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This report provides a global view of how gene expression is affected by DNA replication. We
analyzed synchronized cultures of Saccharomyces cerevisiae under conditions that prevent DNA
replication initiation without delaying cell cycle progression. We use a higher-order singular value
decomposition to integrate the global mRNA expression measured in the multiple time courses,
detect and remove experimental artifacts and identify significant combinations of patterns of
expression variation across the genes, time points and conditions. We find that, first, B88% of the
global mRNA expression is independent of DNA replication. Second, the requirement of DNA
replication for efficient histone gene expression is independent of conditions that elicit DNA damage
checkpoint responses. Third, origin licensing decreases the expression of genes with origins near
their 30 ends, revealing that downstream origins can regulate the expression of upstream genes. This
confirms previous predictions from mathematical modeling of a global causal coordination between
DNA replication origin activity and mRNA expression, and shows that mathematical modeling of
DNA microarray data can be used to correctly predict previously unknown biological modes
of regulation.
Molecular Systems Biology 5: 312; published online 13 October 2009; doi:10.1038/msb.2009.70
Subject Categories: functional genomics; cell cycle
Keywords: a higher-order singular value decomposition (HOSVD); cell cycle; DNA replication origin
licensing and firing; DNA microarrays; mRNA expression

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence,
which permits distribution and reproduction in any medium, provided the original author and source are
credited. Creation of derivative works is permitted but the resulting work may be distributed only under the
same or similar licence to this one. This licence does not permit commercial exploitation without specific
permission.

Introduction

DNA replication and transcription occur on a common
template, and there are many ways in which these activities
may influence each other. First, the passage of DNA replication
forks offers an opportunity to change gene expression
patterns. The transcription of capsid genes generally occurs
late in most viral infections and is often dependent upon prior
replication of the viral genome (Rosenthal and Brown, 1977;
Thomas and Mathews, 1980; Toth et al, 1992). In bacterio-
phage T4, there is a direct coupling of replication and
transcription because the sliding clamp processivity factor
gp45 acts as a mobile transcriptional enhancer (Herendeen

et al, 1989). Such coupling may serve a regulatory role:
DNA replication differentially affects the transcription of the
embryonic and somatic 5S rRNA genes in the frog Xenopus
laevis (Wolffe and Brown, 1986). Second, juxtaposed genes
and replication origins can influence each other’s activity.
The origin of the virus SV40 replication overlaps promoter
and enhancer elements for both early and late gene expres-
sion (Cowan et al, 1973; Alwine et al, 1977), and there are
many examples of transcription factors influencing replica-
tion origin function (DePamphilis, 1988). Moreover, induced
transcription into a yeast Saccharomyces cerevisiae replica-
tion origin can inactivate it (Snyder et al, 1988). Finally,
clashes between replication and transcription machinery are
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potentially important causes of genome instability. Machinery
exists to minimize this instability (Liu and Alberts, 1995;
Vilette et al, 1995; Wellinger et al, 2006) and the direction
of replication and transcription can be coordinated to avoid
clashes (Brewer, 1988).

We measured global gene expression in synchronized
Saccharomyces cerevisiae cultures under two conditions that
prevent DNA replication initiation without delaying cell-cycle
progression. In the Cdc6� cells, depletion of the essential
licensing factor Cdc6 prevents the replication origin licensing
by preventing Mcm2–7, proteins necessary for the formation
and maintenance of the prereplicative complex, from binding
to origins during the cell cycle phase G1 (Piatti et al, 1995). In
the Cdc45� cells, inactivation of the essential initiation factor

Cdc45 prevents origin firing at a step after Mcm2–7 loading,
and the Mcm2–7 proteins remain bound to origins even as the
cells progress through the S, S/G2 and G2/M phases (Tercero
et al, 2000). The duplicate time courses of a Cdc6 shutoff strain
at the depleted condition of Cdc6� and its parental strain at the
control condition of Cdc6þ , and of a Cdc45 shutoff strain at the
inactivated condition of Cdc45� and its parental strain at the
control condition of Cdc45þ , were sampled at approximately
similar cell-cycle phases in both Cdc6þ/45þ control condi-
tions, starting at the exit from the pheromone-induced arrest
and entry into the G1 phase through the S and S/G2 phases to
the beginning of the G2/M phase just before nuclear division
(Supplementary information Section 1, and Datasets 1 and 2).
The experimental variation in sample batch, hybridization

