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ABSTRACT   

The skull of young children is made up of bony plates that enable growth. Craniosynostosis is a birth defect that causes 
one or more sutures on an infant’s skull to close prematurely. Corrective surgery focuses on cranial and orbital rim 
shaping to return the skull to a more normal shape. Functional problems caused by craniosynostosis such as speech and 
motor delay can improve after surgical correction, but a post-surgical analysis of brain development in comparison with 
age-matched healthy controls is necessary to assess surgical outcome. Full brain segmentations obtained from pre- and 
post-operative computed tomography (CT) scans of 8 patients with single suture sagittal (n=5) and metopic (n=3), non-
syndromic craniosynostosis from 41 to 452 days-of-age were included in this study. Age-matched controls obtained via 
4D acceleration-based regression of a cohort of 402 full brain segmentations from healthy controls magnetic resonance 
images (MRI) were also used for comparison (ages 38 to 825 days). 3D point-based models of patient and control 
cohorts were obtained using SPHARM-PDM shape analysis tool. From a full dataset of regressed shapes, 240 healthy 
regressed shapes between 30 and 588 days-of-age (time step = 2.34 days) were selected. Volumes and shape metrics 
were obtained for craniosynostosis and healthy age-matched subjects. Volumes and shape metrics in single suture 
craniosynostosis patients were larger than age-matched controls for pre- and post-surgery. The use of 3D shape and 
volumetric measurements show that brain growth is not normal in patients with single suture craniosynostosis.   

Keywords: Pediatric neuroimaging, plastic Surgery, shape regression, volumetric analysis, shape analysis 
 

1. INTRODUCTION  
The skull of young children is made up of bony plates that allow for its growth. Craniosynostosis is a birth defect that 
causes one or more sutures on an infant’s skull to close earlier than normal, causing abnormal head shape in infants. It 
has a prevalence of approximately 3.5 to 4.5 per 10,000 live births [1]. In the 19th century, craniosynostosis was treated 
by strip craniotomy; by the 1950s treatment involved total cranial vault reconstruction. Over the last 25 years, surgery 
has focused on cranial and orbital rim shaping to return the calvarium to a “normal” shape. Over the last 10 years, there 
has been a reversion to less invasive techniques including endoscopic strip craniotomy with helmet remolding and 
spring-driven distraction [2].  

There are numerous types of craniosynostosis. Different names are given to the various types, depending on which 
suture, or sutures, are involved, including the following: 

• Sagittal craniosynostosis (figure 1a) involves an early closure of fusion of the sagittal suture. This suture runs 
front to back, down the middle of the top of the head. This fusion causes a long, narrow skull. The skull is long 
from front to back and narrow from ear to ear. 

• Metopic craniosynostosis (see figure 1b) is a fusion of the metopic (forehead) suture. This suture runs from the 
top of the head down the middle of the forehead, toward the nose. Early closure of this suture may result in a 
prominent ridge running down the forehead, as well as abnormally close eyes (hypotelorism).  

For unknown reasons, a diagnosis of sagittal synostosis predominated in large series, but more recently has been 
replaced by metopic synostosis. The etiology of craniosynostosis is explained in two different theories introduced by 
Virchow et al. [3] and Moss et al. [4]. The Virchow theory is that primary suture fusion causes brain deformity and brain 
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growth parallel to the suture fusion. The Moss theory "functional matrix" is that the suture fusion is secondary to 
abnormal brain growth. Moss was the first clinician to introduce the idea that contemplates the fact the sutures will close 
early if there are no growing forces motivated by the brain.  

 

Figure 1. Clinical pictures and 3D models of skulls from infants with single suture craniosynostosis. The red dashed line 
indicates where the closure occurs a) Sagittal suture closure b) Metopic suture closure  

Functional problems caused by craniosynostosis such as speech and motor delay improve after surgical correction, but a 
post-surgical analysis of brain development in comparison with age-matched healthy controls is necessary to assess 
surgical outcome. Today single suture synostosis is detected by clinical evaluation of head shape, head circumference 
and radiological assessment via CT and skull radiographs (Rx). Both CT and skull Rx are evaluations done by clinicians 
on 2D information. There is obviously a problem of judgment due to the fact doctors are trying to diagnose a problem in 
3D with 2D tools. 

Even with the progressive evolution to less-invasive surgical techniques, craniosynostosis surgical correction is a 
invasive procedure that happens early in life (usually in infants between 3 and 9 months-old). After surgery the cranial 
shape goes back to normal, but the structure of the skull of the infant after surgery changes permanently (see figure 2) so 
it is necessary to fully understand the morphological changes happening in nonsyndromic craniosynostosis. 

