
Computer Vision and Image Understanding 115 (2011) 1375–1383
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Markov surfaces: A probabilistic framework for user-assisted three-dimensional
image segmentation

Yongsheng Pan a,⇑, Won-Ki Jeong b, Ross Whitaker a

a Scientific Computing and Imaging Institute, University of Utah, UT 84112, USA
b Initiative in Innovative Computing, School of Engineering and Applied Science, Harvard University, MA 02138, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 October 2009
Accepted 8 June 2011
Available online 16 June 2011

Keywords:
Image segmentation
Probabilistic framework
Markov chain
GPU
1077-3142/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.cviu.2011.06.003

⇑ Corresponding author.
E-mail addresses: ypan@sci.utah.edu (Y. Pan)

(W.-K. Jeong), whitaker@cs.utah.edu (R. Whitaker).
This paper presents Markov surfaces, a probabilistic algorithm for user-assisted segmentation of elon-
gated structures in 3D images. The 3D segmentation problem is formulated as a path-finding problem,
where path probabilities are described by Markov chains. Users define points, curves, or regions on 2D
image slices, and the algorithm connects these user-defined features in a way that respects the underly-
ing elongated structure in data. Transition probabilities in the Markov model are derived from intensity
matches and interslice correspondences, which are generated from a slice-to-slice registration algorithm.
Bézier interpolations between paths are applied to generate smooth surfaces. Subgrid accuracy is
achieved by linear interpolations of image intensities and the interslice correspondences. Experimental
results on synthetic and real data demonstrate that Markov surfaces can segment regions that are defined
by texture, nearby context, and motion. A parallel implementation on a streaming parallel computer
architecture, a graphics processor, makes the method interactive for 3D data.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Despite many significant advances in machine vision, many 3D
image segmentation in radiation oncology, cardiology, and psychi-
atry still cannot be fully automatic. Several examples, especially
when the boundary of the object is not clearly separable using
intensity differences, are shown in Fig. 1. In Fig. 1a, the background
and the cross-shaped object at the center have the same texture
patterns with a slightly different orientation. The transmission
electron microscopy (TEM) data of retinal ganglia shown in
Fig. 1b is hard to be segmented, even if the regions there can be
distinguished by some combination of texture and dark bound-
aries. Fig. 1c shows an example of a magnetic resonance imaging
(MRI) of a heart. The wall between a left atrium and a left ventricle
in the left image is usually very thin and fuzzy. It is hard to get
good segmentation results without user interaction in these cases.
Semiautomatic segmentation using user interaction, therefore,
seems necessary in these cases.

Several methods [1–5] have been proposed for semiautomatic
segmentation. A live wire algorithm is proposed in [1] to formulate
boundary extraction as a graph searching problem. It utilizes the
start points and the end points specified by users, and generates
paths between these points using local gradient features. Falcao
ll rights reserved.

, wkjeong@seas.harvard.edu
et al. [2] improved the efficiency of this method using live lane,
and Schenk et al. [5] extended the live wire method to 3D based
on shape-based interpolation and optimization. Both methods
need users to interactively specify points for segmentation. A turtle
segmentation algorithm based on 3D live wire has been proposed
by Poon et al. [6]. This algorithm is able to segment complex ob-
jects with arbitrary topology. But it usually requires many user
interaction steps to get satisfactory results.

Level-set methods [3,4,7,8] have become popular for image seg-
mentation because they are able to handle topological changes
automatically. But these methods are prone to converge to a local
minimum. Yushkevich et al. [8] introduced user interactions to le-
vel set methods. In their ITK-SNAP tool [9], users are able to initial-
ize the 3D active contour, set up parameters and perform post
processing. However, their approach is sensitive to parameter
selection and contour initialization. Furthermore, level set meth-
ods are computationally intense, and users have no steering con-
trol during the curve evolution.

