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Automatic ¯ngerprint identi¯cation systems (AFIS) have been studied extensively and are

widely used for biometric identi¯cation. Given its importance, many well-engineered methods

have been developed for the di®erent stages that encompass those systems. The ¯rst stage of any
such system is the segmentation of the actual ¯ngerprint region from the background. This is

typically achieved by classifying pixels, or blocks of pixels, based on a set of features. In this

paper, we describe novel features for ¯ngerprint segmentation that express the underlying

manifold topology associated with image patches in a local neighborhood. It is shown that
¯ngerprint patches seen in a high-dimensional space form a simple and highly regular circular

manifold. The characterization of the manifold topology suggests a set of optimal features that

characterize the local properties of the ¯ngerprint. Thus, ¯ngerprint segmentation can be for-

mulated as a classi¯cation problem based on the deviation from the expected topology. This
leads to features that are more robust to changes in contrast than mean, variance and coherence.

The superior performance of the proposed features for ¯ngerprint segmentation is shown in the

eight datasets from the 2002 and 2004 Fingerprint Veri¯cation Competitions.

Keywords : Fingerprint segmentation; manifold characterization; feature extraction; dimension-

ality reduction.

1. Introduction

Fingerprints are widely used biomarkers. Their uniqueness and near immutability

over life have been known for more than a century.31 Because of their initial im-

portance in forensics and the recent need for automated biometric identi¯cation

systems, automatic ¯ngerprint identi¯cation systems (AFIS) have been studied ex-

tensively and are still an highly active research topic.5,25,37,46 As a result, many well-

engineered methods have been proposed for the di®erent stages that encompass such

a system (Fig. 1).
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The ¯rst stage of a ¯ngerprint identi¯cation system is the segmentation of the

actual ¯ngerprint region from the background. This preprocessing step allows the

next steps to focus only on the actual ¯ngerprint region, which typically leads to

savings in computation time. More importantly, it prevents extraction of spurious

features in the background because of noise. The next stage is image enhancement,

aimed at increasing the contrast and reducing noise in preparation for feature ex-

traction. The most commonly used approach for this stage is to ¯lter the ¯ngerprint

image with a directional Gabor ¯lter using parameters chosen to match the ridge/

valley pattern of ¯ngerprints.18 Then, a set of features is extracted for matching. The

most relevant features are the ridges and minutiae. The ridge features are generally

used for ¯ngerprint alignment21 and for minutia detection.31 Ultimately, the minutia

points are used for ¯ngerprint matching or alignment because the relative location of

these detected points is unique to each ¯ngerprint.

Fingerprint segmentation has received considerable attention in the literature.

This is understandable since this is the ¯rst stage of an AFIS, and any errors at this

stage will propagate to the following stages and inevitably decrease the matching

performance. Typically, ¯ngerprint segmentation is achieved by classifying pixels, or

blocks of pixels, based on a set of features which quanti¯es an intuitive under-

standing of how ¯ngerprint regions appear.3,31,50 Although these methods achieve

good results for high-quality/high-contrast ¯ngerprints, their segmentation perfor-

mance is not consistent for low quality ¯ngerprints.

In this paper we describe how a ¯ngerprint can be described in terms of the

manifold topology of local patches and the implications of this for ¯ngerprint seg-

mentation. We derive features based on the analysis of the intrinsic structure asso-

ciated with the ¯ngerprint pattern. This \intrinsic structure" is contained in the

manifold topology inherent from local image neighborhoods (i.e. \patches"), and can

be expressed in a low-dimensional space which reveals this structure. More speci¯-

cally, it is shown that ¯ngerprint patches form locally a simple and highly regular

circular manifold. This observation suggests a natural set of features that describe a

¯ngerprint region. A key advantage is that the manifold topology derived from the

Fingerprint
image

Fingerprint
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Image
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Feature
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Fig. 1. Diagram of the stages of a ¯ngerprint matching system.
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¯ngerprint image is a more robust descriptor since it characterizes intrinsic proper-

ties that are invariant to translation, rotation and contrast. These features are shown

to yield better and more robust ¯ngerprint segmentation results in images from

several datasets.

2. Background and Previous Work

Roughly speaking, there are two general approaches to ¯ngerprint segmentation,

pixel-wise or block-wise, with the latter being the prominent. The methodology is

fundamentally the same, but the computation of the features, at every pixel versus at

every block, gives rise to signi¯cant di®erences.

Some pixel-wise ¯ngerprint segmentation methods compute only one feature at

every pixel location, and threshold this feature to obtain the segmentation.1,20,22,28

Typically, the features computed are limited to ¯ltering operators, or combination

thereof, to limit the computational complexity. Obviously, the main drawback of

using only one feature is that the results are directly tied to the expressiveness of the

feature, and given the ad-hoc selection or construction of features in the literature,

the results have tended to be unsatisfactory. Instead, and to avoid these limitations,

other methods compute several features and then each pixel is classi¯ed indepen-

dently either as part of the ¯ngerprint or background.3,40 Using a classi¯er to com-

bine features generally yields better results but the computation, to compute the

input features and apply the classi¯er to each pixel, becomes high. For this reason,

most approaches are block-wise based, commonly using blocks of 16� 16 pixels.