 
Figure 2. Clinical pictures and 3D models of skulls from one infants with sagittal single suture craniosynostosis a) before 
and b) after surgery. The red dashed line indicates that despite of being a normal skull, the cranium of the patient is still 
missing the sagittal suture.  

This study tries to find a computerized automatic evaluation of brain growth in infants, pre- and post- surgical correction 
of single suture craniosynostosis. In addition to that we aim to demonstrate that brain growth is not normal following 
calvarial surgery in patients with single suture craniosynostosis, following the ideas first introduced by Moss et al. [4]. 
We plan to test our hypothesis using a cohort of patients with these two types of synostosis, compared with subjects that 
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have a healthy developing brain. Through these patients we would like to determine reliable, reproducible means of 
following brain growth after calvarial vault remodeling. 

To this end, the paper is structured as follows: in section 2 “Materials” the imaging data and the acquisition scan 
parameters are described. Section 3 “Methods” explains each one of the methodological steps followed in this study, 
consisting in:  full brain segmentation (“Full brain segmentation”), validation of CT versus MRI full brain segmentation 
(in “Full brain segmentation validation”), computation of full brain correspondent point-based models for healthy and 
craniosynostosis subjects via SPHARM-PDM toolbox (“SPHARM-PDM”), construction of a 4D healthy growth trend 
via acceleration-controlled shape regression (“Shape Regression”) and calculation of shape and volume metrics to 
compare healthy and craniosynostosis patients (“Shape and volume metrics computation”). Section 4 “Results” describes 
the results obtained in the quantification of volumetric and shape differences between healthy and craniosynostosis 
subjects, while section 5 “Discussion” has the conclusion and discussion points. 

2. MATERIALS  
Computed tomographic (CT) scans of all single suture craniosynostosis (n=8) were used in this study. Metopic and 
sagittal craniosynostosis patients were scanned pre- and post-surgically between 1 month and 2 years of age. Syndromic 
patients and patients with other sutures than metopic or sagittal were excluded. Scans were helical multidetector CT, 
using a slice thickness of 0.316x0.316x2 mm. All scans were resized to isotropic 1 mm voxel dimension for the analysis. 
A group of 402 healthy controls magnetic resonance images (MRI) were used for comparison (ages 38~825 days). 
Images were acquired on a Siemens 3T scanner (Allegra, Siemens Medical System, Erlangen, Germany). Infants were 
scanned unsedated while asleep, fitted with ear protection and had their heads secured in a vacuum fixation device at 
both 1 and 2 year follow up sessions. T1-weighted, proton density and T2-weighted images were obtained. Spatial 
resolution was 1x1x1 mm for T1-weighted images, 1.25x1.25x1.5 mm with .5 mm gap for PD/T2-weight images.  

3. METHODS  
3.1 Full brain segmentation 

Segmentation of craniosynostosis CT scans was performed via automatic tissue classification based in Hounsfield Units. 
Automatically classified cranio Cerebro Spinal Fluid (CSF), white and grey matter labels were extracted, merged and 
manually post-processed for the extraction of a full brain mask. For all healthy MRI datasets, full brain segmentation was 
performed using AutoSeg [5] that is a tool allowing the segmentation of probabilistic sub-cortical structures and label 
maps, such as generic ROI maps and parcellation maps. The approach is a fully automatic segmentation via a deformable 
registration of an unbiased diffeomorphic atlas with probabilistic spatial priors. Post-processing with 3D connectivity, 
morphological closing and minor manual editing provided simply connected 3D objects. 

3.2 Full brain segmentation validation 

Due to the different nature of the CT and MRI image modalities and segmentation techniques, a validation study to 
compare inter-modality variability was performed. Both MRI and CT were acquired for the same subject at ages (age in 
days) and (age in days), respectively. Segmentation for MRI and CT was performed as described above. Figure 3 shows 
sagittal, coronal and axial cross-sections with 3D surfaces rendered for both CT (red) and MRI (green), with slice 
interserction visibles in the image data. Red and green line show no bigger differences a voxel from each other. When 
comparing volumetric measurements between MRI and CT segmentation, differences are negligible (MRI = 1.5823 x 
106 mm3 and CT = 1.5579 x 106 mm3 difference = 1.54%). We can conclude we can reliably compare full brain masks 
extracted from both MRI and CT image modalities. 
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Figure 3. CT-MRI segmentation validation a) Semi-transparent overlay of the 3D full brain surfaces from CT (red) and MRI 
(green) showing almost no changes b) MRI coronal slice displaying surface intersections with CT (red) and MRI (green) 
showing changes no bigger than one voxel  