Ardon et al. [3] proposed a surface extraction method based on
the start and end curves specified by users. A network of minimal
paths between these curves are generated using Fast Marching
method, and a 3D surface is acquired by the interpolation between
minimal paths. A 3D level set algorithm is performed for segmen-
tation using the acquired 3D surface as initialization. Although this
approach may provide good results, the topology of the network is
often problematic [4]. An implicit method is proposed in [4] for this
issue. It segments the object by finding a 3D real function using

http://dx.doi.org/10.1016/j.cviu.2011.06.003
mailto:ypan@sci.utah.edu
mailto:wkjeong@seas.harvard.edu
mailto:whitaker@cs.utah.edu
http://dx.doi.org/10.1016/j.cviu.2011.06.003
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu

Fig. 1. Examples that conventional intensity-based image segmentation methods fail to work.

1376 Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383
transport equations such that the network of minimal paths is con-
tained in its zero level set.

These methods, however, utilize mostly gradient information.
Image registration results between slices, which are very
important for 3D segmentation, are not utilized. They may have
problems when weak edges are present, e.g., in Fig. 1c. These meth-
ods are also computationally intense and no parallel computing
techniques are applied. The method proposed in this paper,
Markov surfaces, generalizes these methods by using region infor-
mation in a probabilistic framework. It combines a user-assisted
approach with an optimal path formulation that addresses a more
general class of images and shapes without a predefined model.
This method allows users to define surfaces or regions in 3D data
and to follow object boundaries in a way that does not require
any specific formulation of an edge. A parallel implementation on
graphics processor is provided for efficient computation. The pro-
posed framework is especially useful for segmentation problems
where the objects of interest are elongated in a predefined direc-
tion, which occurs regularly in 3D medical images.

The paper is organized as follows. Details of the probabilistic
framework are introduced in Section 2. Section 3 discusses imple-
mentation issues. Experimental results are shown in Section 4, fol-
lowed by Section 5, where a summary is presented.
2. Proposed method

The proposed segmentation system consists of two parts: a pre-
processing part, which establishes correspondences between slices
by 2D image registration, and an interactive part, which finds the
Fig. 2. Overview of the proposed 3D segm
Markov surfaces that connect user defined regions. Once the map-
ping between slices are acquired, the user can select a start curve
to compute cost or probability, for the entire input volume, of
attaching every point to the initial conditions via a Markov chain.
The user then selects an end curve, and the algorithm backtracks
through the cost volume to create a set of curves, each of which
has the highest probability of connecting the two sets. This process
can be repeated until desired segmentation results are obtained.

2.1. A probabilistic formulation for elongated structures

The goal of this section is to create a method that allows users
to quickly and interactively define features (curves or regions) on
disparate slices of a 3D dataset and connect these regions to form
3D structures in a way that conforms the data. The strategy is to
make it lightweight and general and thereby quickly applicable
to a wide range of different applications and data types.

The proposed framework constructs the most probable paths be-
tween regions using a Markov chain model that incorporates the
probability of correspondence between points on two different
slices. Here we define the ith slice fi of a volume f(x,y,z) to be the
2D function defined by fixing one of the coordinates, so that we
have fi(x,y) = f(x,y, i).

Denote a particular path W = (w1,w2, . . . ,wn) as having probabil-
ity P(W) = P(w1,w2, . . . ,wn), where wi is a position of the path on
the slice i of the input data. We model the path as a Markov chain
[10], so that probability of each subsequent position along the path
depends only on the previous position and probability. This gives
entation process using 2D tracking.

Fig. 3. Vector field for warping between two images. Warping the source image (a) with the vector field (b) gives the target image (c).

Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383 1377
PðWÞ ¼ Pðw1Þ
Yn�1

i¼1

Pðwiþ1jwiÞ ð1Þ

The proposed strategy is to define the conditional probabilities
in terms of a transition function from each pixel on one slice to
every pixel on the next. Thus

Pðwiþ1jwiÞ ¼ Fðwiþ1;wiÞ; ð2Þ

where F(wi+1,wi) may be considered as weights on a directed graph
that connects every pixel in one slice to every pixel in the next.

We define the initial probability P(w1) in terms of a user-de-
fined region, A (e.g., a starting curve). These probabilities could in-
clude some uncertainty around this curve, or alternatively, as in
this paper, a binary mask:

Pðw1Þ ¼
a > 0 w1 2 A

0 otherwise

�
ð3Þ

where for curves or points in a continuous domain, this would be,
formally, a measure.

