normalization is achieved by multiplying the random number by
the value of the root node. If the random quantity is greater than
the value of the first child of the current node, its PDF value is sub-
tracted from the quantity and the second child becomes the current
node, the latter being set to the first child otherwise. The process
is recursively repeated as to traverse an entire branch until a cell is
reached and a random direction is drawn from the linear CDF.

4.3 Adaptive Refinement

The proposed data structure provides an adaptive representation
permanently refining in correlation with the current records popula-
tion. It is initialized as a screen-size buffer of radiance caches with a
single initial cell of which radiance B-spline coefficients, PDF value
and records counter default to zero. Since the PDF is not relevant at
this stage, a uniform directional sampling strategy is used. For each
primary ray traced, the cache corresponding to the target pixel is



identified in constant time while the direction of the secondary ray
determines the cache’s cell which should be updated. If the refine-
ment criterion is met, the resolution of the cache is doubled in both
polar and azimuthal coordinates while duplicating previous records
to preserve the data repartition. The cells’ records counters of the
cache are then divided by the dimensionality of the split, i.e. 4. This
effectively reduces the weight of ancient coarse records and allows
future locally relevant samples to be more influential. Inheritance
is enforced by preventing the counters from being rounded down to
zero which would cause a new record to overwrite rather than being
merged with ancestral information. While each cell of the radiance
cache has to be processed, the linear cost of refining is however not
prohibitive as its frequency of occurrence is low compared to other
read/write accesses.

This inheritance strategy allows a PDF to always contain a por-
tion of its ancestors. By prohibiting the refinement of the initial
cells until their PDF coefficient is non-zero, all PDFs are guaran-
teed to be non-zero as well. This allows the PDFs to tend freely to-
wards zero where needed while remaining implicitly well-behaved
without the need for an artificial bound as in previous approaches.

4.4 Refinement Criterion

The refinement criterion is defined as a threshold on the average
value of the records counters also maintained in each radiance cache
to yield a constant time access. Such criterion will adaptively pro-
mote deeper refinement based on the density of rays while control-
ling the inertia of the system. Decreasing it will increase the ver-
satility of the caches requiring a smaller population before refining.
This induces predicate functions quickly morphing into the target
functions, yielding improved convergence rates and lower variance.

However, if the threshold is too low, the caches might evolve
while being under-populated and yield unreliable predicates gener-
ating estimates of increased variance. Hence, the optimal criterion
is the lowest one guaranteeing that the structure contains mean-
ingful information before refining. In our experiments, it was de-
termined empirically by conducting a few trial-and-error tests on
down-sampled images or on the fly during interactive sessions.

4.5 Minimizing Variance

When no information is available yet about the radiance term of
equation 6, importance sampling the integrand based on the product
of the BRDF and cosine term often yields lower variance than a uni-
form sampling strategy as used by the radiance caches. Because it is
correlated with f but not with | f −g|, it is not desirable to use such
PDF with the control variates as a substitute to the PDF of a cache.
This consequently yields two estimators: a classical MCMC im-
portance sampling estimator preferable upon start-up, and a SMC
estimator most efficient at higher population levels. In order to use
the estimator performing best given the current population, each
radiance cache is associated to a variance tracker.

Whenever a secondary ray needs to be traced, the tracker indi-
cates which estimator yields lower variance at the given sampling
stage and a direction is drawn from the corresponding PDF to com-
pute a new sample. From this single sample, two estimates are
evaluated and fed to the tracker computing and aggregating their
respective sample variance based on an accumulated integral es-
timate. While the variance of the first estimator is constant, the
dynamic nature of g and p induces the variance of the second esti-
mator to vary throughout the sampling process. The weights used to
update its estimated variance are consequently computed by clamp-
ing the total number of estimates to a threshold value, hence making
recent variance estimates more influential than older ones. Because
the evolution of the estimator’s variance is directly correlated to
its inertia, the threshold value and refinement criterion should be
correlated as well. In practice, our experiments revealed that good
results were obtained by setting them to an identical value.

