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Abstract

This paper presents a general framework based on reproducing kernel Hilbert spaces
(RKHS) to mathematically describe and manipulate spike trains. The main idea is the
definition of inner products to allow spike train signal processing from basic principles
while incorporating their statistical description as point processes. Moreover, because
many inner products can be formulated, a particular definition can be crafted to best
fit an application. These ideas are illustrated by the definition of a number of spike
train inner products. To further elicit the advantages of the RKHS framework, a family
of these inner products, called the cross-intensity (CI) kernels, is further analyzed in
detail. This particular inner product family encapsulates the statistical description from
conditional intensity functions of spike trains. The problem of their estimation is also
addressed. The simplest of the spike train kernels in this family provides an interesting
perspective to other works presented in the literature, as will be illustrated in terms
of spike train distance measures. Finally, as an application example, the presented
RKHS framework is used to derive from simple principles a clustering algorithm for
spike trains.
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1 Introduction

Spike trains can be observed when studying either real or artificial neurons. In neurophysio-
logical studies, spike trains result from the activity of neurons in multiple single-unit record-
ings by ignoring the stereotypical shape of action potentials (Dayan and Abbott, 2001).
And, more recently, there has also been a great interest in using spike trains for biologically
inspired computation paradigms such as the liquid-state machine (Maass, Natschläger, and
Markram, 2002; Maass and Bishop, 1998) or spiking neural networks (Bohte, Kok, and
Poutré, 2002; Maass and Bishop, 1998). Regardless of the nature of the process produc-
ing the spike trains, the ultimate goal is to analyze, classify and decode the information
expressed by spike trains.

A spike train s ∈ S(T ) is a sequence of ordered spike times s = {tm ∈ T : m =
1, . . . , N} corresponding to the time instants in the interval T = [0, T ] at which a neuron
fires. Unfortunately, this formulation does not allow for the application of the usual signal
processing operations to filter, eigendecompose, classify or cluster spike trains, which have
been proven so useful when manipulating real world signals and form the bases to extract
more information from experimental data. From a different perspective, spike trains are
realizations of stochastic point processes. Therefore, they can be analyzed statistically to
infer about the underlying process they represent. The main limitation in this formulation is
that when multiple spike trains are analyzed they typically need to be assumed independent
to avoid handling the high dimensional joint distribution.

Nevertheless, statistical analysis of spike trains is quite important, as can be asserted
from the large number of methodologies that have been proposed in the literature (see
Brown, Kass, and Mitra (2004) for a review). One of the fundamental descriptors of spike
trains is the intensity function of the process giving rise to the observed spike train. If the
spike train is assumed to be well modeled by an inhomogeneous Poisson process then many
methods have been proposed for the estimation of the intensity function (Kass, Ventura,
and Cai, 2003; Richmond, Optican, and Spitzer, 1990; Reiss, 1993). However, in the general
case the problem is intractable since the intensity function depends on the whole history
of the realization. Recently, Kass, Ventura, and Brown (2005) proposed a new spike train
model simple enough to be estimated from data and yet sufficiently powerful to cope with
processes more general than renewal processes. The work by Kass et al. (2005) was ex-
tended by Truccolo, Eden, Fellows, Donoghue, and Brown (2005) to allow for more general
dependencies. Still, these advances depend on the availability of multiple realizations (e.g.,
spike trains from several trials) or spike trains of many seconds, and provide no tools to
either the practitioner or the theoretician on how to analyze single realizations of multiple
spike trains.

Instead, we submit that a systematic description of the theory behind single realizations
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of multiple spike train analysis generalizing the methods of cross-correlation (Perkel, Ger-
stein, and Moore, 1967) is still needed and will enable the development of new operators for
spike trains capable of transcending the results obtained with current techniques. Indeed,
applying cross-correlation to spike timings is not straightforward and is the reason why,
traditionally, it is applied to “binned” data. But most importantly, binning is related to
instantaneous firing rate estimation and thus cross-correlation of binned spike trains can-
not account for deviations from the Poisson point process model. The caveats associated
with binned spike trains, in particular for temporal coding, motivated the development of
methodologies involving directly spike times. This is noticeable in several spike train mea-
sures (Victor and Purpura, 1997; van Rossum, 2001; Schreiber, Fellous, Whitmer, Tiesinga,
and Sejnowski, 2003) and recent attempts to use kernels to estimate and generalize these
distances (Schrauwen and Campenhout, 2007). Yet, in spite of the fact that distances are
very useful in classification and pattern analysis, they do not provide a suitable foundation
to carry out and develop spike train signal processing algorithms.1

In this paper a reproducing kernel Hilbert space (RKHS) framework for spike trains
is introduced with two key advantages: (1) mapping spike trains to the RKHS allows
for the study of spike trains as continuous-time random functionals, thereby bypassing
the limitations which lead to the use of binning, and (2) these functionals incorporate a
statistical description of spike trains. In this space, a number of different signal processing
algorithms to filter, eigendecompose, classify or cluster spike trains can then be developed
using the linearity of the space and its inner product. Notice that, unlike approaches based
on discrete representations of spike trains (such as binning) in which the dimensionality of
the space becomes a problem, in the RKHS framework the dimensionality of the space is
naturally dealt through the inner product.

For continuous and discrete random processes, RKHS theory has already been proven
essential in a number of applications, such as statistical signal processing (Parzen, 1959)
and detection (Kailath, 1971; Kailath and Duttweiler, 1972), as well as statistical learning
theory (Schölkopf, Burges, and Smola, 1999; Vapnik, 1995; Wahba, 1990). Indeed, as Parzen
(1959) showed, several statistical signal processing algorithms can be stated and solved easily
as optimization problems in the RKHS. Although frequently overlooked, RKHS theory is
perhaps an even more pivotal concept in machine learning (Schölkopf et al., 1999; Vapnik,
1995), because it is the reason for the famed kernel trick which allows for the otherwise
seemingly impossible task of deriving and applying these algorithms.

In the following, we introduce a number of inner products for spike trains illustrating the
generality of this methodology. We follow a systematic approach which builds the RKHS

1Distances define Banach spaces but for signal processing an Hilbert space (which automatically induces

a Banach space) is needed.
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from the ground up based on the intensity functions of spike trains, and basic requirements
for the construction of an RKHS. As a result, we obtain a general and mathematically precise
methodology which can yet be easily interpreted intuitively. Then, these inner products are
studied in detail to show that they have the necessary properties for spike train signal
processing and we propose how they can be estimated. Moreover, we discuss the RKHS
and congruent spaces2 associated with the simplest of these inner product form adding to
our understanding. We then build upon this knowledge by showing that previous work in
spike train measures arises naturally and effortlessly in one of the constructed RKHS, and is
indeed elegantly unified in this framework. Finally, we demonstrate a practical application
of the RKHS by showing how clustering of spike trains can be easily achieved using the
spike train kernel.