The path fW that maximizes P(W) is defined:

fW ¼ argmaxW½PðWÞ�

¼ argminW �
Xn

i¼2

log Fðwi;wi�1Þ � log Pðw1Þ
" #

ð4Þ

where �logP(W) is referred as the path cost for the path W.
A variation on Dijkstra’s algorithm for dynamic programming,

described in Section 2.4, is proposed to find the optimal path to
every point in the volume. In practice, users define the start and
end curves for an object on different slices in a volume, and the
method quickly connects these regions using the most probable
paths, as shown in Fig. 2. The probability of the paths are derived
from a set of automatically determined correspondences, and thus
the resulting surfaces follow the structure of the data.
Fig. 4. Distance (left) and matching (right) metrics. v(p) in the left image represents
the movement of p in slice i towards slice i + 1 from image registration. The
intensity difference between p and q on the right is illustrated by different colors. By
means of cost computation, p may be found to correspond to q with the help of
distance metric although their intensities differ.
2.2. Slice-to-slice correspondence estimation

The first step of the Markov surfaces is to find a dense set of cor-
respondences between 2D slices in a 3D volume. There are a vari-
ety of ways that one could find such correspondences, such as
patch correlations [11] or feature matching [12]. A deformable im-
age registration method is applied here, which represents the cor-
respondences as a smooth displacement field.

Let I denote a 2D image where IðxÞ : X # R and x 2 X � R2, and
Ii and Ii+1 be two consecutive slices in the 3D volume. Define a cor-
respondence from image Ii to Ii+1 as a 2D transformation vector
field vi;iþ1ðxÞ : X#R2 that maps each pixel in Ii to Ii+1.

Slice-to-slice correspondence estimation is achieved by mini-
mizing the following the energy E:

E ¼ 1
2

Z
x2X
ðeIi � Iiþ1Þ2 þ akrvk2 ð5Þ

where eIi ¼ Iiðxþ vi;iþ1ðxÞÞ; Iiþ1 ¼ Iiþ1ðxÞ; v ¼ vi;iþ1ðxÞ; x 2 X, and a
is a constant parameter. The regularization term krvk2 helps to
produce a smooth vector field and makes the problem well posed.

A gradient flow is used to compute vi,i+1, similar to [13,14]. The
update equation for v is written as

vkþ1 ¼ 1
I þ DtaLð Þ vk þ DtðIiþ1 �eIk

i ÞreIk
i

h i
¼ GI vk þ DtðIiþ1 �eIk

i ÞreIk
i

h i
; ð6Þ

where G is a Gaussian kernel of width r ¼
ffiffiffiffiffiffiffiffiffiffiffi
2aDt
p

.
Because the energy function E we want to minimize in this

problem is not, generally, convex, the solution of the minimization
converges to local minimum. Therefore, images with large defor-
mations require better optimization strategies. To overcome such
problems, we use cascading multigrid scheme (coarse to fine) with
a 4-to-1 averaging D combined with a Gaussian smoothing kernel
G (to eliminate aliasing effects) for down sampling the input
images, and a 1-to-4 projection kernel U for up sampling the vector
images. Fig. 3 shows an example of a vector field for warping be-
tween two images.

1378 Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383
2.3. Slice-to-slice mapping probability

In this section we define the slice-to-slice mapping probability
F(p,q), defined in Eq. (2), which indicates the transition probability
for a point p on slice i to a point q on slice i + 1. A bilateral fall-off
function F is applied based on two measures: the distance
d(p,q) = jp + vi(p) � qj from the correspondence given by the regis-
tration and the intensity difference g(p,q) = jfi(p) � fi+1(q)j between
the image values on the adjacent slices in the path. An illustration
of these measures is provided in Fig. 4. Thus, the transition func-
tion is

Fðp;qÞ ¼ 1
Kp

exp � d2 p;qð Þ2

2k2
d

 !
exp � g p;qð Þ2

2k2
g

 !
ð7Þ

where kd and kg are user-given parameters, and Kp is the normaliza-
tion constant. The cost computation based on the probability func-
tion (7) is therefore the quadratic expression:

CnewðxÞ ¼ Cn�1ðexÞ þ logðKpÞ þ
d2 ex;x� �

2k2
d

þ g2 ~x; xð Þ
2k2

g

; ð8Þ

where Cnew(x) represents the new cost on grid x computed from the
grid ~x in the previous slice.

