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ABSTRACT

3D iterative CT reconstruction is an active research area
in medical imaging. Compared with analytic reconstruction
methods such as FDK, iterative methods may provide bet-
ter reconstruction results for incomplete and noisy projec-
tion data. The simultaneous algebraic reconstruction tech-
nique (SART), one of the most popular iterative reconstruc-
tion methods, is applied in the cone-beam geometry for high-
resolution reconstruction, with the help of graphics hardware
(GPU) and total variation (TV) regularization. GPU greatly
improves the efficiency of SART, which is computationally
intense for CPU, and thus makes it suitable for clinical ap-
plications. TV regularization reduces the effects of noiseand
helps the convergence of SART for noisy data. Experimental
results for both synthetic and real data are provided to evalu-
ate the accuracy and efficiency of the proposed framework.

Index Terms— Cone-beam CT, iterative reconstruction,
SART, GPU, TV regularization

1. INTRODUCTION

Iterative CT reconstruction methods such as SART have been
proposed since the late eighties [1]. These methods have
advantages over analytical reconstruction methods such as
FDK [2] for incomplete and noisy projection data. However,
most industrial manufacturers have utilized FDK in their
products so far because the high computational cost of SART
hinders its practical application.

Iterative reconstruction methods have recently become ac-
tive again due to the rapid developments of commodity hard-
ware, such as GPU [3] [4] and Cell BE processor [5]. This
hardware may greatly enhance the efficiency for SART and
make SART appropriate for clinical applications.

On the other hand, regularizations are usually necessary
for SART to reduce the effects of noise and enhance conver-
gence, especially for projection data with strong noise. Total-
variation (TV) minimization is a good method for the regular-
ization of SART.

The performance of SART is studied in this paper. A
GPU is utilized to improve its efficiency, while TV minimiza-
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tion [6] is utilized to regularize the SART algorithm. Recon-
struction results for both synthetic and real data are presented.

The paper is organized as follows. Section 2 introduces
the background information for SART and TV regularization.
GPU implementation details are shown in Section 3. Experi-
mental results are provided in Section 4, followed by the sum-
mary in Section 5.

2. BACKGROUND

Mathematical details of the SART algorithm and the TV regu-
larization are provided in this section. These algorithms form
the framework implemented in Section 3.

2.1. Introduction to SART

SART [1] takes every pixel in the object to be reconstructed
as an unknown variable, and and it takes each projection mea-
surement as a weighted summation of these variables. SART
accomplishes CT reconstruction by solving the unknown vari-
ables from the acquired measurements. Specifically, SART is
designed to solve the following simultaneous equation system
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where pi represents theith projection, wij represents the
weight which the voxelvj contributes its value to the pro-
jection i. Reconstruction is achieved by findingvj from the
equation system (1). The weightwij is assumed to be known.

The SART algorithm solves the equation system by itera-
tively applying a correction array to each voxelvj as follows

vk+1
j = vk

j + λ

∑

i

{

wij
pi−

P

N

m=1
wimvk

m
P

N

m=1
wim

}

∑

i wij

(2)

whereλ is a constant coefficient. This process in Eq. 2 can be
decomposed into two steps: the forward projection step and
the backward projection step. The forward projection step
computes a correction image for each ray, i.e.,
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The backward projection step updates each voxel by backpro-
jecting to it the contribution of each correction image, i.e.,
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The SART algorithm has advantages over analytic recon-
struction methods based on FDK [2], especially when few
projections are available and when the projections are noisy.
It is also more stable to the variations in the imaging geom-
etry, such as the moving trajectory of imaging sources and
detectors. However, SART is computationally intense, and
it may require a lot of memory to store the weight infor-
mation. Furthermore, regularization is usually necessaryfor
noisy data.

2.2. Introduction to TV Regularization

Total variation regularization [6] is a nonlinear image regu-
larization method that reduces the total variation of an image
while keeping the regularized image similar to the original
image. Given an imagef defined on domainΩ, this method
seeks a regularized imageu which minimizes the following
energy function

F (u) =

∫

Ω
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whereα is a constant coefficient. This energy functional has
the nice property of preserving straight, sharp edges, and thus
allows solutions to have a piecewise flat property.

The minimization of the energy functional (5) is numeri-
cally calculated using the following updating scheme

un+1 − un

△t
= ∇ ·

∇un

‖∇un‖
− α(u − f) (6)

The minimization is iteratively processed until convergence.
Fig. 1 illustrates the regularization effects of TV. Fig. 1(b)

shows the TV regularization results from the original image
Fig. 1(a) with the coefficientα = 0.1, and Fig. 1(c) shows the
TV regularization results with the coefficientα = 0.5. It can
be seen that the TV regularization results contain less noise
than the original image and that the results in Fig. 1(c) are
closer to the original image with largerα.

3. IMPLEMENTATION DETAILS

SART and TV are combined for iterative reconstruction in
this paper. Specifically, Eq. 3, Eq. 4 and Eq. 6 are applied
sequentially for a specified number of iteration until conver-
gence. GPU implementation details for Eq. 3 and Eq. 4 are
illustrated here, utilizing the methods in [7].