Figure 1 Significant and unique HOSVD combinations, that is, subtensors (Table I and Supplementary Figures 8–11). (A) Bar charts for the fractions of mRNA
expression that the seven most significant combinations capture in the data cuboid. The fourth combination S(4,1,2), of the fourth pattern across the genes, the first
across the time points and the second across the biological conditions, captures B2.7% of the expression of the 4270 genes. (B) Line-joined graphs of the first (red),
second (blue) and third (green) expression patterns across the time points. The color bars indicate the cell cycle classifications of the time points in the averaged Cdc6þ /
45þ control (Supplementary Figure 7) as described (Spellman et al, 1998): M/G1 (yellow), G1 (green), S (blue), S/G2 (red) and G2/M (orange). The grid line separates
the even and odd hybridization batches, indicated by black arrows. The first pattern is approximately time invariant. The second and third patterns describe oscillations
consistent within the hybridization batches, that peak at the M/G1 and G1/S phases and trough at the S/G2 and G2/M phases, respectively. (C) Line-joined graphs of the
first (red), second (blue) and third (green) patterns across the conditions. The first pattern is condition invariant. The second pattern correlates with underexpression in
both conditions in which DNA replication is prevented, that is, in both Cdc6� and Cdc45� cells, relative to the averaged Cdc6þ /45þ control. The third pattern correlates
with overexpression in the Cdc6� cells and underexpression in the Cdc45� cells relative to the averaged control.

Table I Significant and unique HOSVD combinations, that is, subtensors

Subtensor Overexpression Underexpression

Fraction (%) Annotation J j P-value Annotation J j P-value

1 1, 1, 1 72.3 — — — — — — — —
2 2, 2, 1 8.7 M/G1 84 41 1.5�10�33 S/G2 88 27 6.3�10�16

3 3, 3, 1 6.7 G1 and S 263 103 1.1�10�77 G2/M 141 53 2.6�10�36

4 4, 1, 2 2.7 30-end ARS 153 14 1.1�10�2 Histone genes 9 9 9.1�10�13

5 5+6, 1, 3 1.9 Histone genes 9 7 1.5�10�8 30-end ARS 153 16 1.9�10�3

6 7, 3, 2 0.8 Histone genes 9 4 4.9�10�4 — — — —
7 8, 3, 3 0.7 — — — — 30-end ARS 153 17 6.9�10�4

The fractions of mRNA expression that the seven most significant combinations capture in the data cuboid (Figure 1), and the probabilistic significance of the
enrichment of the corresponding patterns of expression variation across the genes in overexpressed or underexpressed cell cycle-regulated genes (Spellman et al, 1998),
histone genes and genes with ARSs near their 30 ends (Cherry et al, 1997; Nieduszynski et al, 2007). The P-value of each enrichment is calculated (Supplementary
information Section 2.5) according to the annotations of the genes (Supplementary information Datasets 4 and 5), assuming hypergeometric distribution of the
J annotations among the K¼4270 genes, and of the subset of jDJ annotations among the subset of k¼200 genes with largest or smallest levels of expression in the
corresponding pattern (Supplementary information Dataset 6), as described (Tavazoie et al, 1999).
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batch, DNA microarray platform and protocols (Gerke et al,
2006; Hu et al, 2007) was designed to be orthogonal to the
biological variation in the condition of Mcm2–7 origin binding.
This enables computational detection of experimental artifacts
by using a higher-order SVD (Box 1 and Supplementary
Figures 3–6, Sections 2 and 3, and Mathematica Notebook)
as described earlier (Golub and Van Loan, 1996; Alter et al,
2000; Nielsen et al, 2002; Alter and Golub, 2004; Alter, 2006;
Li and Klevecz, 2006; Omberg et al, 2007). The HOSVD
reconstruction of the data cuboid is mathematically defined
(Supplementary information Section 2.4), and used to
computationally remove the experimental artifacts (Supple-
mentary information Section 3.3). The two Cdc6� time courses
are then averaged, and also separately the two Cdc45� and the
four Cdc6þ and Cdc45þ control time courses (Supplementary
information Dataset 3). The probabilistic significance of the
enrichment of the time points in the averaged Cdc6þ/45þ