The right image in Fig. 4 illustrates the computation of shortest
paths between slices by minimizing the cost in Eq. (8). The points
above and below the point p in slice i are shown to correspond to
points with similar intensities (illustrated by color) in slice i + 1.
The point p, however, may be found to correspond to the point q
with different intensity. This is achieved by incorporating the dis-
tance metric to the cost function in Eq. (8). This demonstrates the
effectiveness of image registration, which will be further explored
in Section 4.

2.4. Shortest path cost computation

A variant of Dijkstra’s algorithm [15] is applied here to compute
the optimal path on a directed graph formulated in Eq. (4). The
strategy is to compute a sequence of optimal paths to every pixel
on each successive slice. Let Cn(x,y,n) be the cost of the optimal
path from the first slice to pixel (x,y,n) on slice n. For every
neighbor ð~x; ~y;n� 1Þ of the pixel (x,y,n � 1) in the slice n � 1,
the cost Cnew is computed using Cnew ¼ Cn�1ð~x; ~y;n� 1Þ � logðFðex;
~y;n� 1; x; y;nÞÞ, and the minimum cost among all the neighbors
is taken as the minimum cost of the path Cn(x,y,n).

This is described in pseudocode in Algorithm 1, where qi

represents the corresponding point in slice i � 1 for the point x in
slice i.
Algorithm 1. Algorithm for computing the optimal cost and path
to each point in the volume.

1:Initialize C1

2: for i = 2 to n do
3: for all x 2X do
4: Ci(x) =1
5: for all~x 2 neighbor(x) do

6: Cnew ¼ Ci�1ð~xÞ � logðFð~x; xÞÞ
7: if Ci(x) > Cnewthen
8: Ci(x) = Cnew

9: qi ¼ ~x
10: end if
11: end for
12: end for
13: end for
The proposed algorithm computes cost values on each slice in
sequence, from the starting to the ending slice. Because of the

strict causal relationship and the parallel nature of the method,
its implementation on parallel architectures, such as graphics
processing units, is straightforward and gives a significant
speed-up, allowing the Markov surfaces to be generated and visu-
alized at interactive rates, immediately after the user has defined
the starting region (and while they are selecting the ending
region).

Curves connecting the regions are generated by finding a path
for every point on the end curve that connects to the start curve.
This is done by backtracking from the ending region through each
previous pixel on the optimal path to the starting slice. That is,
we recursively build the path by referring to each previous transi-
tion in the optimal path. Fig. 5 shows an example of backtracking
from wn on the end slice n through W = {wi 2Xji = 1, . . . ,n} to slice
1, the start slice.

2.5. Bézier interpolation

One issue in the proposed framework is that paths may merge
during backtracking [4]. In the illustration of Fig. 6a, for example,
paths from P52 and P53 merge at slice S3 during backtracking, and
the path from P54 merges the path from P52 (and P53) at slice S1.
In this case, paths from three points in the end curve in slice S5

are backtracked to one point in the start curve in slice S0. Therefore,
backtracking from a smooth end curve (e.g., Fig. 6b) may result in a
cluster of spatially disconnected points (e.g., Fig. 6c) seen from one
slice. This feature makes surface extraction challenging [4], which
means a surface such as the one in Fig. 10e is hard to acquire from
the backtracking results without interpolation.

Bézier curve [16] is applied to model smooth curves from dis-
connected points in this case. A Bézier curve of order n is generated
using n points {Pi, i = 0, . . ., n} (Fig. 6c),

BðtÞ ¼
Xn

i¼0

n
i

� �
ð1� tÞn�itiPi; t 2 ½0;1� ð9Þ

The order n may be specified by users depending on specific
applications. A smooth curve (e.g., Fig. 6d) is achieved by applying
Bézier curve to all the backtracking points (e.g., Fig. 6c). Every point
in the smoothed curve will be used as a start point of a path and be
backtracked to the next slice, where Bézier curve is applied again
to the backtracking results. This process is repeated until the back-
tracking process has been done for all the slices.