3.3 SPHARM-PDM 

We performed a local shape analysis on the lateral ventricle segmentations via the UNC SPHARM-PDM (Spherical 
HARMonics Point Distribution Models) shape analysis toolbox. The SPHARM-PDM toolbox presents a comprehensive 
set of tools for the computation of 3D structural statistical shape analysis. The SPHARM-PDM description is a sampled 
boundary description with object-inherent correspondence that can only represent objects of spherical topology [6]. The 
input of SPHARM-PDM toolbox is our set of full brain segmentations. These segmentations are first processed to ensure 
spherical topology and then converted to surface meshes. Next, a spherical parameterization is computed from the 
surface meshes using an area-preserving, distortion minimizing spherical mapping. Further, the SPHARM description is 
computed from the mesh and its spherical parameterization [7]. The correspondence is determined by aligning the 
principal curves of first order ellipsoid representation with the standard coordinate frame, so that the north pole of the 
first order ellipsoid aligns with the positive z axis, and its 0° meridian aligns with the x–z plane. This description is then 
sampled into triangulated surfaces via an icosahedron subdivision of the spherical parameterization. Full brain surfaces 
are well represented (local representation error is smaller than 0.1 mm on average) by a subdivision of level 20 resulting 
in 4002 surface points. Alignment of triangulated surfaces was finally performed using rigid body, Generalized 
Procrustes alignment that iteratively aligns the surfaces to the population mean. By following this set of steps SPHARM-
PDM creates a more uniform representation than the one obtained directly from sampling the binary segmentation into 
triangulated surfaces. 

3.4 Shape Regression 

Due to the need of accurately age-matched controls for the craniosynostosis subjects, calculating the continuous growth 
evolution of healthy full brain shapes is then the starting point for any further analysis. The subjects in the healthy 
population are used as input for the construction of a 4D atlas using acceleration-based shape regression [8]. In recent 
years, the scientific community has demonstrated a growing interest in longitudinal computational anatomy (i.e. 
construction of computer models of anatomical evolution). 4D continuous growth models provide a tool to generate 
shapes at any instant in time (within the interval defined by the data), offering us the opportunity to continuously 
measure shape properties. Computer models of anatomical evolution, such as the 4D full brain atlas constructed for this 
study via acceleration-controled shape regression, estimate growth trajectories. Shape regression involves inferring the 
continuous evolution of shape to closely match a set of target shapes over time. The problem is often posed as the trade 
off between fidelity to data and regularity; with the most likely shape evolution estimated based on a regularized least-
square criterion [8].  

Acceleration-controlled shape regression is a shape regression method that overcomes the problems of non-smooth shape 
evolutions that existed in previous studies [9][10][11]. This shape regression model computes a new growth model 
parameterized by acceleration that provides a shape evolution model that is smooth in both space and time and that 
represents more closely the growth in anatomical structures. In addition, the constructed model yields a growth evolution 
with improved regularity, thus discarding more noise from the data to fit a more realistic growth trajectory. 
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Briefly, acceleration-based regression considers a discrete set of shapes Sti observed at times ti. The growth model is 
going to be estimated by continuously deforming an initial shape or baseline S0 to closely match the rest of the observed 
shapes. The resulting shape out of continuously deforming S0 with a transformation is expressed as Rt = φt(S0). Shape 
regression is then a trade off between data-matching and regularity.  While the regularity is controlled with an 
acceleration parameter, the shape similarity metric is obtained by modeling each one of the shapes in the ensemble as 
currents [12]. The current-based similarity metric enforces structural integrity of the two surfaces, penalizing geometric 
and spatial mismatch. The shape regression method used is acceleration-controlled regression and it is further described 
in [8][13]. 

Therefore, shape regression is a tool we use to generate healthy brain shapes at any instant in time (within the interval 
defined by the data), offering us the opportunity to continuously measure shape properties. Any desired measurement can 
simply be extracted from the collection of regressed shapes. 350 full brain shapes (see figure 4) were obtained between 6 
and 825 days of age (time step = 2.34 days). For the final analysis only 240 regressed shapes between 30 and 588 days of 
age were included in the study.  

 

Figure 4. Five snapshots of healthy average brain shape evolution from 3 months-old to 26 months-old (0.33 years-old to 
2.23 years-old, left to right). The color denotes magnitude of velocity. The brain evolution shows a more rapid growth at 
younger age, that occurs along the anterior/posterior axis.  

3.5 Shape and volume metrics computation 

Volumes and shape metrics were obtained for craniosynostosis and healthy age-matched subjects obtained by shape 
regression. Craniosynostosis and healthy subject surface-to-surface distances with healthy regressed shapes were 
computed using MeshValmet 2.1 [14]. MeshValmet is a tool that measures surface-to-surface distance between two 
triangle meshes using user-specified uniform sampling, providing useful histogram and statistical information based on 
the sample errors. Specifically mean face distance between each subject and their age-matched regressed full brain shape 
will be used.  
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For each triangle formed by neighboring samples, the error at the vertices is averaged to obtain a single error for the 
sample triangle. The overall mean error is obtained by calculating the mean of the errors of the sample triangles. In a 
triangle i with area ai and with values at the vertex (sample points) ei1, ei2 and ei3 and using linear interpolation to obtain 
the values within the triangle, the FaceMean value (i.e. integral of the value divided by the surface, see equation 1) is fi = 
ei1+ei2+ei3 ; the absolute mean value is |fi| = |ei1|+|ei2|+|ei3|. 