2 Inner product for spike times

Denote the mth spike time in a spike train indexed by i ∈ N as tim ∈ T , with m ∈
{1, 2, . . . , Ni} and Ni the number of spike times in the spike train. To simplify the notation,
however, the explicit reference to the spike train index will be omitted if is not relevant or
obvious from the context.

The simplest inner product that can be defined for spike trains operates with only two
spike times at a time, as observed by Carnell and Richardson (2005). In the general case,
such an inner product can be defined in terms of a kernel function defined on T × T into
the reals, with T the interval of spike times. Let κ denote such a kernel. Conceptually,
this kernel operates in the same way as the kernels operating on data samples in machine
learning (Schölkopf et al., 1999) and information theoretic learning (Pŕıncipe, Xu, and
Fisher, 2000). Although it operates only with two spike times, it will play a major role
whenever we operate with complete realizations of spike trains. Indeed, the estimator for
one of the spike train kernels defined next relies on this simple kernel as an elementary
operation for computation or composite operations.

To take advantage of the framework for statistical signal processing provided by RKHS
theory, κ is required to be a symmetric positive definite function. By the Moore-Aronszajn
theorem (Aronszajn, 1950), this ensures that an RKHS Hκ exists for which κ is a repro-
ducing kernel. The inner product in Hκ is given as

κ(tm, tn) = 〈κ(tm, ·), κ(tn, ·)〉Hκ
= 〈Φm, Φn〉Hκ

. (1)

where Φm is the element in Hκ corresponding to tm (that is, the transformed spike time).
2Two spaces are said to be congruent if there exists an isometric isomorphism, that is, a one-to-one inner

product-preserving mapping, between the two spaces. This mapping is called a congruence.
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Since the kernel operates directly on spike times and, typically, it is undesirable to
emphasize events in this space, thus κ is further required to be shift-invariant. That is, for
any θ ∈ R,

κ(tm, tn) = κ(tm + θ, tn + θ), ∀tm, tn ∈ T . (2)

Hence, the kernel is only sensitive to the difference of the arguments and, consequently, we
may write κ(tm, tn) = κ(tm − tn).

For any symmetric, shift-invariant, and positive definite kernel, it is known that κ(0) ≥
|κ(θ)|.3 This is important in establishing κ as a similarity measure between spike times. As
usual, an inner product should intuitively measure some form of inter-dependence between
spike times. However, the conditions posed do not restrict this study to a single kernel.
On the contrary, any kernel satisfying the above requirements is theoretically valid and
understood under the framework proposed here, although the practical results may vary.

An example of a family of kernels that can be used (but not limited to) are the radial
basis functions (Berg, Christensen, and Ressel, 1984),

κ(tm, tn) = exp(−|tm − tn|p), tm, tn ∈ T , (3)

for any 0 < p ≤ 2. Some well known kernels, such as the widely used Gaussian and Laplacian
kernel are special cases of this family for p = 2 and p = 1, respectively.

Also of interest is to notice that for the natural norm induced by the inner product,
shift-invariant kernels have the following property,

‖Φm‖ =
√

κ(0), ∀Φm ∈ Hκ. (4)

Since the norm inHκ of the transformed spike times point is constant, all the spike times are
mapped to the surface of an hypersphere in Hκ. The set of transformed spike times is called
the manifold of S(T ). This provides a different perspective of why the kernel used must
be non-negative. Furthermore, the geodesic distance, corresponding to the length of the
smallest path contained within the manifold (an hypersphere, in the case of shift-invariant
kernels) between two points, Φm and Φn, is given by

d(Φm,Φn) = ‖Φm‖ arccos
(
〈Φm, Φn〉
‖Φm‖ ‖Φn‖

)
=

√
κ(0) arccos

[
κ(tm, tn)

κ(0)

]
.

(5)

Put differently, from the geometry of the transformed spike times, the kernel function is
proportional to the cosine of the angle between two points in this space. Because the kernel

3This is a direct consequence of the fact that symmetric positive definite kernels denote inner products

that obey the Cauchy-Schwarz inequality.
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is non-negative, the maximum angle is π/2, which restricts the manifold of transformed
spike times to a small area of the surface of the sphere. With the kernel inducing the above
metric, the manifold of the transformed points forms a Riemannian space. This space is not
a linear space. Its span however is obviously a linear space. In fact, it equals the RKHS
associated with the kernel. Computing with the transformed points will almost surely yield
points outside of the manifold of transformed spike times. This means that such points
cannot be mapped back to the input space directly. This restriction however is generally
not a problem since most applications deal exclusively with the projections of points in the
space, and if a representation in the input space is desired it may be obtained from the
projection to the manifold of transformed input points.

The kernels κ discussed this far operate with only two spike times. As in commonly
done in kernel methods, kernels on spike times can be combined to define kernels that
operate with spike trains. Suppose that one is interested in defining a kernel on spike
trains to measure similarity in temporal spiking patterns between two spike trains (Chi and
Margoliash, 2001; Chi, Wu, Haga, Hatsopoulos, and Margoliash, 2007). Such a kernel could
be utilized, for example, to study temporal precision and reliability in neural spike trains
in response to stimulus, or detect/classify these stimuli. This kernel could be defined as

V (si, sj) =


max

l=0,1,...,(Ni−Nj)

Nj∑
n=1

κ(tin+l − tjn), Ni ≥ Nj

max
l=0,1,...,(Nj−Ni)

Ni∑
n=1

κ(tin − tjn+l), Ni < Nj .

(6)

Basically, this kernel measures if spike trains have a one-to-one correspondence of the se-
quence of spike times. This occurs if spike trains occur with high precision and high reliabil-
ity. Since spike trains are defined here in terms of fixed duration, the maximum operation in
the definition searches for the best spike-to-spike correspondence. This is henceforth called
the spiking pattern matching (SPM) kernel.

3 Inner products for spike trains

In the end of the previous section we briefly illustrated in the SPM kernel how inner products
for spike trains can be built from kernels for spike times as traditionally done in machine
learning. Obviously, many other spike train kernels that operate directly from data charac-
teristics could be defined for diverse applications in a similar manner. However, in doing so
it is often unclear what is the statistical structure embodied or point process model assumed
by the kernel.