4.6 Estimate Evaluation

For each estimation of integral 6, the radiance cache and variance
tracker corresponding to the pixel being rendered are identified.
The tracker indicates the estimator from which to derive a sample
direction. In case of the MCMC estimator, the PDF associated to
the BRDF provides a means of defining a 2D sample direction on
the hemisphere, classically by inverting its CDF. In case of the SMC
estimator, the tree of partial PDF sums allows to importance sam-
ple a direction of associated p. A newly ray-traced radiance value
is then evaluated and multiplied by the BRDF and cosine value to
yield a new sample f from which two estimates are computed. For
the MCMC estimator, this is achieved by simply dividing the sam-
ple by its PDF value. For the SMC estimator, the term G used for
control variates is directly read from the cache and the integrand ap-
proximation g for the given direction is computed from the B-spline
coefficients. This term is then subtracted from f and the result is
divided by p and added to G to form the final low-variance esti-
mate. While both are necessary to approximate the variance of the
estimators, only the estimate initially indicated by the tracker does
contribute to the integral evaluation, the other being biased as its
PDF value does not correlate with the actual sample distribution.

4.7 Pseudo-Code

Figure 3 provides a high-level pseudo-code illustration of the in-
tegration of the various steps individually presented. Lines 3 to 9
correspond to importance sampling as described in sections 4.2 and
4.6, lines 12 and 13 to the control variates step from section 4.1 and
lines 14 and 15 to the actual estimation process from section 4.6.
Finally, line 16 updates the variance estimates based on section 4.5,
line 17 populates the structure as explained in sections 4.1 and 4.2,
while line 18 corresponds to the refinement step from section 4.3.
For clarity sake, the BRDF term here implicitly refers to the product
of the actual BRDF and the cosine term (i.e. the dot product).

1. EstimateHemisphericalIntegral()

2. (cache, tracker) = ray.GetPixelData();

3. estimator = tracker.GetEstimator();

4. if (estimator == SMC)

5. (direction, pSMC) = cache.GetSampleDirection();

6. pMCMC = brdf.GetPDF(direction);

7. else

8. (direction, pMCMC) = brdf.GetSampleDirection();

9. pSMC = cache.GetPDF(direction);

10. radiance = TraceRay(position, direction);

11. f = radiance * brdf.GetValue(direction);

12. G = cache.GetIntegral();

13. g = cache.GetValue(direction);

14. estimateSMC = G + (f - g) / pSMC;

15. estimateMCMC = f / pMCMC;

16. tracker.Update(estimateSMC , estimateMCMC);

17. cache.AddRecord(direction, f);

18. if (cache.CriterionIsMet()) cache.Refine();

19. return (estimator == SMC) ? estimateSMC : estimateMCMC;

Figure 3: Pseudo-code for the integral estimation

5 RESULTS

In order to demonstrate the convergence characteristics of the
method, we experimented with a test-bed consisting of a plane illu-
minated by a gradient background for which an analytical solution
was derived. The quantitative results are shown in figure 4 where
the number of samples per pixel on the abscissa increases by a fac-
tor 4. The slopes of the root mean squared error (RMSE) curves il-



Figure 4: Logarithmic plots of root mean squared error and efficiency
versus number of samples per pixel for several strategies: no con-
trol variate (cv0), piecewise constant control variates (cv1), piece-
wise linear control variates (cv2), no importance sampling (is0) and
piecewise constant PDFs (is1), where is1 cv2 corresponds to the
proposed SMC method and is0 cv0 to MCMC. Results are shown
for an initial uniform sampling strategy (left) and compared to a com-
bination with BRDF importance sampling (right).

lustrate the 0.5 convergence rate of MCMC integration compared to
the higher order of SMC here reaching 0.94 (∼ 88% gain). Consid-
ering the rightmost vertices of the BRDF-based graphs, the MCMC
approach would require about 138 times as many samples in or-
der to reach the error level achieved by the SMC method which in
contrast only requires a 79% overhead (factor of 1.79) in computa-
tional time, yielding a 77X speed-up. The graphs also illustrate the
impact of the variance trackers determining which of the MCMC
BRDF importance sampling estimator (BRDF is0 cv0) or the SMC
estimator (is1 cv2) performs best at the current population level as
to yield the minimum variance of the two (BRDF is1 cv2).

