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1. Experimental Data Acquisition

The acquisition of data in this study was designed to en-
able integration of the global gene expression measured in
samples from different time courses under different condi-
tions. Eight time courses of cultures synchronized by the
α-factor pheromone were sampled at >12 time points at
equal time intervals. Four time courses, two of cultures of
a Cdc6-shutoff strain at the depleted condition of Cdc6−,
and two of cultures of the parental strain at the condition
of Cdc6+, were sampled at 5min intervals. Genome-wide
mRNA expression in these samples was measured rel-
ative to RNA extracted from asynchronous cultures of
the parental strain at the condition of Cdc6+. Four ad-
ditional time courses, two of cultures of a Cdc45-shutoff
strain at the inactivated condition of Cdc45−, and two of
cultures of the parental strain at the condition of Cdc45+,
were sampled at 6min intervals. Genome-wide mRNA ex-
pression in these samples was measured relative to asyn-
chronous cultures of the parental strain at the condition
of Cdc45+ (Supplementary Tables I and II, and Datasets
1 and 2).

In both the Cdc6− and Cdc45− cells the initiation of
DNA replication is prevented without delaying cell cycle
progression. In the Cdc6− cells, depletion of the essen-
tial licensing factor Cdc6 prevents replication origin li-
censing by preventing the Mcm2-7 proteins from binding
to origins during the cell cycle phase G1 (Piatti et al,
1995). The Mcm2-7 proteins are necessary for the for-
mation and maintenance of the prereplicative complex.
In the Cdc45− cells, inactivation of the essential initi-
ation factor Cdc45 prevents origin firing and therefore
also initiation of DNA replication at a step after Mcm2-7
loading. The Mcm2-7 proteins remain bound to origins
even as the cells progress through S, S/G2 and G2/M
(Tercero et al, 2000). The absence of replication in the
Cdc6− and Cdc45− cells in this study was validated by
flow cytometry measurement of the cellular DNA con-
tent in these samples. Nuclear division of these cells in
the absence of DNA replication was validated by fluo-
rescence microscopy measurement of the fraction of cells
with divided chromatin in the Cdc6− and Cdc6+ cultures
(Supplementary Figures 1 and 2).

First, the experimental variation was designed to be

orthogonal to the biological variation to enable compu-
tational detection and removal of experimental artifacts.
Differences in sample batch, DNA microarray platform
and protocols were implemented among and prevented
within pairs of shutoff and control time courses. Samples
were hybridized in batches of odd or even time points
from each of the pairs of shutoff and control time courses.

Second, the environmental conditions, i.e., tempera-
ture and carbon source, of the synchronized Cdc6-shutoff
strain at the depleted condition of Cdc6− differ from
these of the Cdc45-shutoff strain at the inactivated con-
dition of Cdc45−. Therefore, the synchronized control
and asynchronous reference Cdc6+ and Cdc45+ cultures
were grown at the same environmental conditions as the
Cdc6− and Cdc45− cultures, respectively, effectively can-
celing out mRNA expression variation that might be
due to the variation in these environmental conditions
(Supplementary information Section 1.2). Note also that
mRNA expression variation between the Cdc6+/− and
Cdc45+/− cells, e.g., due to the variation in the envi-
ronmental conditions or the parental genetic background
between these cells, is orthogonal to the biological varia-
tion between the Cdc6+ and Cdc6− cells, and the Cdc45+

and Cdc45− cells. Therefore, this variation was compu-
tationally detected and removed.

Third, the cell cycle period of the synchronized control
Cdc6+ culture differs from that of the Cdc45+ culture.
The time points, therefore, were selected to sample ap-
proximately similar cell cycle phases in both cultures,
such that there is a one-to-one mapping among the time
points of all eight time courses. This mapping was val-
idated by the flow cytometry measurement of the cellu-
lar DNA content in these samples, and the immunoblot
measurement of protein expression levels in the Cdc6−
and Cdc6+ cells. Of these time points, the first 12 ap-
proximately sample the exit from the pheromone-induced
arrest and entry into G1 through S and S/G2 to the
beginning of G2/M just before nuclear division in each
time course. The time of nuclear division was approxi-
mately determined by the fluorescence microscopy mea-
surement of the fraction of cells with divided chromatin
in the Cdc6− and Cdc6+ samples. Global gene expres-
sion measurements from the corresponding 12 samples
from each time course were computationally integrated

Condition Strain Genotype Parental Strain
Cdc6+ W303-1a MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100
Cdc6− YGP81 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 W303-1a

CDC6::GAL-CDC6 (TRP1)
Cdc45+ YKL83 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 W303-1a

UBR1::GAL-UBR1 (HIS3)
Cdc45− YJT18 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 YKL83

CDC45::cdc45-td (TRP1) UBR1::GAL-UBR1 (HIS3)

Supplementary Table I. The strains used in this study are based on W303-1a (Piatti et al, 1995; Tercero et al,
2000).
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by using the mathematical framework of the higher-order
singular value decomposition (HOSVD) (Supplementary
information Sections 2 and 3).