Rather than doing this directly, in this section, we first define general inner products
for spike trains from the intensity functions, which are fundamental statistical descriptors
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of the point processes. This bottom-up construction of the kernels for spike trains is unlike
the previous approach taken in the previous section and is rarely taken in machine learning,
but it provides direct access to the properties of the kernels defined and the RKHS they
induce. In other words, in the methodology presented in this section we focus on the inner
product as a statistical descriptor, and only then derive the corresponding estimators from
data.

A spike train can be interpreted as a realization of an underlying stochastic point pro-
cess (Snyder, 1975). In general, to completely characterize a point process the conditional
intensity function λ(t|Ht) is needed, where t ∈ T = [0, T ] denotes the time coordinate and
Ht is the history of the process up to time t. Notice that, to be a well defined function of
time, λ(t|Ht) requires a realization (so that Ht can be established), as always occurs when
dealing with spike trains. This shall be implicitly assumed henceforth.

Consider two spike trains, si, sj ∈ S(T ), with i, j ∈ N, and denote the corresponding
conditional intensity functions of the underlying point processes by λsi(t|H i

t) and λsj (t|H
j
t ),

respectively. Because of the finite duration of spike trains and the boundedness of the
intensity functions, we have that ∫

T
λ2(t|Ht)dt <∞. (7)

In words, conditional intensity functions are square integrable functions on T and, as a
consequence, are valid elements of an L2(T ) space. Obviously, the space spanned by the
conditional intensity functions, denoted L2(λsi(t|H i

t), t ∈ T ), is contained in L2(T ). There-
fore, we can easily define an inner product of intensity functions in L2(λsi(t|H i

t), t ∈ T ) as
the usual inner product in L2(T ),

I(si, sj) =
〈
λsi(t|H i

t), λsj (t|H
j
t )

〉
L2(T )

=
∫
T

λsi(t|H i
t)λsj (t|H

j
t )dt.

(8)

Although we defined the inner product in the space of intensity functions, it is in effect
a function of two spike trains (or the underlying point processes) and thus is a kernel
function in the space of spike trains. The advantage in defining the inner product from the
intensity functions is that the resulting kernel incorporates the statistics of the processes
directly. Moreover, the defined kernel can be utilized with any point process model since
the conditional intensity function is a complete characterization of the point process (Cox
and Isham, 1980).

The dependence of the conditional intensity functions on the history of the process ren-
ders estimation of the previous kernel intractable from finite data, as occurs in applications.
A possibility is to consider a simplification of the conditional intensity functions as,

λ(t|Ht) = λ(t, t− t∗), (9)
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where t∗ is the spike time immediately preceding t. This restricted form gives rise to
inhomogeneous Markov interval (IMI) processes (Kass and Ventura, 2001). In this way it
is possible to estimate the intensity functions from spike trains, and then utilize the above
inner product definition to operate with them. This view is very interesting to enhance
the present analysis of spike trains, but since we aim to compare the general principles
presented to more typical approaches it will not be pursued in this paper.

Another way to deal with the memory dependence is to take the expectation over the
history of the process Ht which yields an intensity function solely depending on time. That
is,

λsi(t) = EHi
t

{
λsi(t|H i

t)
}

. (10)

This expression is a direct consequence of the general limit theorem for point processes
(Snyder, 1975), and is the reason why, for example, the combined set of spike trains corre-
sponding to multiple trials is quite well modeled as a Poisson process (Kass and Ventura,
2001). An alternate perspective is to merely assume Poisson processes to be a reasonable
model for spike trains. The difference between the two perspectives is that in the second
case the intensity functions can be estimated from single realizations in a plausible manner.
In any case, the kernel becomes simply

I(si, sj) =
∫
T

λsi(t)λsj (t)dt. (11)

Starting from the most general definition of inner product we have proposed several
kernels from constrained forms of conditional intensity functions for use in applications.
One can think that the definition of equation (8) gives rise to a family of cross-intensity
kernels defined explicitly as an inner product, as is important for signal processing. Specific
kernels are obtained from equation (8) by imposing some particular form on how to account
to the dependence on the history of the process and/or allowing for a nonlinear coupling
between spike trains. Two fundamental advantages of the construction methodology is that
it is possible to obtain a continuous functional space where no binning is necessary and that
the generality of the approach allows for inner products to be crafted to fit a particular
problem that one is trying to solve.

The kernels defined so far in this section are linear operators in the space spanned by the
intensity functions and are the ones that relate the most with the present analysis methods
for spike trains. However, kernels between spike trains can be made nonlinear by introducing
a nonlinear weighting between the intensity functions in the inner product. With this
approach additional information can be extracted from the data since the nonlinearity
implicitly incorporates in the measurement higher-order couplings between the intensity
functions. This is of especial importance for the study of doubly-stochastic point processes,
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as some theories of the brain function have put forward (Lowen and Teich, 2005). The
methodology followed however is general and can be easily extended.

By analogy to how the Gaussian kernel is obtained from the Euclidean norm, we can
define a similar kernel for spike trains as

I∗σ(si, sj) = exp

[
−

∥∥λsi − λsj

∥∥2

σ2

]
, (12)

where σ is the kernel size parameter and
∥∥λsi − λsj

∥∥ =
√〈

λsi − λsj , λsi − λsj

〉
is the norm

naturally induced by the inner product. This kernel is clearly nonlinear on the space of the
intensity functions. On the other hand, the nonlinear mapping induced by this kernel does
not operate directly on the intensity functions but on their norm and inner product, and
thus has reduced descriptive ability on the coupling of their time-structure.

An alternative nonlinear CI kernel definition for spike trains is

I†σ(si, sj) =
∫
T
Kσ

(
λsi(t), λsj (t)

)
dt, (13)

where Kσ is a symmetric positive definite kernel with kernel size parameter σ. The advan-
tage of this definition is that the kernel measures nonlinear couplings between the spike
trains time-structure expressed in the intensity functions. In what follows, we shall refer to
the definition in equation (13) as the nCI kernel. Notice that either of these nonlinear CI
kernels can be made to account more detailed models of point processes.

From the suggested definitions, the memoryless cross-intensity (mCI) kernel given in
equation (11) clearly adopts the simplest form since the influence of the history of the process
is neglected by the kernel. This simple kernel defines an RKHS that is equivalent to cross-
correlation analysis so widespread in spike train analysis (Paiva, Park, and Pŕıncipe, 2008a),
but this derivation clearly shows that it is the simplest of the cases. Still, it fits the goal of
this paper as an example of the RKHS framework since it provides an interestingly broad
perspective to several other works presented in the literature and suggests how methods
can be reformulated to operate directly with spike trains, as will be shown next.