While it is constant for MCMC integration, the efficiency
((variance ∗ cost)−1) of the SMC method keeps increasing with
the sampling rate. Due to the smooth illumination, control variates
here provide most of the gain whereas importance sampling has a
more prominent impact in complex scenes. This illustrates their re-
spective strengths. While control variates approximate well smooth
variations, importance sampling performs better for higher frequen-
cies by focusing on strong contributions. When combined, con-
trol variates allow importance sampling to focus on hard features
rather than smooth high contributions, yielding increased efficien-
cies. The impact of the variance trackers is here again illustrated.
Because both initially yield similar results but at different costs,
the SMC estimator alone (is1 cv2) is slightly less efficient than a
MCMC uniform sampling estimator (is0 cv0). By minimizing vari-
ance at a marginal cost, the trackers allow the combined estimator
(BRDF is1 cv2) to yield reduced initial efficiency loss compared to
the MCMC BRDF importance sampling estimator (BRDF is0 cv0)
while preserving the substantial gains at higher sampling rates.

Table 1 details the memory requirements of the data structure
for various qualitative experiments generated at a resolution of
512x512 pixels on an Intel Xeon 3.00GHz processor desktop with

Figure 5 6 7

Criterion 8 8 16
Depth 4 3 4
Cells 256 64 256

Memory 9 KB 2 KB 9 KB

Table 1: Characteristics of the radiance caches after rendering the
listed figures, including the value used for the refinement criterion,
the refinement depth reached, and the corresponding number of cells
and peak memory usage (using double-precision).

2GB of RAM. The figures were generated by processing each pixel
at a time, allowing the memory associated with a radiance cache
to be deallocated once the corresponding pixel has been rendered.
The results are shown next to their associated error images.

Figure 5 shows a scene rendered with 1-bounce global illumi-
nation and where indirect lighting is mainly reflected by the floor.
Control variates alone adequately capture and reduce variance from
this large source but have little impact on evaluating finer contri-
butions. While importance sampling alone also reasonably reduces
variance in some places, it introduces several largely under/over-
estimated pixels scattered in the image. However, when combining
both techniques, control variates mainly handle the smooth illumi-
nation from the floor and allow importance sampling to focus on
higher frequency signals, reinforcing the statement made earlier.
Because the resulting sampling strategy differs from the one with
importance sampling alone, both computational overheads and vari-
ations in path-space will impact the overall rendering cost.

Figure 6 shows an application to ambient occlusion shading.
While being less substantial due to the relatively lower sampling
rate, the superiority of the combination of both variance reduction
techniques in the SMC framework is here again illustrated. Al-
though the method ideally relies on purely static integrands, the
coherency in the scene allows pixel-space jittering to be used with-
out compromising convergence. Visible artifacts only appear here
as a few high variance pixels along the edges of the light polygons
due to the strong uncorrelation between the integrand on a light’s
surface and the one on the ceiling behind it.

Figure 7 shows an application to environment map illumination
with a Phong BRDF model. Due to the higher specularity of the
material and the details of the environment map, SMC importance
sampling alone here performs better than SMC control variates
alone, while their combination exploits their respective strengths.
Although the proposed SMC method effectively reduces variance
on the left side of the image, MCMC BRDF importance sampling
performs better on the right side where the illumination distribution
coincides with the specular lobe. This illustrates the limitations of
the method for specular materials as discussed in section 6.