Block-wise approaches can have lower computation because the classi¯er is applied

only once, and allow for more robust estimation of the features by averaging the

features within each block. Moreover, because the classi¯cation is simple, the focus

can shift towards computing better and more expressive features.

Generally, the key distinguishing characteristic between ¯ngerprint segmentation

methods is which set of features are used. A number of features have been proposed

in the literature. Mehtre et al.33 used information from the directional image to

segment ¯ngerprint images. The premise of this approach is that ¯ngerprint regions

have a well-de¯ned direction because of the ridge/valley pattern. In Mehtre and

Chatterjee,32 this was augmented into a \composite method" by also using the block

variance, with the segmentation based on rule-based classi¯cation, empirically de-

termined. Instead of block variance, variance computed along the direction orthog-

onal to the dominant ridge direction has also been utilized.21,38 Avoiding the explicit

computation of the directional image, Bazen and Gerez2,3 proposed the use of co-

herence to determine whether local gradients are aligned along the same orientation,

in addition to the local mean and variance. This feature set has also been used and

extended in several other works.39,50 In particular, this feature set was extended in

Zhao et al. 50 to include the contrast and mean energy ratio. The contrast is de¯ned

as the ratio between local variance and mean, and the mean energy ratio (MER)

measures the ratio of energy in the main frequency component with regard to

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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the local non-DC average energy. The main idea is that the local frequency spectrum

of a ¯ngerprint has the energy concentrated onto two main peaks, and therefore

the MER should be high. An alternative computation of the coherence was proposed

in Wang et al.44 using Gaussian�Hermite moments. The advantage of Gaussian-

Hermite moments is that higher-order moments can express the presence of multiple

parallel ridges. The limitation, however, is the need to carefully choose the scale

parameter of the Gaussian�Hermite basis functions. Instead of using coherence,

Chen et al.8 proposed the use of the pixel clustering degree. The pixel clustering

degree measures whether pixels with similar intensity values are grouped nearby, as

occurs within a ridge/valley pattern, but does not depend on gradient direction.

Helfroush and Mohammadpour17 proposed the dominant ridge score as an alterna-

tive to coherence. The dominant ridge score is the ratio of the number of pixels with

the dominant gradient orientation, after quantization to eight orientations, with

regard to all the pixels in an image window. This idea is related to the use of the

average gradient magnitude and variance of the gradient orientation proposed by Qi

and Mei.36 Other features proposed in the literature include the use of the local

binary pattern (LBP) operator,45,48 and complementary variance energy.19

Intuitively, the features proposed for ¯ngerprint segmentation are conceptually

similar in the sense that they attempt to quantify the observation that ¯ngerprints

are formed by a succession of alternating ridge/valleys with approximately constant

orientation. Through these features, however, it is not entirely clear how the intrinsic

structure of ¯ngerprint images is being characterized, and therefore how these

descriptors adapt to acceptable changes in the image. In contrast, the features

proposed in this paper describe the manifold structure of ¯ngerprint images, which

remain invariant for a ¯ngerprint region as long as the ridge/valley pattern is clearly

discernible, even if this pattern changes because of contrast or noise.

The feature sets proposed by Bazen and Gerez2,3 and Zhao et al.50 are used

in the results section to establish a reference for evaluating the approach proposed

here.

3. Fingerprint Manifold Characteristic Features

In this section we analyze the manifold associated with ¯ngerprint patches, and

discuss how this knowledge can be utilized to derive features that characterize ¯n-

gerprint regions. A brief review of manifold learning is included.

3.1. Manifold learning

Manifold learning is a research topic that has received signi¯cant attention in recent

years, mainly fueled by developments in nonlinear dimensionality reduction tech-

niques, such as ISOMAP,43 local linear embedding,42 and Laplacian eigenmaps,4

among others. Nevertheless, the concept has been around for quite some time 16,26
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and is also the core idea behind linear dimensionality reduction methods, such as

principal component analysis (PCA).9

The primary aim of manifold learning is to infer or characterize the structure of

data by describing the manifold where the data lies. This means that, typically, high-

dimensional data (or some high-dimensional representation as obtained in kernel

methods or by embedding) actually lies in a relatively low-dimensional subspace (i.e.

the manifold) that can be described by only a few parameters, or features. Indeed, for

smooth manifolds with topology equivalent to the Euclidean topology (that is, the

distance in the manifold is a smooth function of the Euclidean distance in the feature

space), it can be shown that there exists an isomorphism between the space of

features and the manifold.10 Put di®erently, the dimensionality of the feature space is

the number of parameters needed to parameterize the manifold, and the isomor-

phism characterizes its topology. Hence, all information about the data is expressed

in this low-dimensional feature space, which can usually be related to some char-

acteristic of interest.