4 Analysis of cross-intensity kernels

4.1 Properties

In this section we present some relevant properties of the CI kernels defined in the general
form of equation (8). In addition to the knowledge they provide, they are necessary for
establishing that the CI kernels are well defined, induce an RKHS, and aid in the under-
standing of the following sections.
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Property 1. CI kernels are symmetric, non-negative and linear operators in the space of
the intensity functions.

Because the CI kernels operate on elements of L2(T ) and corresponds to the usual dot
product from L2, this property is a direct consequence of the properties inherited. More
specifically, this property guaranties the CI kernels are valid inner products.

Property 2. For any set of n ≥ 1 spike trains, the CI kernel matrix

I =


I(s1, s1) I(s1, s2) . . . I(s1, sn)
I(s2, s1) I(s2, s2) . . . I(s2, sn)

...
...

. . .
...

I(sn, s1) I(sn, s2) . . . I(sn, sn)

 ,

is symmetric and non-negative definite.

The proof is given in appendix A. Through the work of Moore (1916) and due to
the Moore-Aronszajn theorem (Aronszajn, 1950), the following two properties result as
corollaries of property 2.

Property 3. CI kernels are symmetric and positive definite kernels. Thus, by definition,
for any set of n ≥ 1 point processes and corresponding n scalars a1, a2, . . . , an ∈ R,

n∑
i=1

n∑
j=1

aiajI(si, sj) ≥ 0. (14)

Property 4. There exists an Hilbert space for which a CI kernel is a reproducing kernel.

Actually, property 3 can be obtained explicitly by verifying that the inequality of equa-
tion (14) is implied by equations (30) and (31) in the proof of property 2 (appendix A).

Properties 2 through 4 are equivalent in the sense that any of these properties implies the
other two. In our case, property 2 is used to establish the other two. The most important
consequence of these properties, explicitly stated through property 4, is that a CI kernel
induces a unique RKHS, denoted in general by HI . In the particular case of the mCI kernel
the RKHS is denoted HI .

Property 5. The CI kernels verify the Cauchy-Schwarz inequality,

I2(si, sj) ≤ I(si, si)I(sj , sj) ∀si, sj ∈ S(T ). (15)

As before, the proof is given in appendix A.
Properties 2 through 5 can also be easily proved for the nonlinear CI kernels. For

the definition in equation (12), the results in Berg et al. (1984, Chapter 3) can be used
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to establish that the norm is symmetric negative definite and consequently that I∗σ is a
symmetric and positive definite kernel, thus proving property 3. Properties 2, 4 and 5 follow
as corollaries. Similarly, for the definition in equation (13), the proof of the properties follow
the same route as for the general linear CI kernel using the linearity of the RKHS associated
with the scalar kernel K.

4.2 Estimation

From the definitions, is should be clear that for evaluation of CI kernels (linear or nonlinear)
one needs first to estimate the conditional intensity function from spike trains. A possible
approach is the statistical estimation framework recently proposed by Truccolo et al. (2005).
Briefly, it represents a spike train point process as a discrete-time time series, and then
utilizes a generalized linear model (GLM) to fit a conditional intensity function to the spike
train. This is done by assuming that the logarithm of the conditional intensity function has
the form

log λsi(t̂n|H i
n) =

q∑
m=1

θmgm(νm(t̂n)), (16)

where t̂n is the nth discrete-time instant, gm’s are general transformations of independent
functions νm(·), θm’s are the parameter of the GLM and q is the number of parameters.
Thus, GLM estimation can be used under a Poisson distribution with a log link function.
The terms gm(νm(t̂n)) are called the predictor variables in the GLM framework and, if one
considers the conditional intensity to depend only linearly on the spiking history then the
gm’s can be simply delays. In general the intensity can depend nonlinearly on the history
or external factor such as stimuli. Based on the estimated conditional intensity function,
any of the inner products introduced in section 3 can be evaluated numerically.

Although quite general, the approach by Truccolo et al. (2005) has a main drawback:
since q must be larger that the average inter-spike interval a large number of parameters
need to be estimated thus requiring long spike trains (> 10 seconds). Notice that estimation
of the conditional intensity function without sacrificing the temporal precision requires small
bins, which means that q, and therefore the duration of the spike train used for estimation,
must be increased.

In the particular case of the mCI kernel, defined in equation (11), a much simpler
estimator can be derived. We now focus on this case. Since we are interested in estimating
the mCI kernel from single trial spike trains, and for the reasons presented before, we will
assume henceforth that spike trains are realizations of Poisson processes. Then, using kernel
smoothing (Dayan and Abbott, 2001; Reiss, 1993; Richmond et al., 1990) for the estimation
of the intensity function we can derive an estimator for the kernel. The advantage of this
route is that a statistical interpretation is available while simultaneously approaching the
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problem from a practical point of view. Moreover, in this particular case the connection
between the mCI kernel and κ will now become obvious.

According to kernel smoothing intensity estimation, given a spike train si comprising of
spike times {tim ∈ T : m = 1, . . . , Ni} the estimated intensity function is

λ̂si(t) =
Ni∑

m=1

h(t− tim), (17)

where h is the smoothing function. This function must be non-negative and integrate to one
over the real line (just like a probability density function (pdf)). Commonly used smoothing
functions are the Gaussian, Laplacian and α-function, among others.

From a filtering perspective, equation (17) can be seen as a linear convolution between
the filter impulse response given by h(t) and the spike train written as a sum of Dirac
functionals centered at the spike times. In particular, binning is nothing but a special case
of this procedure in which h is a rectangular window and the spike times are first quantized
according to the width of the rectangular window (Dayan and Abbott, 2001). Moreover, it
is interesting to observe that intensity estimation as shown above is directly related to the
problem of pdf estimation with Parzen windows (Parzen, 1962) except for a normalization
term, a connection made clear by Diggle and Marron (1988).

Consider spike trains si, sj ∈ S(T ) with estimated intensity functions λ̂si(t) and λ̂sj (t)
according to equation (17). Substituting the estimated intensity functions in the definition
of the mCI kernel (equation (11)) yields the estimator,

Î(si, sj) =
Ni∑

m=1

Nj∑
n=1

κ(tim − tjn), (18)

where κ is the kernel obtained by the autocorrelation of the intensity estimation function
h with itself. A well known example for h is the Gaussian function in which case κ is
also the Gaussian function (with σ scaled by

√
2). Another example for h is the one-sided

exponential function which yields κ as the Laplacian kernel. In general, if a kernel is selected
first and h is assumed to be symmetric, then κ equals the autocorrelation of h and thus h

can be found by evaluating the inverse Fourier transform of the square root of the Fourier
transform of κ.