2.6. Forward update after backtracking

A smooth curve is acquired in each image slice after Bézier
interpolation is applied. However, the curve resulting from back-
tracking may be only a portion of the start curve in the first slice
[4]. Fig. 7a illustrates this issue, where the portion of the start
curve between P01 and P04 is not reached by any path from
backtracking. However, this portion of the start curve should
be reached based on the minimization of the cost function in
Eq. (8). This is illustrated in Fig. 7b, where paths inside the area
specified by P01, P04 and P51 are expected. A forward update
mechanism is proposed to handle this issue, as illustrated in
Fig. 7.

Once the backtracking stage is finished, we record the un-
matched points between P01 and P04 in slice S0. Then slice S1 is
searched using Algorithm 1 to find the paths corresponding to
those unmatched points in slice S0. The magenta curve in Fig. 7c
shows the searching results in slice S1. Bézier interpolation is then
applied in slice S1 to generate smooth curves. Fig. 7d is achieved
after Bézier interpolation. The same process is applied to all other

Fig. 5. Backtracking from a point wn on the end curve to the start curve.

S0 S1 S2 S3 S4 S5

P51

P52

P53

P54

P55

P31
P11

(a) (b) (c) (d)
Fig. 6. Illustration of path merging and Bézier interpolation. (a) Path merging during backtracking. (b) Smooth end curve. (c) Spatially disconnected points seen in a slice,
which results from path merging during backtracking. (d) Curve acquired from Bézier interpolation in (c).

S0 S1 S2 S3 S4 S5

P04

P51

P01

(a)
S0 S1 S2 S3 S4 S5

P04

P51

P01

(b)
S0 S1 S2 S3 S4 S5

P04

P51

P01

(c)
S0 S1 S2 S3 S4 S5

P04

P51

P01

(d)

S0 S1 S2 S3 S4 S5

P04

P51

P01

(e)
S0 S1 S2 S3 S4 S5

P04

P51

P01

(f)
S0 S1 S2 S3 S4 S5

P04

P51

P01

(g)
S0 S1 S2 S3 S4 S5

P04

P51

P01

(h)
Fig. 7. Illustration of forward update after backtracking. (a) Start curve may be reached partially during backtracking. (b) Results expected from cost minimization. (c)
Magenta curve in slice S1 corresponds to the unmatched points in slice S0. (d) Bézier interpolation is applied in slice S1 for smooth curves. (e) Magenta curve in slice S2
corresponds to the unmatched points in slice S1. (f) Bézier interpolation is applied in slice S2 for smooth curves. (g) Magenta curves after applying the forward process on all
slices. (h) Paths after the the forward process, which is more reasonable than (a).

Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383 1379
slices S2, S3, and S4, as shown in Fig. 7e–g. After the forward up-
date process, we generate the results in Fig. 7h, which are more
reasonable than those in Fig. 7a.

The forward update mechanism may be applied whether the
user-specified curves are open or closed. It can improve the per-
formance in both cases. From our experiences, this mechanism is
required for open curves, while it is not necessary for closed
curves. This may be explained by the fact that Bézier interpola-
tion can generate more regularization for closed curves than open
curves.
3. Implementation issues

Markov surfaces present two computational problems: nonrigid
image registration and the dense optimal cost computation. Be-
cause those problems are inherently parallel, we have imple-
mented them on a graphics processing unit (GPU) to make the
system interactive. Efficient computation on the GPU entails reus-
ing memory in the access of overlapping neighborhood regions and
the reduction of memory latency for random access. For this task,
we use texture hardware on the current GPUs because texture

1380 Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383
memory is cached and interpolation is done for free by hardware.
For example, the proposed semi-implicit nonrigid image registra-
tion method iteratively updates the vector field and smoothes it
until it converges to a steady state.

To optimize the displacement field, we need to sample the pixel
values on arbitrary locations (unlike, for example, optic flow) in the
transformed image. We can do this efficiently by using the GPU’s
hardware interpolation function. For shortest path cost computa-
tion, we need to collect a set of pixels from the previous slice per
every pixel on the current slice, and then we find the pixel having
the minimum cost among them. This is a memory bound process
(access to memory is a bottleneck). However, the searching region
for a given pixel is a spatially coherent rectangle region on a 2D
slice, and is largely overlapped to the neighbor pixel’s search re-
gion. Therefore, we can get a high cache hit rate and significantly
reduce the running time by using texture memory of the GPU.
All of these strategies are part of the implementation and allow
us to get the significant computational speed up (relative to CPU
Table 1
Comparison of running times for cost computation.