If the data lies in a linear manifold (i.e. a linear low-dimensional subspace) of the

high-dimensional data space, then PCA can be used to characterize the

data structure.9 PCA ¯nds the orthonormal set of vectors fw1;w2; . . . ;wdg that

maximizes the variance of the projections of the data onto them. This means that

projecting the high-dimensional data (say, of dimension D) onto those vectors yields

a lower dimensional representation (of dimension d � D) with a covariance matrix

that is diagonal (i.e. uncorrelated projections) and with maximal entries. The vectors

fw1;w2; . . . ;wdg are called the principal components of the data. They are obtained

by diagonalizing the covariance matrix of the data,

C ¼ 1

N

Xi¼N

i¼1

ðxi � ¹Þðxi � ¹ÞT; ð1Þ

where the xi's, i ¼ 1; 2; . . . ;N , are the N data points and ¹ denotes their mean. The

principal components are given by the d eigenvectors of C corresponding to the d

largest eigenvalues, which equal to the variance of the projections. The eigenvalues

can also be used to estimate the manifold dimension d by guaranteeing that the

eigenvalues corresponding to the principal components account for most of the

data variance.

By deriving a low-dimensional characterization, manifold learning methods allow

us to visualize high-dimensional data and understand the origin of its intrinsic data

structure. Manifold learning is often used to ¯nd a lower dimensional representation

of the data that is correlated with the perceived parameters. A typical example is to

consider a set of images of an object taken at di®erent rotations, and then attempt to

verify the lower dimensional representation of the manifold formed by these images

in terms of the rotation angle.43 Similar ideas have also been applied, for example, to

study sequences of images in movies,35 and to infer and constrain the space of shapes

for cardiac MRI.47

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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3.2. Manifold topology of ¯ngerprint patches

Unlike the example mentioned in the previous section, where a point corresponds to

an image, for classi¯cation of image pixels (or groups of pixels) and analyzing the

manifold structure arising from their interdependences, each pixel must have an

associated representation. Instead of the value in a single pixel, image points can be

embedded in a high-dimensional space by considering the pixel and its neighborhood;

that is, by taking patches centered at the pixel location. Speci¯cally, for an image I,

an M �M patch corresponding to image point ðx; yÞ is the ordered set of points

fIðu; vÞ : ju� xj � ðM � 1Þ=2 ^ jv� yj � ðM � 1Þ=2g. This embedding has the ad-

vantage that it preserves local and contextual information, since it completely

characterizes the image joint distribution, up to the size of the neighborhood. Sta-

tistically, this data-driven representation corresponds to a sampling of the Markov

Random Field model of the image.

Consider the patches extracted from a local region of a ¯ngerprint, and their

embedding to 2-D using, for example, PCA9 as shown in Fig. 2. One can clearly

observe the circular manifold formed by those ¯ngerprint patches. (Obviously,

nonlinear dimensionality reduction methods can be utilized for this analysis. How-

ever, because of their high computational complexity, they are impractical for ¯n-

gerprint analysis and will not be considered further. Moreover, as discussed next, for

image patches from local image windows, PCA su±ces and is computationally

simpler.) As asserted by the residual variance plota in Fig. 2 (right), most of the data

variance is contained in the ¯rst two dimensions, as is to be expected since a circle is a

aThe residual variance with regards to embedding dimension k is the ratio of the error variance over total
data variance when using k principal components for the embedding. Given the eigenvalues �1; �2; . . . ; �d

ofC (which correspond to the variance along the principal components), the residual variance with regards

to dimension k is obtained as
Pd�i

i¼kþ1 =
Pd�i

i¼1.
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Fig. 2. PCA projection of 7� 7 ¯ngerprint patches in a small image. (Left) 30� 30 window from which

the patches were obtained. The phase image of the 2D PCA projections is shown in the bottom left.

(Middle) Fingerprint patches projected onto the ¯rst two principal components and colored according to

their phase; that is, each point is the 2D PCA projection of the 7� 7 ¯ngerprint patches. The points' colors
match the colors of the corresponding center pixel as shown in the phase image in the bottom left. (Right)

Residual variance versus the number of embedding dimensions (color online).
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1-D topological structure in 2-D space. Since the points (i.e. ¯ngerprint patches) form

a circular manifold, they can be appropriately characterized by their phase, which

can be related back to the ¯ngerprint region from where the patches were extracted.

Note that the presence of minutiae in the image window and relatively small changes

in orientation, as shown in Fig. 3, introduce additional variability in the linear

projection of the manifold but the circular structure of the manifold does not change

signi¯cantly. This is because the norm of the projections corresponds to the distance

of the original ¯ngerprint patches to the \mean patch", and thus captures primarily

changes in contrast within a patch. Furthermore, Fig. 4 also shows that the manifold

does not require the ridges to be parallel, unlike methods that \project" the image

block along multiple directions.24,32,33

It is insightful to understand why the manifold has this topology. If one considers

a relatively small window of a ¯ngerprint image (as the one shown in Fig. 2 (top

left)), for most windows, we can observe a succession of ridges and valleys of ap-

proximately constant orientation. Hence, for these images, if one starts at a given

point and marches through the image in the direction orthogonal to the ridges'

orientation, one soon comes to a position in which the point and the context are very

similar to those of the initial position. It is the repetition of `context' that gives rise to
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(b)

Fig. 3. Similar to Fig. 2, but for images containing a minutia point (a) and near the ¯ngerprint core (b).