The mechanism of ray-based forward projection for Eq. 3
is illustrated in Fig. 2. For each projection, the ray from the
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Fig. 1. Illustration of TV regularization. (a) Original noisy
image. (b) Image regularized using TV withα = 0.1. (c) Im-
age regularized using TV withα = 0.5.

(a)

Fig. 2. Illustration of ray-based forward projection using
GPU.

source to each pixel in the detector plane is spatially deter-
mined, and the intersection points of the ray entering and ex-
iting the object are calculated. The projection measurement is
then calculated by accumulating the samples from the object
along the ray between the intersection points using an equidis-
tant step size. Interpolation methods such as trilinear inter-
polation may be applied to specify the object value at each
sampling point. In the GPU implementation, the object data
is stored as a 3D texture to utilize the hardware-accelerated
interpolation functionality in the graphics card. Furthermore,
GPU computes the weight information on the fly without stor-
ing it to save GPU memory.

The mechanism of voxel-based backward projection for
Eq. 4 is illustrated in Fig. 3. For each voxel in the object, the
ray determined by the source and this voxel is utilized to cal-
culate the intersection point with the detector plane. The cor-
rection value for this voxel is then calculated by interpolating
the values in the detector plane. In the GPU implementation
the correction data from the detector plane is stored as a 3D
texture for fast data access and efficient hardware-accelerated
interpolation.

4. EXPERIMENTAL RESULTS

Experimental results for cone-beam CT are presented here to
illustrate the GPU implementation of SART. Nvidia CUDA
is utilized for the GPU implementation on the Nvidia’s
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Fig. 3. Illustration of voxel-based backward projection using
GPU.

Geforce GTX 280 GPU, which has 240 processor cores with
1296MHz processor clock, 1GB GPU memory with 1107
MHz memory clock, and 141.7GB memory bandwidth.

Fig. 4 shows the SART reconstruction results for large
real data using GPU. The object is a chest of a mouse of size
256×256×193. 100 projections are generated with the de-
tector size 339×339. Fig. 4(a) shows the original image for
slice 110 in the mouse data. Fig. 4(b)-Fig. 4(d) represent the
SART reconstruction results after 5, 40, and 200 iterations
respectively. The whole 200 SART iterations take 22.9 sec-
onds using the Nvidia Geforce G280 graphics card, with 0.1
second for each iteration on the average. Fig. 5 shows the vol-
ume rendering of the corresponding reconstruction resultsin
Fig. 4 using the same transfer function. These results show
that the GPU implementation of SART may achieve accurate
reconstruction in a very efficient way.

Fig. 6 demonstrates the effects of TV regularization on
SART results for noisy projection data. Fig. 6(a) shows the
110th slice of the original data. Multiplicative noise is added
to the generated projection data. If the value of a projection
is p, its value is changed to bep(1 − 0.3α), whereα is a ran-
dom number between 0 and 1. Fig. 6(b) shows the 1st slice
of the projection data before adding noise, while Fig. 6(c)
represents the same slice after noise is added. Fig. 6(d) and
Fig. 6(f) show the SART reconstruction results from noisy
projection data after 20 and 200 iterations with no TV reg-
ularization. Fig. 6(e) and Fig. 6(g) show the SART results
from noisy projection data after 20 and 200 iterations with
TV regularization. It can be seen that TV regularization helps
SART achieve much better reconstruction results, which con-
tains much less noise. The reconstruction results in Fig. 6
with TV regularization take 25.8 seconds for 200 iterations.

5. SUMMARY

Iterative CT reconstruction methods, which are robust to in-
complete and noisy projection data, have great potential in
real applications. SART, along with TV regularization, is uti-
lized in the paper for reconstruction. CUDA GPU is utilized
to speed up the computation. This paper presents the results
on 3D real images. The results show that GPU-accelerated
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Fig. 4. GPU reconstruction results using SART for large
mouse chest data. (Object volume: 256×256×193, Projec-
tion data: 100×339×339, no TV). (a) Original image for slice
110. (b) SART results after 5 iterations. (c) SART results af-
ter 40 iterations. (d) SART results after 200 iterations.

(a) (b)
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Fig. 5. Volume rendering of GPU SART reconstruc-
tion results for a mouse chest. No TV. (Object volume:
256×256×193, Projection data: 100×339×339). (a) Orig-
inal volume. (b) SART results after 5 iterations. (c) SART
results after 40 iterations. (d) SART results after 200 itera-
tions.
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Fig. 6. 3D SART using TV regularization for mouse
chest data. (Object volume: 256×256×193, Projection
data: 100×339×339). (a) The 110th slice from the orig-
inal volume. (b) The 1st slice from the projection data.
(c) The 1st slice from the projection data with added noise.
(d) SART results after 20 iterations with no TV regulariza-
tion. (e) SART results after 20 iterations with TV regulariza-
tion. (f) SART results after 200 iterations with no TV reg-
ularization. (g) SART results after 200 iterations with TV
regularization.

SART algorithm with TV regularization may generate high-
quality reconstructions with high potential for clinical appli-
cations. Future work will be focused on the SART conver-
gence with respect to noise and new regularization methods.
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