The accuracy of this estimator depends only on the accuracy of the estimated intensity
functions. If enough data is available such that the estimation of the intensity functions can
be made exact then the mCI kernel estimation error is zero. Despite this direct dependency,
the estimator effectively bypasses the estimation of the intensity functions and operates
directly on the spike times of the whole realization without loss of resolution and in a
computationally efficient manner since it takes advantage of the typically sparse occurrence
of events.
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mCI kernel
induced

RKHS, HI

Space spanned by the
intensity functions,
L2(λsi

(t), t ∈ T )

Space of
spike trains,

S(T )

κ induced
RKHS, Hκ

mCI kernel defines
the covariance

function,
L2(X(si), si ∈ S(T ))

Λsi

NiE {Φi}

λsi
(t)

X(si)

Figure 1: Relation between the original space of spike trains S(T ) and the various Hilbert
spaces. The double-line bi-directional connections denote congruence between spaces.

As equation (18) shows, if κ is chosen such that it satisfies the requirements in section 2,
then the mCI kernel ultimately corresponds to a linear combination of κ operating on all
pairwise spike time differences, one pair of spike times at a time. In other words, the mCI
kernel is a linear combination of the pairwise inner products between spike times of the
spike trains. Put in this way, we can now clearly see how the mCI inner product estimator
builds upon the inner product on spike times presented in section 2, denoted by κ.

5 RKHS induced by the memoryless cross-intensity kernel

and congruent spaces

Some considerations about the RKHS space HI induced by the mCI kernel and congruent
spaces are made in this section. The relationship between HI and its congruent spaces
provides alternative perspectives and a better understanding of the mCI kernel. Figure 1
provides a diagram of the relationships among the various spaces discussed next.

5.1 Space spanned by intensity functions

In the introduction of the mCI kernel the usual dot product in L2(T ), the space of square
integrable intensity functions defined on T , was utilized. The definition of the inner product
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in this space provides an intuitive understanding to the reasoning involved. L2(λsi(t), t ∈
T ) ⊂ L2(T ) is clearly an Hilbert space with inner product defined in equation (11), and
is obtained from the span of all intensity functions. Notice that this space also contains
functions that are not valid intensity functions resulting from the linear span of the space
(intensity functions are always non-negative). However, since our interest is mainly on the
evaluation of the inner product this is of no consequence. The main limitation is that
L2(λsi(t), t ∈ T ) is not an RKHS. This should be clear because elements in this space are
functions defined on T , whereas elements in the RKHS HI must be functions defined on
S(T ).

Despite the differences, the spaces L2(λsi(t), t ∈ T ) and HI are closely related. In fact,
L2(λsi(t), t ∈ T ) and HI are congruent. We can verify this congruence explicitly since there
is clearly a one-to-one mapping,

λsi(t) ∈ L2(λsi(t), t ∈ T ) ←→ Λsi(s) ∈ HI ,

and, by definition of the mCI kernel,

I(si, sj) =
〈
λsi , λsj

〉
L2(T )

=
〈
Λsi , Λsj

〉
HI

. (19)

A direct consequence of the basic congruence theorem is that the two spaces have the same
dimension (Parzen, 1959).

5.2 Induced RKHS

In section 4.1 it was shown that the mCI kernel is symmetric and positive definite (prop-
erties 1 and 3, respectively). Consequently, by the Moore-Aronszajn theorem (Aronszajn,
1950), there exists an Hilbert space HI for which the mCI kernel evaluates the inner product
and is a reproducing kernel (property 4). This means that I(si, ·) ∈ HI for any si ∈ S(T )
and, for any ζ ∈ HI , the reproducing property holds

〈ζ, I(si, ·)〉HI
= ζ(si). (20)

As a result the kernel trick follows,

I(si, sj) = 〈I(si, ·), I(sj , ·)〉HI
. (21)

Written in this form, it is easy to verify that the point in HI corresponding to a spike train
si ∈ S(T ) is I(si, ·). In other words, given any spike train si ∈ S(T ), this spike train is
mapped to Λsi ∈ HI , given explicitly (although unknown in closed form) as Λsi = I(si, ·).
Then equation (21) can be restated in the more usual form as

I(si, sj) =
〈
Λsi , Λsj

〉
HI

. (22)
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It must be remarked that HI is in fact a functional space. More specifically, that points
in HI are functions of spike trains; that is, they are functions defined on S(T ). This is a key
difference between the space of intensity functions L2(T ) explained before and the RKHS
HI , in that the latter allows for statistics of the transformed spike trains to be estimated
as functions of spike trains.

5.3 Memoryless CI kernel and the RKHS induced by κ

The mCI kernel estimator in equation (18) shows the evaluation written in terms of elemen-
tary kernel operations on spike times. This fact alone provides an interesting perspective on
how the mCI kernel uses the statistics of the spike times. To see this more clearly, consider
κ to be chosen according to section 2 as a symmetric positive definite kernel, then it can be
substituted by its inner product (equation (1)) in the mCI kernel estimator, yielding

Î(si, sj) =
Ni∑

m=1

Nj∑
n=1

〈
Φi

m, Φj
n

〉
Hκ

=

〈
Ni∑

m=1

Φi
m,

Nj∑
n=1

Φj
n

〉
Hκ

.

(23)

When the number of samples approaches infinity (so that the intensity functions and, con-
sequently the mCI kernel, can be estimated exactly) the mean of the transformed spike
times approaches the expectation. Hence, equation (23) results in

I(si, sj) = Ni Nj

〈
E

{
Φi

}
, E

{
Φj

}〉
Hκ

, (24)

where E
{
Φi

}
, E

{
Φi

}
denotes the expectation of the transformed spike times and Ni, Nj

are the expected number of spikes for spike trains si and sj , respectively.
Equation (23) explicitly shows that the mCI kernel can be computed as a (scaled) inner

product of the expectation of the transformed spike times in the RKHS Hκ induced by κ.
In other words, there is a congruence G between Hκ and HI in this case given explicitly in
terms of the expectation of the transformed spike times as G (Λsi) = NiE

{
Φi

}
, such that〈

Λsi , Λsj

〉
HI

=
〈
G (Λsi), G (Λsj )

〉
Hκ

= Ni Nj

〈
E

{
Φi

}
, E

{
Φj

}〉
Hκ

. (25)

Recall that the transformed spike times form a manifold (the subset of an hypersphere)
and, since these points have constant norm, the kernel inner product depends only on the
angle between points. This is typically not true for the average of these points however.
Observe that the circular variance of the transformed spike times of spike trains si is (Mardia
and Jupp, 2000)

var(Φi) = E
{〈

Φi
m,Φi

m

〉
Hκ

}
−

〈
E

{
Φi

}
, E

{
Φi

}〉
Hκ

= κ(0)−
∥∥E

{
Φi

}∥∥2

Hκ
.