control in overexpressed or underexpressed cell cycle-regu-
lated genes (Supplementary Figure 7 and Supplementary
information Datasets 4 and 5), calculated (Supplementary
information Section 2.5) as described (Tavazoie et al, 1999), is
consistent with the flow cytometry measurements of cell
synchrony in the Cdc6þ and Cdc45þ time courses (Supple-
mentary Figures 1 and 2), as well as with previous analyses of
a-factor synchronized cultures (Spellman et al, 1998).

To uncover the cell cycle phase-dependent effects of Mcm2–
7 origin binding, we use this HOSVD as described (Omberg
et al, 2007) to separate the averaged data cuboid into a
weighted sum of all possible combinations of three patterns of
expression variation each: one across the 4270 genes, one
across the 12 time points and one across the three conditions
of Mcm2–7 origin binding (Figure 1, and Supplementary
Figures 8–11 and Supplementary information Dataset 6). The
significance of each combination of patterns, in terms of the
fraction of the overall mRNA expression that this combination
captures in the data cuboid, is proportional to its weight in this
sum. We find that the seven most significant and unique
combinations capture B94% of the mRNA expression of the
4270 genes (Table I).

First, we find that B88% of the overall expression
information in this data cuboid is independent of DNA
replication and Mcm2–7 origin binding. This unperturbed
expression is represented by the three most significant
combinations, all of which correlate with condition-invariant
overexpression. The first combination also correlates with
time-invariant underexpression and represents steady-state
expression. The second and third combinations describe
oscillations consistent within the hybridization batches, which
peak at the M/G1 and G1/S phases and trough at the S/G2 and
G2/M phases in the averaged Cdc6þ/45þ control time course,
respectively. Consistently, the second and third combinations
correlate with patterns of expression variation across the genes
that are enriched in overexpressed M/G1 and, separately, G1
and S genes and underexpressed S/G2 and G2/M genes,
respectively, with P-values o6.4�10�16. Taken together, the
second and third combinations represent unperturbed cell
cycle expression oscillations (Supplementary Figure 12). Upon
sorting the genes by their levels of expression in the second
and third HOSVD combinations (Supplementary Section 2.6),
the picture that emerges is that of unperturbed global

expression oscillations that are dominant in the Cdc6�,
Cdc45� as well as in the Cdc6þ/45þ time courses (Figure 2
and Supplementary information Dataset 3).

It was recently shown that the cell cycle phase of the peak
expression of B70% of 1271 cell cycle-regulated genes is
conserved in cells that do not express the S phase and mitotic
cyclins-encoding genes CLB1-6 and are, therefore, unable to
replicate DNA (Orlando et al, 2008). Our analysis of the 4270
genes that were selected on the basis of data quality alone
significantly lowers this upper bound to replication-dependent
mRNA expression. Our results are consistent with the idea that
the program of cell cycle-regulated transcription may be