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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the circular topology. The image window can thus be approximated as a wave,

parameterized by a single argument � corresponding to the phase of the wave. If the

ridge and valley widths are equal, the wave pattern is a sinusoid; however, this does

not need to be the case. Even if the ridge/valley pattern is aperiodic, i.e. not a

sinusoid, the topology will still be that of a circle, although the distribution of phases

will change (Fig. 4). In the case of ¯ngerprint windows the manifold is actually a

geometrical circle because the contrast is locally approximately constant (recall that

contrast de¯nes the norm of the centered embedded patches, and thus the radius of

the circle). It must be remarked that we consider local windows such that the ori-

entation is approximately constant and does not need to be considered explicitly as

an argument in the parameterization. More speci¯cally, we consider local image

blocks because locality in the image space translates into locality in the embedding

space, where the manifold is locally Euclidean.7,23,41 In this way, we avoid the

nonlinearity of the manifold when the orientation is considered, allowing for the use

of PCA. On the other hand, if the orientation changes within an image block, the

manifold becomes nonlinear introducing variability in the projection. This is because

we are trying to characterize a nonlinear manifold using a linear method. This is

noticeable in Fig. 3, where the nonlinearity of the manifold raises the relevance of

additional principal components. Nevertheless, as long as changes in orientation are

relatively small, the circular manifold structure will remain clearly distinguishable.

Unlike a conventional pattern recognition approach based on a static set of fea-

tures, the approach just described has the advantage that the obtained features are

found from and depend only on the data. Moreover, since the mapping from the data

to features is found from a neighborhood of points, it incorporates characteristics of

the whole neighborhood. This follows because the context information is included in

the embedding of image points as patches and information about correlations with

neighboring pixels is preserved. This approach also shares similarities to natural

vision systems which extract information by contrasting a small region with its

context. Still, the most remarkable property of this approach is that it allows us to

focus on invariant descriptors on the data characteristics. Speci¯cally, since we know
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Fig. 4. PCA projection of 7� 7 patches from an image with parallel but nonperiodic lines. (Left) Image
from which the patches were obtained. (Middle) PCA projection of the patches projected onto 2-D, with

color coded phase. (Right) Corresponding phase image.
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that image patches from a ¯ngerprint window form a geometrically circular manifold

with near uniform phase distribution, we can simply measure the di®erence with

regards to such a manifold structure. Such descriptors are invariant because they do

not depend on the speci¯c position or orientation of the sequence of ridges, provided

the orientation is approximately constant, because the underlying manifold remains

the same. Hence, if desired, it is possible to detect the ¯ngerprint pattern even under

low contrast, as will be shown in the next section.

3.3. Features for ¯ngerprint analysis

Knowledge of the manifold topology can be utilized for ¯ngerprint segmentation

since it characterizes the general distribution of the data embedded onto the feature

space. Consequently, we can immediately suggest a set of features that best describes

the data. This means that deviations from the typical ¯ngerprint pattern can be

easily captured since these points have a di®erent manifold structure easily notice-

able in their embedding and projection. These di®erences can then be utilized to

distinguish a ¯ngerprint region from background.

An obvious candidate feature would be to use an information-theoretic diver-

gence, such as the Kullback�Leibler divergence,15 between the observed distribution

and the distribution estimated from training. This approach, however, is cumber-

some and computationally demanding since it would require the explicit estimation

of the distribution. Given that the circular manifold formed by ¯ngerprint patches is

not too hard to characterize, we propose instead derived features that can be utilized

to measure di®erences between the observed data manifold and a circle.

Two fundamental descriptors of the manifold geometry are the two leading

eigenvalues of the PCA projection, denoted �i1 and �i2, which correspond to the

variance along the ¯rst two principal components. These eigenvalues characterize

contrast and are related to the block variance, but provide additional information.

For example, if the ¯rst eigenvalue is signi¯cantly larger than the second, then the

image region primarily contains a gradient of intensities and is therefore unlikely to

be a ¯ngerprint region.b Another important feature is the ratio of samples with a

norm (distance from the origin in the projection) that is below the average norm,

denoted r�i (see Fig. 5). For a circle, this value should be close to 0.5. This is an

important descriptor since it allows us to easily discriminate from Gaussian noise,

since in the latter case the value tends to be larger. (Note that the ratio of points with

norm greater than the block mean norm could be utilized instead. Because the two

ratios sum to one, they contain exactly the same information, and yield the same

result.) Finally, one should check that the phase distribution is somewhat uniform,

since this indicates the presence of the alternating ridge/valley pattern. This can be

approximated by dividing the phase into a number of bins, say NB, and computing

the average di®erence magnitude to the expected value under a uniform distribution.

bNote that this interpretation follows because these are eigenvalues of the covariance matrix and should

not be confused with the eigenvalues of the structure tensor matrix used in Bazen and Gerez.2,3