Finally, as each estimation accesses a single radiance cache asso-
ciated to the pixel being rendered, the method is readily suitable to a
pixel-based parallel implementation and was integrated to the open
source interactive ray-tracing system Manta [3]. The technique was
used as part of a progressive rendering framework where the image
is iteratively refined whenever the user stops moving the camera and
reset otherwise. Because all pixels are rendered in parallel rather
than sequentially, all radiance caches must here be maintained si-
multaneously. To control memory allocation, an upper bound on
their maximal depth was set. Figure 8 shows the progressive con-
vergence of images generated during an interactive session on 4
Dual Core Opteron 2.4GHz processors. Due to the overhead of the
method, the resulting frame rates are lower than the ones obtained
with MCMC, allowing the latter to trace more samples per unit of
time. The initially slightly noisier images illustrate the marginal ef-
ficiency loss of the technique at low population levels. Its efficiency
however rapidly grows as the convergence rate increases, ultimately
reducing variance more effectively.



6 DISCUSSION AND FUTURE WORK

While remaining statistically correct, the quality of the estimates
will gradually degrade as the specularity of the BRDF increases.
In addition to the initial sample distribution causing an unbalanced
population of the structure, such BDRF will strongly shape the in-
tegrand and require the caches to be heavily populated before being
chosen by the trackers. Further investigation is required to alleviate
this limitation while preserving the efficiency of the method.

Although the primary focus of this paper is the efficiency of
the method rather than its memory requirements, the use of an ap-
propriate data compaction scheme could be considered. Note that
the quantities reported can be trivially halved by using a single-
precision floating point representation rather than double as was
done for consistency reasons with the particular ray-tracer used.

Even though setting the refinement criterion requires little effort,
further investigation is also needed to determine an optimal formu-
lation which adapts to the local complexity in lighting rather than
being global to the scene. Moreover, while the method showed to
be beneficial in a progressive rendering context, future directions of
research should explore ways of increasing efficiency at low popu-
lation levels in order to reach true interactivity.

7 CONCLUSION

We have presented a novel method which effectively combines both
control variates and importance sampling in a symbiotic sequential
Monte Carlo context. While handling general single-bounce global
illumination effects, the method yields continually increasing effi-
ciencies thanks to a modest computational overhead achieved by
exploiting the correlation of the primary rays and implicitly guar-
antees non-zero PDFs via its inheritance strategy.

A main advantage is that both estimation and caching are done
online, allowing the sampling process to be driven by both visual
importance and features of interest in the scene while remaining
unbiased. The algorithm exploits the coherency in illumination of
the latter while being independent of its actual representation. The
technique is also relatively easy to implement in a general Monte
Carlo ray-tracer and easy to tune via a single refinement parameter.

In addition to important gains in the convergence rate, the quanti-
tative and qualitative results showed that this combined model out-
performs the individual variance reduction techniques on which it
is based. The method consequently appears as a promising step
towards interactively rendering global illumination effects via self-
tuning estimators that learn to become effective based on the infor-
mation previously collected during the rendering process itself.
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Figure 5: The Sponza Atrium illuminated by a directional light with 1-
bounce global illumination, rendered using (from top to bottom) SMC
importance sampling and control variates (1024 spp), SMC impor-
tance sampling alone (1066 spp), SMC control variates alone (1059
spp), MCMC BRDF importance sampling (1144 spp) all in 2.6 hours.

Figure 6: The Conference Room shaded with ambient occlusion, ren-
dered using (from top to bottom) SMC importance sampling and con-
trol variates (256 spp), SMC importance sampling alone (261 spp),
SMC control variates alone (258 spp), and MCMC BRDF importance
sampling (274 spp) all in 43 minutes.



Figure 7: David with a Phong BRDF illuminated by the Grace Cathe-
dral environment map, rendered using (from top to bottom) SMC im-
portance sampling and control variates (1024 spp), SMC importance
sampling alone (1074 spp), SMC control variates alone (1026 spp),
and MCMC BRDF importance sampling (1203 spp) all in 1.8 hours.

Figure 8: Screenshots of the Sibenik Cathedral during an interactive
session rendered progressively using SMC importance sampling and
control variates (left) and MCMC BRDF importance sampling (right)
by keeping the camera steady (from top to bottom) for 4 seconds, 15
seconds, 1 minute and 4 minutes.