(26)
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So, the norm of the mean transformed spike times is inversely proportional to the variance
of the elements in Hκ. This means that the inner product between two spike trains de-
pends also on the dispersion of these average points. This fact is important because data
reduction techniques, for example, heavily rely on optimization with the data variance. For
instance, kernel principal component analysis (Schölkopf, Smola, and Müller, 1998) directly
maximizes the variance expressed by equation (26) (Paiva, Xu, and Pŕıncipe, 2006).

5.4 Memoryless CI kernel as a covariance kernel

In section 4.1 it was shown that the mCI kernel is indeed a symmetric positive definite
kernel. Parzen (1959) showed that any symmetric and positive definite kernel is also a
covariance function of Gaussian distributed random processes defined in the original space
of the kernel, and the two spaces are congruent (see Wahba (1990, chapter 1) for a review).
In the case of the spike train kernels defined here, this means the random processes are
indexed by spike trains on S(T ). This is an important result as it sets up a correspondence
between the inner product due to a kernel in the RKHS to our intuitive understanding of
the covariance function and associated linear statistics. Simply put, due to the congruence
between the two spaces an algorithm can be derived and interpreted in any of the spaces.

Let X denote this random process. Then, for any si ∈ S(T ), X(si) is a random variable
on a probability space (Ω,B, P ) with measure P . As proved by Parzen, this random process
is Gaussian distributed with zero mean and covariance function

I(si, sj) = Eω {X(si)X(sj)} . (27)

Notice that the expectation is over ω ∈ Ω since X(si) is a random variable defined on Ω, a
situation which can be written explicitly as X(si, ω), si ∈ S(T ), ω ∈ Ω. This means that
X is actually a doubly stochastic random process. An intriguing perspective is that, for
any given ω, X(si, ω) corresponds to an ordered and almost surely non-uniform random
sampling of X(·, ω). The space spanned by these random variables is L2(X(si), si ∈ S(T ))
since X is obviously square integrable (that is, X has finite covariance).

The RKHSHI induced by the mCI kernel and the space of random functions L2(X(si), si ∈
S(T )) are congruent. This fact is obvious since there is clearly a congruence mapping be-
tween the two spaces. In light of this theory we can henceforward reason about the mCI
kernel also as a covariance function of random variables directly dependent on the spike
trains with well defined statistical properties. Allied to our familiarity and intuitive knowl-
edge of the use of covariance (which is nothing but cross-correlation between centered ran-
dom variables) this concept can be of great importance in the design of optimal learning
algorithms that work with spike trains. This is because linear methods are known to be
optimal for Gaussian distributed random variables.
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6 Spike train distances

The concept of distance is very useful in classification and analysis of data. Spike trains are
no exception. The importance of distance can be observed from the attention it has received
in the literature (Victor and Purpura, 1997; van Rossum, 2001; Victor, 2005). In this section
we show how the mCI kernel (or any of the presented kernels, for that matter) could be
used to easily define distances between spike trains in a rigorous manner. The aim of this
section is not to propose any new distance but to highlight this natural connection and
convey the generality of RKHS framework by suggesting how several spike train distances
can be formulated from basic principles as special cases.

6.1 Norm distance

The fact that HI is an Hilbert space and therefore possesses a norm suggests an obvious
definition for a distance between spike trains. In fact, since L2(T ) is also an Hilbert space
this fact would have sufficed. Nevertheless, because the inner product in HI is actually
evaluated in L2(T ) the result is the same. In this sense, the distance between two spike
trains or, in general, any two points in HI (or L2(T )), is defined as

dND(si, sj) =
∥∥Λsi − Λsj

∥∥
HI

=
√〈

Λsi − Λsj , Λsi − Λsj

〉
HI

=
√
〈Λsi , Λsi〉 − 2

〈
Λsi ,Λsj

〉
+

〈
Λsj ,Λsj

〉
=

√
I(si, si)− 2I(si, sj) + I(sj , sj).

(28)

where Λsi , Λsi ∈ HI denotes the transformed spike trains in the RKHS. From the properties
of the norm and the Cauchy-Schwarz inequality (property 5) it immediately follows that
dND is a valid distance since, for any spike trains si, sj , sk ∈ S(T ), it satisfies the three
distance axioms:

(i) Symmetry: dND(si, sj) = dND(sj , si);

(ii) Positiveness: dND(si, sj) ≥ 0, with equality holding if and only if si = sj ;

(iii) Triangle inequality: dND(si, sj) ≤ dND(si, sk) + dND(sk, sj).

This distance is basically a generalization of the idea behind the Euclidean distance in a
continuous space of functions.

As it was said before, this distance could be formulated directly and with the same
result in L2(T ). Then, if one considers this situation with a causal decaying exponential
function as the smoothing kernel then we immediately observe that dND corresponds, in
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this particular case, to the distance proposed by van Rossum (2001). Using instead a rect-
angular smoothing function the distance then resembles the distance proposed by Victor
and Purpura (1997), as pointed by Schrauwen and Campenhout (2007), although its defi-
nition prevents a formulation in terms of the mCI kernel. Finally, using a Gaussian kernel
the same distance used by Maass et al. (2002) is obtained. Notice that although it had
already been noticed that other cost (i.e. kernel) functions between spike times could be
used instead of the initially described (Schrauwen and Campenhout, 2007), the framework
given here fully characterizes the class of valid kernels and explains their role in the time
domain.

6.2 Cauchy-Schwarz distance

The previous distance is the natural definition for distance whenever an inner product is
available. However, as for other L2 spaces, alternatives measures for spike trains can be
defined. In particular, based on the Cauchy-Schwarz inequality (property 5) we can define
the Cauchy-Schwarz (CS) distance between two spike trains as

dCS(si, sj) = arccos
I(si, si)I(sj , sj)

I2(si, sj)
. (29)

From properties 1 and 5 of the mCI kernel it follows that dCS is symmetric and always
positive, and thus verifies the first two axioms of distance. Since dCS is the angular distance
between points it also verifies the triangle inequality.