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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For block i, we de¯ne this divergence as,

pi ¼
XNB

k¼1

1

NB

� bk

����
����; ð2Þ

where bk is the ratio between the number of data points with phase in the kth bin and

the total number of data points (cf. Fig. 5). Summarizing, for the ith block, these

features give rise to the feature vector,

xi ¼ ½
ffiffiffiffiffiffi
�i1

p
;
ffiffiffiffiffiffi
�i2

p
; r�i ; pi�T: ð3Þ

The proposed features can be utilized by a classi¯er to segment ¯ngerprints. If one

does not have training data or intends to allow user interaction, then appropriately

weighting and combining these features is not a trivial task. In these situations, it is

best to have a single descriptor for which one only needs to set an appropriate

threshold. For example, this could allow for the use of automatic threshold meth-

ods.19,44 Because we know the manifold topology, we can attempt to de¯ne a di-

vergence measure speci¯cally for this problem that bypasses the problems with an

information-theoretic divergence as mentioned above.

As previously described, for ¯ngerprint segmentation, a divergence is basically a

measure that quanti¯es how much the data distribution di®ers from the circular

manifold topology one expects for ¯ngerprint regions. Let y i
j denote the 2D PCA

projection of the jth patch in the ith block, and let �i1 be the corresponding largest

eigenvalue of the PCA eigendecomposition. Then, a measure of divergence can be

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

Fig. 5. Ratio and phase distribution features for ¯ngerprint segmentation. The black circle has radius

equal to the average norm and the division of the plane in phase bins (in this case, with 8 bins) are shown
for the projection of the points in Fig. 2. The ratio r�i corresponds to the number of points inside the circle

over the total number of points, and the values bk, utilized in (2), are the ratio between the number of

points within each phase bin to the total number of points.
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de¯ned as

fi ¼
1ffiffiffiffiffiffi
�i1

p 1

N

XN
j¼1

exp � y i
j

�� ��2
2�i1

 !" #
1� exp � pi

�

� �h i
; ð4Þ

where N is the number of patches per window, y i
j

�� �� is the Euclidean norm of the

projected patch, and � is a user parameter. This divergence expresses various

characteristics of the projected patches: variance, non-Gaussianity, constant ra-

dius, and uniform phase distribution. The variance of the projections onto the ¯rst

principal component is �i1. Therefore, windows with good contrast have high

variance which yields smaller values of fi. The second term measures how well

projected points are clustered around the origin, as one would get for windows

containing unstructured values, such as Gaussian noise. For ¯ngerprint windows,

the projected points form a well-de¯ned circle on the tail of the exponential, and

thus this term yields small values. Basically, these two terms correspond to a

Gaussian density function, without the normalization by
ffiffiffiffiffiffi
2�

p
. Approximate

constant radius is enforced by the use of only the ¯rst eigenvalue in the second

term rather than a covariance matrix. If the circle is distorted into an elongated

ellipse, the second term yields higher values for points along the second principal

component because they are closer to the origin (since �i2 � �i1). The third term

checks for a uniform distribution of points around the origin. This helps to ex-

clude, for example, blocks from the edges of the ¯ngerprint (which yield spurious

minutiae) and single lines since, in these cases, the phase is skewed. The parameter

� controls the allowable ratio of deviation from the uniform distribution. A value

of � ¼ 0:25=NB seems reasonable for most cases, and was used for the results

shown.

Either the divergence or features can be utilized for ¯ngerprint segmentation. As

mentioned, the use of the divergence has the advantage that one only needs to set the

threshold, and is therefore better suited for user interaction. On the other hand,

using the proposed feature vector has the advantage that the features can be opti-

mally combined by the classi¯er to achieve the best performance for ¯ngerprints

captured using a speci¯c condition, for example, the same sensor.

It must be noted that the segmentation obtained using either the proposed feature

vector or the divergence will depend on contrast. This is because of the use of the

projection eigenvalues, which corresponds to data variance, and thus contrast. This

prevents our approach from being contrast invariant. However, in practice one needs

a minimal contrast to ensure robust feature extraction and reject latent ¯ngerprints

in the background. To highlight the invariance of the topology with regards to

contrast, consider the ¯ngerprint image in Fig. 6(a) which contains a latent ¯nger-

print in the background. If the term 1=
ffiffiffiffiffiffi
�i1

p
is not included in the divergence, one

obtains comparable values for the blocks in both the high-contrast ¯ngerprint and

the latent ¯ngerprint in the background (Fig. 6(c)). Considering this term, as in (4),

one introduces contrast dependency making it possible to distinguish the two

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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regions, even though the divergence still yields relatively low values compared to

other parts of the background (Fig. 6(d)).

4. Fingerprint Image Segmentation

The features discussed in Sec. 3.3 can be utilized for ¯ngerprint segmentation by

classifying image blocks into ¯ngerprint regions or image background. The sequence

of operations to segment a ¯ngerprint image is depicted in Fig. 7.