Synthetic texture Seismic MRI
(150 � 150 � 50) (301 � 111 � 32) (640 � 460 � 16)

CPU time 4.86 21.5 596
GPU time 0.25 0.46 3.8
Search width 1.8 4.3 16
Speedup 19 46 156

Fig. 8. Segmenting a 3D texture. (a) Start contour in the 1st slice. Contours for the Markov
Segmentation results for slice 17 using the turtle segmentation method in [6]. (f) Segme
pattern is not segmented properly.
implementations) and interactive computation times for this
approach.
4. Experimental results

Experimental results are provided in this section. The proposed
segmentation system is implemented on a Windows XP PC
equipped with an Intel Core 2 Duo 2.4 GHz CPU, 4 GB main mem-
ory, and an NVIDIA Geforce 8800 GT graphics card.

Image registration and cost computation are time consuming
processes, and they cannot be done in real-time on a conventional
computer. For example, 2D registration of a 300 � 300 image (e.g.,
Fig. 3) takes about 28 s on the CPU after 600 iterations. The same
registration can be done only in 0.7 s on the GPU. Slice-to-slice reg-
istration for a large 3D volume could easily take a few minutes
even on the GPU, but it needs to be computed only once for each
volume along each direction of interest. Thus, we consider a pre-
processing step, done just before the interactive segmentation
process.

Table 1 compares the running times (in seconds) of computa-
tion on the CPU and the GPU on one synthetic and two real 3D
datasets. The MRI volume is about four times larger than the other
two volumes. The most important factor in computation time is
the size in the cost computation, because the algorithm complexity
of cost computation is O(kN) where k is the size of neighbor search
and N is the size of input data (i.e., the number of voxels). Also, be-
cause of the benefit of using local memory (or texture cache [17]),
the neighbor search size k affects the running time less signifi-
cantly in the GPU version. Thus, the speed gain associated with
surfaces for slices 17 (b) and 34 (c), and the ending contour (d), on the 50th slice. (e)
ntation results for slice 34 using the turtle segmentation method in [6]. The texture

Fig. 9. Segmenting video data with nonstationary objects and background: (a) a user defined initial contour, (b and c) intermediate contours from the Markov surface, and (d)
the user-defined ending contour on image 50 from the sequence.

Fig. 10. Segmenting the left atrium from MRI: (a) Starting contour, contours from the Markov surface for slices 6 (b) and 12 (c), the ending contour (d) on slice 18, and (e)–(f)
3D rendering of the Markov surface with a volume rendering of the original MRI data for context. (g) Chan-Vese level set results for slice 2. The area of interest is not
segmented. (h) Interactive level set results using ITK-SNAP [9] for slice 6. (i) Interactive level set results using ITK-SNAP [9] for slice 12.

Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383 1381
the GPU implementation increases proportionally with neighbor
search size.

Results on real and synthetic images demonstrate the effective-
ness of the method. Each dataset has 30–50 slices, and intermedi-
ate results shows the results in the middle slices.

Fig. 8 shows an example of nontrivial feature segmentation, i.e.,
tracking of the boundary of an object in a complex texture back-
ground. Because the inside of the moving object and the back-
ground regions are filled with the same texture patterns, it is
difficult to extract the boundary of the object using conventional
edge detectors. As shown in the images, the object is segmented
reasonably well through a series of slices using the proposed
method.

For comparison, the turtle segmentation method [6,18] is ap-
plied to the same texture data. Four contours are specified by users
for 3D segmentation in this experiment. These contours include
the start contour in the 1st slice as in Fig. 8a, the end contour in
the 50th slice as in Fig. 8d, an intermediate contour in the 25th
slice, and a contour in the plane orthogonal to the planes of the
first three contours. Fig. 8e and f show the segmentation results
on slice 17 and slice 34. It can be seen that these results are not
appropriate enough, and more user interactions and more time

Fig. 11. Segmenting serial section microscopy data: (a) User-defined contour on the first slice, (b and c) intermediate contours from the Markov surface, (d) the user-defined
ending contour, (e) 3D surface rendering of the Markov surface with volume rendering of the original data for context, and (f) multiple cells are segmented with less than 2
minutes of user interaction.