The major difference between the normed distance and the CS distance is that the latter
is not an Euclidean measure. Indeed, because it measures the angular distance between the
spike trains it is a Riemannian metric. This utilizes the same idea expressed in equation (5)
in presenting the geodesic distance associated with any symmetric positive definite kernel.

The Cauchy-Schwarz distance can be compared with the “correlation measure” between
spike trains proposed by Schreiber et al. (2003). In fact, we can observe that the latter
corresponds to the argument of the arc cosine and thus denotes the cosine of an angle
between spike train, with norm and inner product estimated using the Gaussian kernel.
Notice that Schreiber’s et al. “correlation measure” is only a pre-metric since it does not
verify the triangle inequality. In dCS this is ensured by the arc cosine function.

7 Application example: Clustering of spike trains

Having an RKHS framework for spike trains is important because it facilitates the devel-
opment of new methods to operate with spike trains. Moreover, all of these methods are
developed under the same principles provided by this general theory.
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To exemplify the use of kernels proposed under the RKHS framework, in the following
we show how a clustering algorithm for spike trains can be obtained naturally from any
of the spike train kernel definitions here presented (with results shown for the mCI and
nCI kernels). Comparing these ideas with previous clustering algorithms for spike trains
we find that they result in simpler methods, derived in an integrated manner, with a clear
understanding of the features being accounted for, and greater generality. We remark,
however, that our emphasis here is not to propose another algorithm but merely to illustrate
the elegance and usefulness of the RKHS framework. For this reason, we will dispense a
comparison with another methods and a more thorough analysis of the performance of the
algorithm at this time.

7.1 Algorithm

For the purpose of this example, we will exemplify how spike train kernels defined in the
RKHS framework provide the means to do clustering of spike trains. The algorithm is
based on the ideas of spectral clustering. Spectral clustering is advantageous for the pur-
pose of this example since the evaluation of the relation between spike trains and the actual
clustering procedure is conceptually distinct. It should be possible to extend other estab-
lished clustering algorithms although one must introduce the inner product directly into
the computation which slightly complicates matters.

Spectral clustering of spike trains operates in two major steps. First, the affinity matrix
of the spike trains is computed. Let {s1, s2, . . . , sn} be the set of n spike trains to be
clustered into k clusters. The affinity matrix is an n × n matrix describing the similarity
between all pairs of spike trains. The second step of the algorithm is to use spectral
clustering applied to this affinity matrix to find the actual clustering results. In particular,
the spectral clustering algorithm proposed by Ng, Jordan, and Weiss (2001) was used for
its simplicity and minimal use of parameters. We refer the reader to Ng et al. (2001) for
additional details on the spectral clustering algorithm.

Clearly, the defining step for the use of this algorithm for clustering of spike trains
is how to evaluate affinity between spike trains. Since inner products inherently quantify
similarity, any of the kernels proposed could be used, and in particular the mCI and nCI
kernels, for which we provide results. In this situation the affinity matrix is simply the Gram
matrix of the spike trains computed with the spike train kernel. The algorithm shown here
is similar to the method by Paiva, Rao, Park, and Pŕıncipe (2007), but is simpler since the
transformation to map the distance evaluation to a similarity measurement and the need to
adjust the corresponding parameter are avoided. Since distances are derived concepts and,
many times, can be defined in terms of inner products, the approach taken is much more
straightforward and principled. Moreover, the computation is reduced since the spike train
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kernels are simpler to evaluate than a distance. But most importantly, the algorithm can
be generalized merely by using yet another spike train kernel.

7.2 Simulation

The goal of this simulation example is to show the importance of spike train kernels that go
beyond the first cross-moment (i.e., cross-correlation) between spike trains. For this reason,
we applied the algorithm described in the previous section for clustering of spike trains
generated as homogeneous renewal point processes with a gamma inter-spike interval (ISI)
distribution. This model was chosen since the Poisson process is a particular case and thus
can be directly compared.

A three cluster problem is considered, in which each cluster is defined by the ISI distri-
bution of its spike trains (see figure 2(a)). In other words, spike trains within the cluster
were generated according to the same point process model. All spike trains were 1s long and
with constant firing rate 20 spk/s. For each Monte Carlo run, a total of 100 spike trains ran-
domly assigned to one of the clusters were generated. The results statistics were estimated
over 500 Monte Carlo runs. For both the mCI and nCI kernels, the Gaussian function was
used as smoothing function with results for three values of the smoothing width, 2, 10 and
100ms. In addition, the Gaussian kernel was utilized for Kσ in the computation of the nCI
kernel, with results for kernel sizes σ = 1 and σ = 10.

The results of the simulation are shown in figure 2(c). The cluster with shape parameter
θ = 1 contained Poisson spike trains, and spike trains with shape parameter θ = 3 were more
regular whereas θ = 0.5 gave rise to more irregular (i.e. “bursty”) spike trains. The results
with the mCI kernel are at most 1.4% better, on average, than random selection. This
low performance is not entirely surprising since all spike trains have constant firing rate.
Using the nCI kernel with the larger smoothing width yielded an improvement of 14.7% for
σ = 10 and 18% for σ = 1, on average. Smaller values of σ did not improve the clustering
performance (σ = 0.1 resulted in the same performance as σ = 1), demonstrating that the
selection of kernel size σ for the nCI kernel is not very problematic. But, most importantly,
the results show that even though the formulation depends only on the memoryless intensity
functions, in practice, the nonlinear kernel Kσ allows for different spike train models to be
discriminated. This improvement is due to the fact that Kσ enhances the slight differences
in the estimated intensity functions due to the different point process model expressed in
the spike trains (cf. figure 2(b)).
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8 Conclusion

The point process nature of spike trains has made the application of conventional signal
processing methods to spike trains difficult and imprecise to apply (e.g., through binning)
from first principles. The most powerful methodologies to spike train analysis are based on
statistical approaches, but they face serious shortcomings with the widespread use of mul-
tielectrode array techniques since they are only practical using an independent assumption.

This paper presents a reproducing kernel Hilbert space formulation for the analysis of
spike trains that has the potential to improve the set of algorithms that can be developed
for spike train analysis of multielectrode array data. The paper presents the theory with
sufficient detail to establish a solid foundation and hopefully entice further work along this
line of reasoning. Indeed, the paper dual role is to elucidate the set of possibilities that are
open by the RKHS formulation and to link a very special case of the theory to methods
that are in common use in computational neuroscience. So a lot of more work is needed to
bring the possibilities open by RKHS theory to fruition in spike train signal analysis.