(a) Fingerprint image (b) CLAHE contrast enhanced image

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Divergence without the 1=
ffiffiffiffiffiffiffi
�i1

p
term

2

4

6

8

10

12

(d) Full divergence

Fig. 6. Divergence of a ¯ngerprint image with a latent ¯ngerprint in the background. For ease of visu-

alization, the contrast enhanced image is shown in (b). The divergence measures were computed for each
16� 16 pixel block, using 7� 7 patches, for the image shown in (a).

input
fingerprint

image

divide
image in
blocks

compute
features for
each block

classify
each block

segmented
figerprint

Fig. 7. Flowchart of the operations needed to segment a ¯ngerprint image.

A. R. C. Paiva & T. Tasdizen
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In this paper, we will utilize a linear classi¯er to classify each image block into a

¯ngerprint block or background. More speci¯cally, a Fisher linear discriminant is

used because of its simple and consistent training, and because it has an analytical

solution.11 A perceptron linear classi¯er could also be utilized, as in Bazen and

Gerez,3 but training requires the use of gradient decent, which depends on the

learning rate, can get trapped in local minima, and the result can be unstable.11

Clearly, nonparametric and/or nonlinear classi¯ers could also be used with likely

bene¯ts in performance.49 The Fisher learning discriminant classi¯er is well suited for

our purpose, however, because the main point of this analysis is to convey the better

results due to the proposed improved features. Moreover, since most methods limit

themselves to linear classi¯ers, this facilitates the comparison to earlier approaches.

Finally, good performance regardless of the classi¯er is important in practice because

AFIS systems typically have limited computational and memory capabilities, and

thus the choice of the classi¯er might depend on the available resources during

system design.

The Fisher linear discriminant classi¯er ¯nds a projection vector w such that the

separation between two classes is maximized.11 Put di®erently, the projection vector

de¯nes the hyperplane that best separates the two classes. Let �0 and �1 denote the

background and ¯ngerprint classes, respectively, and de¯ne the intra-class and inter-

class scatter matrices, SW and SB, as

SB ¼ ðm1 �m0Þðm1 �m0ÞT;
SW ¼

X
x2�1

ðx�m1Þðx�m1ÞT þ
X
x2�0

ðx�m0Þðx�m0ÞT;
ð5Þ

where x denotes the vector of features, and m1, m0 are the mean feature vectors for

each class. The projection vector is obtained as

w ¼ ðSW þ "IÞ�1ðm1 �m0Þ; ð6Þ
where I is the identity matrix and " is a small constant to ensure that ðSW þ "IÞ is
invertible. Then, an image block is classi¯ed based on the projection value,

vi ¼ wTxi; ð7Þ
using a decision threshold and direction (i.e. which, vi > threshold or vi < threshold,

corresponds to ¯ngerprint) chosen to minimize the error in the training set.

Note that situations in which the segmentation is achieved using only one feature,

such as the divergence proposed earlier, are special cases. In these situations, learning

the classi¯er simpli¯es to that of ¯nding the decision direction and threshold.

5. Results

The proposed approach was tested on the datasets of the 2002 and 2004 Fingerprint

Veri¯cation Competitions (FVC 200212 and FVC 2004.13) A total of eight datasets

were included, corresponding to six di®erent ¯ngerprint scanners and two synthetic

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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¯ngerprint datasets.29�31 Each dataset contains 80 ¯ngerprints (only the \part B" of

the datasets was used), consisting of eight ¯ngerprints/subject from 10 subjects,

captured under multiple conditions (e.g. normal, \dry" and \wet"). All ¯ngerprints

were manually segmented, with each 16� 16 block being classi¯ed as ¯ngerprint or

background. A block was considered to be a ¯ngerprint if the ridge/valley pattern

was present and fully contained within the block. This means that blocks containing

ridge terminations due to the boundary of the ¯ngerprint area were not considered.

This criteria was chosen because minutiae detection methods could easily confuse

ridge terminations for minutia.

Segmentation results were computed using the features and the divergence pro-

posed in Sec. 3.3 and the classi¯er detailed in Sec. 4. For comparison, segmentation

results were computed using the feature set proposed by Bazen and Gerez,3 which

consists of the block mean, variance and coherence. We shall refer to this as the

\MVC feature set." In addition, we computed segmentation results using the ex-

tended MVC features set used in Zhao et al.,50 which further includes the block

contrast and MER (see Sec. 2 for details), henceforth denoted as the \xMVC feature

set." In all experiments, the Fisher linear discriminant classi¯er described in Sec. 4

was utilized.

The results for the segmentation accuracy (without post-processing) are pre-

sented in Table 1. The blocks were 16� 16 pixels, and 7� 7 image patches were used

for the embedding in the computation of the proposed features and divergence. These

results show that the proposed feature set yields a consistently better segmentation.

The improvement in overall segmentation accuracy ranges from 1.6% to 8.4%, except

for Dataset 3 of FVC 2004 in which using the proposed features performs 0.3% worse.