Fig. 12. Illustration of forward update after backtracking. (a) Start curve in slice 1 of the seismic data. (b) Backtracking results for slice 1. Only part of the start curve is
reached. (c) Add in slice 2 the corresponding points to the unmatched points in slice 1. (d) Results in slice 2 after Bézier interpolation. (e) Volume rendering of the paths with
no forward update. (f) Volume rendering of the paths after forward update.

1382 Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383
are required to refine the segmentation. In comparison, our pro-
posed method requires less user interaction and generates better
results, because of the utilization of both the distance metric from
image registration and the intensity metric.

Y. Pan et al. / Computer Vision and Image Understanding 115 (2011) 1375–1383 1383
Fig. 9 shows results for video segmentation, where the time ser-
ies is treated as a set of slices in the proposed framework. In this
example, the camera moves and the cup, during the sequence, oc-
cludes objects with similar intensities. Thus, this is not a problem
which is amenable to simple motion tracking, intensity threshold-
ing, or edge detection.

Fig. 10 shows the start and end curves for the MRI cardiac data
set (top and bottom of heart, respectively) and several intermedi-
ate curves that are found as Markov surfaces. Note that the bound-
ary of the heart wall expands abruptly at the beginning (top row),
but the proposed cost method can capture the movement reason-
ably well. The right images in Fig. 10 show surface renderings of
the Markov surface for the left atrium combined with a volume
rendering, with user-defined transfer functions, of the original
MRI data for context. A comparison with the Chan-Vese level set
method [7] is provided for slice 2, with Fig. 10g showing the seg-
mentation results. It can be seen that the automatic level set meth-
od with no user control is not able to segment the object of
interested in this case. Fig. 10h and Fig. 10i show the segmentation
results using the interactive level set method proposed in [8] by
means of the ITK-SNAP implementation [9]. These results segment
most of the heart, but the boundaries are irregular compared to the
results in Fig. 10b and c. Moreover, during the segmentation pro-
cess using ITK-SNAP, Users need to carefully choose initial curves,
specify proper parameters, and stop the curve evolution. These
requirements make it hard for user interactions. In comparison,
the Markov surfaces are more straightforward for user interaction.

Fig. 11 shows similar results for tracing cells in serial section
microscopy data. In this example, multiple axons are traced using
Markov surfaces. Tracking axons is difficult; some axons move
abruptly from one slice to another, new axons appear, or some ax-
ons suddenly disappear. Fig. 11 upper image shows tracking of a
single axon through multiple slices, and lower image is the 3D ren-
dering of the surface of five axons created using the proposed
method.

Fig. 12 shows the effects for the forward update process on real
seismic data. Fig. 12b shows that the curve from backtracking in
slice 1 corresponds to only a small portion of the start curve in
Fig. 12a. The points enclosed in cyan curve in Fig. 12c are found
in slice 2 via cost minimization, which correspond to the un-
matched points of the start curve in slice 1. A smooth curve is ac-
quired after Bézier interpolation is applied, as shown in Fig. 12d.
This forward update process is repeated from the start slice to
the end slice for final segmentation results. Fig. 12e shows the vol-
ume rendering of paths with no forward update, while Fig. 12f
show the volume rendering of paths after forward update. The por-
tion enclosed in the blue cycle in Fig. 12f shows the effects of for-
ward update. By comparison we can see that the forward update
process generates more reasonable results with the paths reaching
all of the start curve.

5. Summary

Despite many significant advances in machine vision, there
remains a need for simple, general tools that allow users to quickly
segment 3D data sets. This paper addresses a user-assisted seg-
mentation method, Markov surfaces, for elongated structures in
3D images. Markov surfaces are based on a probabilistic frame-
work that finds the optimal paths that connect user-defined
regions. Computationally demanding components, such as non-
rigid image registration and path computation, are implemented
on the GPU, resulting in an interactive technique. Experimental
results show that the proposed Markov surfaces may be able to
segment elongated structures accurately and efficiently with
straightforward user interactions.