At the theoretical level we extend the early work of Parzen (1959) on stochastic processes
to spike trains by defining bottom up the structure of the RKHS on the statistics of the
point process, i.e. its intensity function. This result provides a solid foundation for future
work both for practical algorithm development but also on a simple way to bring into the
analysis more realistic assumptions about the statistics of spike trains. Indeed we show that
the Poisson statistical model is behind the simplest definition of the RKHS (the memoryless
cross-intensity kernel) and that this RKHS provides a linear space for doing signal processing
in spike trains. However, the same framework can be applied to inhomogeneous Markov
interval of even more general point process models which only now are beginning to be
explored. We would like to emphasize that building a RKHS bottom up is a much more
principled approach than the conventional way that RKHS are derived in machine learning,
where the link to data statistics is only possible at the level of the estimated quantities, not
the statistical operators themselves.

The second theoretical contribution is to show the flexibility of RKHS methodology.
Indeed it is possible to define alternate, and yet unexplored, RKHS for spike train analysis
that are not linearly related to the intensity functions. Obviously that this will provide
many possible avenues for future research and there is the hope that it will be possible to
derive systematic approaches to tailor the RKHS definition to the goal of the data analysis.
We basically see two different types of RKHS that mimic exactly the two methodologies
being developed in the machine learning and signal processing literatures: kernels that are
data independent (κ) and kernels that are data dependent (CI kernels). Specifically for
point processes we show in a specific case how that the former may be used to compose the
latter, but they work with the data in very different ways. But what is interesting is that
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these two types of RKHS provide different features in the transformation to the space of
functions. The former is a macroscopic descriptor of the spike time intervals that may be
usable in coarse analysis of the data. The latter is a functional descriptor of the data but it
is harder to compute. In computational neuroscience only the latter is being pursued, but
by analogy with the large impact of kernel methods in statistical learning, we foresee an
equal important impact of the former in computational neuroscience. And yet, the theory
and the operators we have presented in this paper will form the foundations for such future
developments.

There are also practical implications of the RKHS methodology presented in this paper.
Since the RKHS is a special vector space, all the conventional signal processing algorithms
that involve inner product computations can be immediately implemented in the RKHS.
We illustrate this with a spectral clustering application, but many other applications are
possible, ranging from filtering to eigendecompositions of spike trains in the RKHS (Paiva,
Park, and Pŕıncipe, 2008b). The spectral clustering algorithm shown could also be derived
using common distances measures that have been defined for spike trains as has been done
before (Paiva et al., 2007). But we stress the elegance of the proposed formulation that
first defines the structure of the space (the inner product) and then leaves for the users the
design of their intended algorithm, unlike the approaches presented so far which are specific
for the application. It is also important to stress the computational savings for spike timing
analysis provided by our RKHS methodology, which has a complexity independent to data
sampling rates but only depends on the spike rates.

There are still many other topics that need to be fully researched for a systematic use of
the technique. Perhaps the most important one for practical applications is the kernel size
parameter of the kernel function. The theory shows clearly the role of this free parameter,
i.e. it sets the scale of the transformation by changing the inner product. So it provides
flexibility to the researcher, but also suggests the need to find tools to help set this parameter
according to the data and the analysis goal.
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A Proofs

In this section the proofs for properties 2 and 5 given in section 4.1 are presented.
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Proof of property 2. The symmetry of the matrix results immediately from property 1. By
definition, a matrix is non-negative definite if and only if aT Ia ≥ 0, for any aT = [a1, . . . , an]
with ai ∈ R. So, we have that

aT Ia =
n∑

i=1

n∑
j=1

aiajI(si, sj), (30)

which, making use of the general definition for CI kernels (equation (8)), yields,

aT Ia =
∫
T

 n∑
i=1

aiλsi(t|H i
t)

 n∑
j=1

ajλsj (t|H
j
t )

 dt

=

〈
n∑

i=1

aiλsi(·|H i
t),

n∑
j=1

ajλsj (·|H
j
t )

〉
L2(T )

=

∥∥∥∥∥
n∑

i=1

aiλsi(·|H i
t)

∥∥∥∥∥
2

L2(T )

≥ 0.

(31)

Proof of property 5. Consider the 2× 2 CI kernel matrix,

I =

[
I(si, si) I(si, sj)
I(sj , si) I(sj , sj)

]
.

From property 2, this matrix is symmetric and non-negative definite. Hence, its determinant
is non-negative (Harville, 1997, pg. 245). Mathematically,

det(I) = I(si, si)I(sj , sj)− I2(si, sj) ≥ 0,

which proves the result of equation (15).
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J. C. Pŕıncipe, D. Xu, and J. W. Fisher. Information theoretic learning. In S. Haykin,
editor, Unsupervised Adaptive Filtering, volume 2, pages 265–319. John Wiley & Sons,
2000.

R.-D. Reiss. A Course on Point Processes. Springer-Verlag, New York, NY, 1993.

26



B. J. Richmond, L. M. Optican, and H. Spitzer. Temporal encoding of two-dimensional
patterns by single units in primate primary visual cortex. I. Stimulus-response relations.
J. Neurophysiol., 64(2):351–369, Aug. 1990.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigen-
value problem. Neural Comp., 10(5):1299–1319, 1998.

B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods:
Support Vector Learning. MIT Press, 1999.

B. Schrauwen and J. V. Campenhout. Linking non-binned spike train kernels to several
existing spike train distances. Neurocomp., 70(7–8):1247–1253, Mar. 2007. doi: 10.1016/
j.neucom.2006.11.017.

S. Schreiber, J. M. Fellous, D. Whitmer, P. Tiesinga, and T. J. Sejnowski. A new correlation-
based measure of spike timing reliability. Neurocomp., 52–54:925–931, June 2003. doi:
10.1016/S0925-2312(02)00838-X.

D. L. Snyder. Random Point Process in Time and Space. John Viley & Sons, New York,
1975.

W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. A point process
framework for relating neural spiking activity to spiking history, neural ensemble, and
extrinsic covariate effects. J. Neurophysiol., 93:1074–1089, Feb. 2005. doi: 10.1152/jn.
00697.2004.

M. C. W. van Rossum. A novel spike distance. Neural Comp., 13(4):751–764, 2001.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

J. D. Victor. Spike train metrics. Current Opinion in Neurobiology, 15(5):585–592, Sept.
2005. doi: 10.1016/j.conb.2005.08.002.

J. D. Victor and K. P. Purpura. Metric-space analysis of spike trains: theory, algorithms,
and application. Network: Comp. Neural Sys., 8:127–164, Oct. 1997.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. SIAM, 1990.

27