Figure 2 The averaged data cuboid of mRNA expression of the 4270 genes
across the 12 time points and across the three biological conditions
(Supplementary information Dataset 3). Raster display with overexpression
(red), no change in expression (black) and underexpression (green), where the
expression of each gene is centered at its time-invariant level. The genes are
sorted by their angular distances y:¼arctan(U:3/U:2) between the second and
third HOSVD combinations (Supplementary information Section 2.6), which
represent the unperturbed cell cycle expression oscillations (Box 1 and
Supplementary Figure 12). The white lines separate the even and odd
hybridization batches, indicated by black arrows. The picture of global expres-
sion oscillations in the averaged Cdc6þ /45þ control time course is consistent
with previous genome-wide mRNA expression analyses of synchronized
Saccharomyces cerevisiae cultures (Alter et al, 2000; Alter and Golub, 2004;
Alter, 2006; Li and Klevecz, 2006; Klevecz et al, 2008). The picture that emerges
is that of unperturbed global expression oscillations that are dominant in the
Cdc6�, Cdc45� as well as in the Cdc6þ /45þ time courses.
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Figure 3 DNA replication-dependent and Mcm2–7 origin binding-dependent gene expression. Raster display, in which the expression of each gene is centered at its
time-invariant level. (A) DNA replication is required for efficient histone gene expression. Raster display of histone gene expression shows that histone genes are
overexpressed in the Cdc6þ /45þ control, relative to the Cdc6� condition, and to a lesser extent also relative to the Cdc45� condition, in a highly correlated manner.
(B) Origin licensing decreases the expression of genes with origins near their 30 ends. Raster display of the expression of the 16 most significant genes in this class shows that
these genes are overexpressed in the Cdc6� relative to the Cdc45� time courses, and to a lesser extent also relative to the control, in a manner less correlated than that of the
histone genes.
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largely independent of underlying cell cycle events, such as
DNA replication (Simon et al, 2001).

Second, we find that B3.5% of the overall expression of the
4270 genes depends on DNA replication but is independent of
the method of origin inactivation. These replication-dependent
perturbations in mRNA expression are represented by the
fourth and sixth combinations, which correlate with over-
expression in the averaged control and underexpression in
both Cdc45� and Cdc6� time courses. The fourth combination
also correlates with time-invariant underexpression and with
expression variation across the genes that is enriched in
underexpressed histone genes with the P-value o9.2�10�13.
The sixth combination correlates with overexpression of
histone genes at the G1/S phase with the corresponding
P-value o4.9�10�4. Taken together, the time-averaged
and G1/S expression of histone genes is reduced in both
situations where DNA replication is prevented, indicating
that DNA replication is required for efficient histone gene
expression.

To examine the joint effects of DNA replication and origin
binding on global mRNA expression, we classified the 4270
genes into intersections of the fourth through seventh
combinations of expression patterns (Supplementary informa-
tion Dataset 6). Enrichment in overexpressed histone genes
was also observed for the fifth combination with the P-value
o1.5�10�8. Among the 1294 genes that are underexpressed
in the fourth and overexpressed in the fifth and sixth
combinations, the four most significant genes, in terms of
the fraction of mRNA expression that they capture in these
combinations, are the histone genes HTA1, HTA2, HTB1
and HTB2. Six of the nine histone genes are among the ten
most significant genes, an enrichment that corresponds to
a P-value B2.1�10�15. Overall, the histone genes are over-
expressed in the control relative to the Cdc6� condition, in
which the Mcm2–7 licensing of origins and subsequent DNA
replication are prevented, and to a lesser extent also relative to
the Cdc45� condition, in which DNA replication is prevented
but only after the origins are licensed (Figure 3a).

Previous work has shown that the coupling of histone
mRNA levels to DNA replication is primarily due to transcrip-
tional regulatory mechanisms (Lycan et al, 1987). Because in
our study the Rad53 checkpoint kinase is not activated in
either the Cdc6� or Cdc45� conditions as previously described
(Piatti et al, 1995; Tercero et al, 2000), and because we did not
observe any significant enrichment in DNA damage-induced
genes (Jelinsky and Samson, 1999) in the fourth through
seventh combinations of expression patterns, in which the
corresponding P-values 49.4�10�2, we suggest that these
effects on histone gene expression are directly dependent on
DNA replication status, independent of DNA damage check-
point responses.