From analyzing the segmented ¯ngerprint images, it seems that the classi¯er using

the MVC feature set marked these blocks as ¯ngerprint due to their high variance,

even though they have no discernible ¯ngerprint pattern. Using the proposed fea-

tures, such blocks were marked as background precisely because of the absence of the

Table 1. Ratio of correctly segmented ¯ngerprint image blocks using the MVC, xMVC, and the pro-
posed feature set. The values are averages over 100 di®erent pairs of randomly selected training/testing

sets. The value within brackets corresponds to the worst segmentation accuracy in a ¯ngerprint in the

testing set, averaged over di®erent training/testing sets. All di®erences in the results are statically

signi¯cant (t-test, p < 0:01), except of course in between the proposed features and divergence in
Dataset 4 of FVC 2002. The best result is shown in boldface.

MVC xMVC Proposed Features Proposed Divergence

FVC 2002 Dataset 1 0.907 [0.741] 0.944 [0.854] 0.972 [0.895] 0.960 [0.897]
Dataset 2 0.916 [0.755] 0.917 [0.747] 0.956 [0.847] 0.948 [0.823]

Dataset 3 0.912 [0.763] 0.911 [0.764] 0.929 [0.774] 0.923 [0.739]

Dataset 4 0.925 [0.731] 0.913 [0.719] 0.960 [0.881] 0.960 [0.877]

FVC 2004 Dataset 1 0.952 [0.884] 0.957 [0.896] 0.973 [0.937] 0.958 [0.895]

Dataset 2 0.834 [0.501] 0.848 [0.541] 0.934 [0.755] 0.869 [0.585]
Dataset 3 0.964 [0.866] 0.963 [0.867] 0.961 [0.874] 0.957 [0.833]

Dataset 4 0.917 [0.718] 0.891 [0.599] 0.950 [0.814] 0.945 [0.804]

A. R. C. Paiva & T. Tasdizen
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ridge/valley pattern. Such image blocks were labeled as ¯ngerprint in the manual

segmentation because they arise isolated in the middle of the ¯ngerprint, but this

choice is arguable. The relevance of the proposed features becomes even more evident

when considering the worst segmentation accuracy in a testing ¯ngerprint, in which

case the di®erence can be as high as 21.4% (dataset 2 of FVC 2004). This demon-

strates that using the proposed features yields much more consistent segmentation

results.

The results using the proposed divergence are slightly worse than using the

proposed features, but still better overall than using either the MVC or xMVC

feature sets. The fact that the divergence, which nonlinearly combines several ele-

mentary features, did not surpass the performance of an optimal linear classi¯er with

the proposed features was not surprising. This is due to the ability of the latter to ¯ne

tune the weights for each dataset. On the other hand, this suggests that the seg-

mentation accuracy using the proposed features can be further improved using a

nonlinear classi¯er.

The better behavior of the proposed features and divergence can be veri¯ed vi-

sually in the segmented ¯ngerprint images shown in Figs. 8 and 9. It can be seen that

although the segmentation using the MVC and extended MVC feature sets is suc-

cessful for relatively high-quality/high-contrast ¯ngerprint regions, its performance

drops signi¯cantly if these characteristics change, yielding very poor segmentations

for some ¯ngerprint images. In contrast, the proposed features and divergence show a

much more robust and consistent behavior. This is due to the use of the manifold

topology, which remains noticeable even in the presence of faint lines, as explained in

Sec. 3.3 (see Fig. 6). This robustness is further observed in Fig. 10 which showcases

the worst segmentation result using the proposed features. Although the results are

clearly unsatisfactory, the segmentation using the proposed features or divergence is

still reasonable (compare with the MVC or xMVC results in Dataset 4 shown in

Fig. 9) and much better than the result obtained using the MVC or xMVC feature

sets.

It must be remarked that these results could be improved further through pre- or

post-processing, or by using a di®erent classi¯cation strategy. Pre-processing could

be used to remove some noise and potentially mitigate variations in contrast between

images. Likewise, post-processing could be used to compensate for minor errors in the

block segmentation due to image noise, variability, and limitations of the classi¯er.

Although, for the purpose of this paper, post-processing was not used, the results

clearly suggest that, if post-processing is employed, the errors obtained with the

proposed approach would seem much more manageable. The results could be further

improved by providing block context to the classi¯er (e.g. the classi¯er observes the

features from its block and neighboring blocks) for example. Moreover, utilizing a

nonlinear classi¯er (e.g. AdaBoost or SVM6) might be able to amplify the context of

the features to the point of compensating for extreme variations in contrast, such as

those shown in Fig. 10. Additionally, these improvements to the classi¯er may be

supplemented with approaches such as adaptive thresholding.14

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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6. Discussion

At ¯rst glance, the computational complexity of the proposed features seems much

higher than that required to compute the MVC or extended MVC features. Indeed,

in our Matlab implementation, computing the proposed features required about 4 to

5 times more CPU time in single-thread mode than the features with which we

compared (cf. Table A.1). However, while computation of the comparison features

uses inherently optimized routines, such as ¯ltering and fast Fourier transforms, the

Fig. 8. Segmentation results for ¯ngerprint images from FVC 2002.

A. R. C. Paiva & T. Tasdizen
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computation of our features does not. Although intricate, it is relatively easy to

reduce the computational complexity for the calculation of the covariance matrix of

image neighborhoods and its eigendecomposition, which are the two most time

consuming operations in the computation of the proposed features and divergence.