Proc. of SPIE Vol. 8672  86720V-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2013 Terms of Use: http://spiedl.org/terms



1400000

1200000

1000000

M

É
g00000

E
Ea 600000

400000

200000

0
29.4 129.4 229.4 329.4

Age (days)

429.4 529.4

RegressionAtlas

...15821879_m ale_metopi c

16274318_m ale_sagittal

016930208_fema le_sagittal

17721713_m ale_sagittal

ilw18105676_fema le_sagittal

..M40140329_m ale_metopic

40818817_m ale_sagittal

..'40841041_fema le_metopic

14

12

X

4
---)17--

$
-11,

It

50 100 150 200 250 300

Age (days)

350 400 450 500

Healthy5ubjects

NOrmalAVg

£15121879 _ma le_metopic

X16274318 _ma le_sagittal

.16930208 Jemale_sagitta I

17721713 _ma le_sagittal

+ 18105676_female_sagitta I

-40140329_ma le_metopic

-40818817_ma le_sagittal

40241041 Jemalemetopic

 
 

 
 

Updated 1 March 2012 
 

4. RESULTS 

Volumetric findings show enlarged full brain volumes of craniosynostosis patients pre- and post- surgical correction. 
Figure 5 shows in the bold black line the average volume of healthy full brains and the two regular black lines show 
healthy variation within the healthy cohort. All 8 craniosynostosis patients independently of gender, age, and type of 
single suture craniosynostosis show brain volume enlargement, compared with healthy subjects. 

 

Figure 5. Volumetric findings show enlarged full brain volumes of craniosynostosis patients pre- and post- surgical 
correction 

Craniosynostosis corrective surgery improves full brain volume, figure 5 shows that volume differences between healthy 
population and craniosynostosis patients decrease in the post-surgical scan.  

 

Figure 6. Shape findings show bigger surface FaceMean differences between craniosynostosis patients and healthy age 
matched controls, pre- and post- surgical correction. 
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Figure 7. Shape findings displaying closest point signed distances between a metopic (a, b, c, age = 110 days) and sagittal 
(d, e, f, age = 116 days) craniosynostosis patients and their age-matched healthy controls. Closest Point surface distances 
accurately capture deformation features in both single suture craniosynostosis types. 

Figure 6 shows that the shape findings concur with the volumetric findings. All craniosynostosis patients have bigger 
shape differences with the regressed age-matched average brains than their healthy peers. Again, we see that the existing 
shape differences between craniosynostosis patients and age-matched healthy subjects decrease in the post-surgical 
scans, indicating the necessity of craniosynostosis corrective surgery. Figure 7 shows two illustrative example of the two 
types of single suture craniosynostosis individual shape results for further clarification. Closest Point surface distances 
accurately capture deformation features in both single suture craniosynostosis types. Metopic craniosynostosis cases 
display a similar head circumference to healthy controls only different by the metopic ridging in the anterior part, but 
still have enlarged brain volume (figure 7 a), b) and c)). Sagittal craniosynostosis brain shapes have larger head 
circumference by elongation of the brain shape in the anterior-posterior axis and narrowing of the brain in the left-right 
axis (figure 7 d), e) and f)).   

5. CONCLUSIONS 

Volumes and shape metrics in the single suture craniosynostosis patients were larger than age-matched controls for both 
pre- and post-surgery. The use of 3D shape and volumetric measurements show that brain growth is not normal in 
patients with single suture craniosynostosis. While understanding of what causes craniosynostosis is still evolving, it 
does seem clear after 3D shape and volume analysis that surgical correction for craniosynostosis demonstrates to 
improve the brain differences between craniosynostosis patients and healthy controls.  

When only one suture is fused, it is likely that only one surgery will be required to correct the abnormal skull shape. 
However, this pilot study demonstrates that full brain shape is abnormal pre- and post-surgical correction for both 
metopic and sagittal single suture craniosynostosis patients, indicating the brain in these infants differs from the normal 
population. Future work includes increasing our craniosynostosis cohort, including new shape metrics and using a 
different image modality that would allow for looking at the brain (i.e. MRI). Statistical analysis of bigger of metopic 
and sagittal groups of patients will help to understand the heterogeneity of the patient cohort.  
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