Third, we find that B2.6% of the mRNA expression is
affected by Mcm2–7 origin binding. The origin binding-
dependent perturbations are represented by the fifth and
seventh combinations, which correlate with overexpression in
the Cdc6� and underexpression in the Cdc45� cultures. The
fifth combination correlates with time-invariant underexpres-
sion that is enriched in underexpressed genes with autono-
mously replicating sequences (ARSs) adjacent to their 30 ends,
defined as genes with at least one confirmed ARS at a distance

of less than 100 nucleotides from their respective 30 ends
(Cherry et al, 1997; Nieduszynski et al, 2007) with the P-value
o1.9�10�3. The seventh combination correlates with G2/M
overexpression of genes with ARSs near their 30 ends, with the
P-value o6.9�10�4. Taken together, origin licensing de-
creases time-averaged and G2/M expression of genes with
origins near their 30 ends. We did not observe any significant
enrichment in genes with ARSs near their 50 ends nor did we
observe any significant enrichment in genes that overlap ARSs,
where all the corresponding P-values were 41.2�10�1. We
suggest that origin licensing may affect the expression of
adjacent genes by interfering with transcription elongation
and/or pre-mRNA 30-end processing (Proudfoot, 2004; Gil-
martin, 2005; Weiner, 2005; Rosonina et al, 2006), thus
destabilizing the mRNA transcripts. The accumulation of
mRNA transcripts of this class of genes throughout the Cdc6�

relative to the Cdc45� time courses is consistent with the
observed peak in their differential expression late in the time
courses at the G2/M phase (Figure 3b).

Of the 153 genes with ARSs near their 30 ends, 16 are among
the 100 most significant of the 1412 genes that are over-
expressed in the fourth and underexpressed in the fifth and
seventh combinations, an enrichment that corresponds to a
P-value o3.4�10�7. No other significant enrichment was
observed among these 100 genes, nor was an enrichment in
gene ontology (GO) (Cherry et al, 1997) annotations observed
among the 16 genes with ARSs near their 30 ends. Of these
153 and 16 genes, only 24 and 5, respectively, are cell cycle
regulated. These 16 genes are overexpressed in the Cdc6�

condition, in which the origins are unlicensed, relative to the
Cdc45� condition, in which Mcm2–7 bind origins throughout
the time course, and to a lesser extent also relative to the
control, in which Mcm2–7 bind origins only during G1. The
expression of these genes is not as highly correlated as that
of the nine genes for histones, consistent with this class of
genes being co-degraded but not necessarily co-transcribed.
Previous studies have shown that transcription can interfere
with the function of downstream origins (Snyder et al, 1988;
Nieduszynski et al, 2005; Donato et al, 2006). Our results reveal
that downstream origins can also interfere with the expression
of upstream genes. This interference requires origin licensing
but does not require origin firing. We suggest that cells may
exploit this complex reciprocal arrangement in different
contexts to regulate gene expression or origin activation.

A global pattern of correlation between DNA binding of
Mcm2–7 and reduced expression of adjacent genes, most of
which are not cell cycle regulated, during the cell cycle phase
G1 was discovered from previous mathematical modeling of
DNA microarray data (Alter and Golub, 2004; Omberg et al,
2007), in which the mathematical variables and operations
were shown to represent biological reality (Alter, 2006). The
mathematical variables, patterns uncovered in the data, were
shown to correlate with activities of cellular elements, such as
regulators or transcription factors. The operations, such as
classification, rotation or reconstruction in subspaces of these
patterns, were shown to simulate experimental observation of
the correlations and possibly even the causal coordination of
these activities (Supplementary information Section 2). Of the
153 genes with ARSs near their 30 ends, the ARSs near 151 were
identified in Mcm2–7 high-throughput binding assays, and for
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the ARSs near 139 of those, including all of the 16 significant
genes, consensus sequence elements were identified (Wyrick
et al, 2001; Xu et al, 2006). Our results, therefore, suggest that a
causal relation underlies this correlation, that is, the binding of
Mcm2–7 is responsible for diminished expression of adjacent
genes, and show that mathematical modeling of DNA
microarray data can be used to correctly predict previously
unknown biological modes of regulation.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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