Because the same spatial relationship is encountered between di®erent pixels within

an image neighborhood, most elements of the covariance matrix are repeated. As an

example, note that the diagonal elements of the covariance matrix are all equal and

thus need to be computed only once. This is similar to the Toeplitz structure of

covariance matrices of vectors from 1-D data but, for image patches, one has to

further handle the relationships between pixels in the edges of the patches. It can be

easily shown that, for n� n image patches, the number of unique entries of the

covariance matrix that need to be computed is only n2 þ ðn� 1Þ2, compared to n4 in

Fig. 9. Segmentation results for ¯ngerprint images from FVC 2004.

Fingerprint Image Segmentation Using Data Manifold Characteristic Features
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a naive implementation. This represents a reduction in computation complexity

greater than n2=2! For 7� 7 patches, the savings in computational complexity

would be about 28�. Moreover, the computational complexity of the eigende-

composition can also be signi¯cantly reduced because it is known before hand that

only the ¯rst two eigenvectors are needed in this case.

In the results shown, we tacitly considered 16� 16 image blocks and 7� 7 image

patches. Clearly, the performance of our approach depends on these settings since, in

a sense, these parameters de¯ne the scale one uses to interpret the image. However,

we have found empirically their choice not to be critical (cf. Table A.2). Generally

speaking, the block size should be big enough such that the alternating ridge/valley

pattern can be observed, while small enough to avoid having major changes in

the orientation of the ridges, which introduces nonlinearities in the manifold struc-

ture. Hence, for a ¯ngerprint image of typical resolution, block sizes between 16� 16

to 24� 24 pixels should yield similar results. Likewise, the patch size represents

a trade-o®, albeit between context information and computational complexity.

On one hand, the patch size should be large to include as much context informa-

tion as possible in the embedding. On the other hand, the patch size should

be small enough to avoid computation of large covariance matrices and their

eigendecomposition. In our experiments, we found that 7� 7 image patches

presents a good trade-o®. For example, using 9� 9 image patches the segmentation

accuracy only improved at most 0.5%. However, it more than doubled the compu-

tation time.

7. Conclusion

This paper describes an alternative approach to ¯ngerprint segmentation. The core

idea is the use of the manifold topology of ¯ngerprint image patches as a descriptor of

the intrinsic structure of ¯ngerprint images. Indeed, it is shown that an embedding of

Fig. 10. Fingerprint image for which we observed the worst segmentation results using the proposed

features (from FVC 2002, Dataset 2).
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¯ngerprint image \points" in a high-dimensional space, in the form of image patches,

forms a simple and highly regular circular manifold. This perspective is very useful

since this insight allows us to naturally derive or suggest a number of features that

characterize the intrinsic properties of a ¯ngerprint. Hence, in this approach, ¯n-

gerprint segmentation can be formulated as the problem of classifying a ¯ngerprint

region (e.g. image block) based on a deviation from the expected topology.

The improved performance and robustness was shown in eight datasets from

FVC 2002 and FVC 2004. In spite of the diverse characteristics of the ¯ngerprint

images in terms of contrast, noise and conditions (e.g. \wet" versus \dry") across and

within each dataset, the approach presented yielded more a robust and consistent

segmentation. This is very important in actual applications where the capture con-

ditions may vary tremendously. The robustness follows from the use of the manifold

topology, which is invariant to contrast, orientation and robust to noise as long as

the alternating ridge/valley pattern is noticeable.

From a di®erent perspective, it is interesting to verify that utilizing the manifold

structure to infer information about the image shares similarities to visual systems.

This is because visual systems are capable of extracting salient features just by

contrasting these points with their local context and/or with the perception of the

image structure at a broader level.27 Roughly speaking, this is precisely what

is obtained by embedding the image points and locally computing the manifold

topology.

The knowledge and use of the manifold topology was utilized here to characterize

¯ngerprint images for segmentation, but the same concept may have potential

implications in many other problems, such as texure classi¯cation and segmentation,

for example. By characterizing and studying the manifold topology of embedded

points from images, one gains an understanding of the images' characteristic struc-

ture.34 Given a problem, this knowledge can then be utilized to naturally suggest or

derive descriptors that best characterize the structure of the image for that problem,

as shown here.

Appendix

Table A.1. Average computation time (in seconds) to compute the features for each
image on an Intel Xeon X7350 at 2.93GHz with Matlab restricted to a single-thread.

MVC xMVC Proposed Features Proposed Divergence

FVC 2002 Dataset 1 0.162 0.223 0.606 0.545
Dataset 2 0.183 0.256 0.848 0.780

Dataset 3 0.102 0.143 0.498 0.461

Dataset 4 0.124 0.173 0.576 0.532

FVC 2004 Dataset 1 0.364 0.493 1.114 0.976

Dataset 2 0.138 0.193 0.636 0.585

Dataset 3 0.155 0.216 0.739 0.682
Dataset 4 0.124 0.173 0.561 0.516
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