One limitation of the Markov surfaces is that the elongated ob-
ject must be aligned along a specific direction. Applying the pro-
posed method to arbitrarily curved structures will be the future
work. Another shortcoming is that the individual, one-dimen-
sional, paths are optimized independently between slices. Future
work will consider the joint optimization of a set of interacting
paths in the 3D volume, in order to guarantee complete surfaces
that connect the user-defined boundary conditions. Quantitative
performance evaluation in terms of repeatability, accuracy and
efficiency will be explored in the future too.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.cviu.2011.06.003.

References

[1] W.A. Barrett, E.N. Mortensen, Interactive live-wire boundary extraction,
Medical Image Analysis 1 (1997) 331–341.

[2] A.X. Falcao, J.K. Udupa, S. Samarasekera, S. Sharma, User-steered image
segmentation paradigms: live wire and live lane, Graphical Models and
Image Processing 60 (4) (1998) 233–260.

[3] R. Ardon, L.D. Cohen, Fast constrained surface extraction by minimal paths,
International Journal of Computer Vision 69 (1) (2006) 127–136.

[4] R. Ardon, L.D. Cohen, A. Yezzi, Fast surface segmentation guided by user input
using implicit extension of minimal paths, Journal of Mathematical Imaging
and Vision 25 (3) (2006) 289–305. doi:dx.doi.org/10.1007/s10851-006-9641-
9.

[5] A. Schenk, G. Prause, H.-O. Peitgen, Efficient semiautomatic segmentation of
3D objects in medical images, in: MICCAI ’00: Proceedings of the Third
International Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer-Verlag, London, UK, 2000, pp. 186–195.

[6] M. Poon, G. Hamarneh, R. Abugharbieh, Efficient interactive 3D live wire
segmentation of complex objects with arbitrary topology, Computerized
Medical Imaging and Graphics 32 (2008) 639–650.

[7] T. Chan, L. Vese, Active contour without edges, IEEE Transactions on Image
Processing 10 (2) (2001) 266–277.

[8] P. Yushkevich, J. Piven, H. Hazlett, R. Smith, S. Ho, J. Gee, G. Gerig, User-guided
3D active contour segmentation of anatomical structures: significantly
improved efficiency and reliability, NeuroImage 31 (2006) 1116–1128.

[9] http://www.itksnap.org/pmwiki/pmwiki.php.
[10] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-

Verlag, 1993.
[11] Z. Engin, M. Lim, A. Bharath, Gradient field correlation for keypoint

correspondence, in: Proceedings of International Conference on Image
Processing, 2007, pp. II: 481–484.

[12] G. Wen, J. Lv, W. Yu, A high-performance feature-matching method for image
registration by combining spatial and similarity information, IEEE
Transactions on Geoscience and Remote Sensing 46 (2008) 1266–1277.

[13] P. Anandan, A computational framework and an algorithm for the
measurement of visual motion, Journal on Computer Vision 2 (1989) 283–310.

[14] U. Clarenz, M. Droske, M. Rumpf, Towards fast non–rigid registration, in:
Inverse Problems, Image Analysis and Medical Imaging, AMS Special Session
Interaction of Inverse Problems and Image Analysis, vol. 313, AMS, 2002, pp.
67–84.

[15] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik 1 (1959) 269–271.

[16] J.D. Foley et al., Computer Graphics: Principles and Practice in C, second ed.,
Addison Wesley, 1992.

[17] H. Nguyen, GPU Gems 3, Addison-Wesley Professional, 2007.
[18] http://www.turtleseg.org.

http://dx.doi.org/10.1016/j.cviu.2011.06.003
http://www.itksnap.org/pmwiki/pmwiki.php
http://www.turtleseg.org

	Markov surfaces: A probabilistic framework for user-assisted three-dimensional image segmentation
	1 Introduction
	2 Proposed method
	2.1 A probabilistic formulation for elongated structures
	2.2 Slice-to-slice correspondence estimation
	2.3 Slice-to-slice mapping probability
	2.4 Shortest path cost computation
	2.5 Bézier interpolation
	2.6 Forward update after backtracking

	3 Implementation issues
	4 Experimental results
	5 Summary
	Appendix A Supplementary material
	References