1.1. Strains and Media
The strains used in this study are based on W303-1a
(Supplementary Table I) as described (Piatti et al, 1995;
Tercero et al, 2000).

Cells were grown in yeast extract, peptone and a car-
bon source of either glucose (YPD), raffinose (YPRaf),
galactose (YPGal) or galactose and raffinose, each at
a final concentration of 2% (YPRaf/Gal). Nocodazole
and α-factor pheromone were also used, each at a final
concentration of 5µg/ml.

1.2. Cell Synchrony and Conditions
YGP81 has its only copy of the CDC6 gene under the
control of the glucose repressible GAL1-10 promoter.
Cultures of both YGP81 and its parental strain (W303-
1a) were grown to mid log-phase (∼ 5× 106 cells/ml) in
YPGal (CDC6 ‘on’) at 30◦C. Nocodazole was added to
arrest the cells in G2/M. Two hours later the cells were
harvested and resuspended in YPD containing nocoda-
zole to repress CDC6 transcription in the YGP81 cells

(CDC6 ‘off’, i.e., Cdc6−) but not in the W303-1a cells
(Cdc6+). Cells were held for an additional hour to
allow the unstable Cdc6 protein to be degraded, and
then washed into YPD containing α-factor to synchro-
nize them. After two hours the cells were washed once
more and released into the cell cycle in YPD.

Samples were taken at the time of release and
every 5min after for 80min. Cellular DNA content
in these samples was measured by flow cytometry,
i.e., fluorescent-activated cell sorting (FACS) (Supple-
mentary Figure 1a). Expression of the proteins Clb2
and Orc6, as well as Orc6 phosphorylated by S-phase
cyclin-depndent kinases (Orc6-P) was monitored by
immunoblot analyses (Supplementary Figure 1b). The
fraction of cells with divided chromatin was determined
by fluorescence microscopy (Supplementary Figure 1c).
The samples were also processed for RNA to be used
in the DNA microarray hybridization as described
(Gerke et al, 2006; Hu et al, 2007). Reference RNA
was made from an asynchronous culture of the parental
strain W303-1a grown to mid log-phase in the same
environmental conditions as the synchronized cultures,
i.e., in YPD at 30◦C.

Supplementary Figure 1. Analyses of the samples from the syn-
chronized cultures of the Cdc6-shutoff strain (YGP81) at the depleted
condition of Cdc6− and the parental strain (W303-1a) at the condition
of Cdc6+ validate that in these cultures, cells depleted of Cdc6 undergo
nuclear division in the absence of DNA replication (Piatti et al, 1995).
(a) Flow cytometry (FACS) measurements show that the cellular DNA
content does not change in the Cdc6− culture but doubles in the Cdc6+.
(b) Immunoblot measurements show that the variation in the expres-
sion of the proteins Clb2, Orc6 and Orc6-P across time is similar in
both cultures. Cell membrane, stained to visualize all proteins, is used
as control. (c) Fluorescence microscopy measurements show that the
variation in the fraction of cells with divided chromatin across time
is similar in both the Cdc6− (red) and Cdc6+ (blue) cultures, with
nuclear division starting in both cultures approximately 60min after
release from α-factor arrest.
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YJT18 has its only copy of CDC45 as a heat in-
ducible degron (cdc45-td) and a copy of GAL-UBR1 to
enhance inactivation of the Cdc45 protein. YJT18 and its
parental strain YKL83 (just GAL-UBR1 ) were grown to
mid log-phase in YPRaf at 24◦C. Under these conditions
GAL-UBR1 is not induced and the Cdc45 protein is sta-
ble. The α-factor pheromone was added to synchronize
the cells. Two hours later, once the cells were arrested,
they were washed into YPRaf/Gal plus α-factor at 37◦C
and held for additional 45min to induce degradation of

Cdc45 in YJT18 (Cdc45−) but not in YKL83 (Cdc45+).
Cells were then washed and released into the cell cycle
at 37◦C in YPRaf/Gal and samples were taken at the
time of release and every 6min after for 102min (Sup-
plementary Figure 2). Reference RNA was made from
an asynchronous culture of the parental strain YKL83 in
environmental conditions similar to these of the synchro-
nized cultures, i.e., grown in YPRaf at 24◦C to mid log-
phase and then harvested and resuspended in YPRaf/Gal
at 37◦C for two hours.

Supplementary Figure 2. Flow cytometry (FACS) measurements
show that the cellular DNA content does not change in the culture
of the Cdc45-shutoff strain (YJT18) at the inactivated condition of
Cdc45−, but doubles in the culture of its parental strain (YKL83) at
the condition of Cdc45+ as described (Tercero et al, 2000).

Supplementary Table II (on pp. 4 and 5). The DNA microarray
experiments in this study. (a) Hybridization batches of the six even
time points from each of the four pairs of shutoff and control time
courses. (b) Hybridization batches of the six odd time points.

1.3. DNA Microarray Experiments
RNA isolation, construction of polylysine-coated DNA
microarrays at the University of Texas (UT), sample la-
beling for and hybridization to the UT microarrays, and
data acquisition (Supplementary information Dataset 1)
were as described (Hu et al, 2007). The epoxy-coated
DNA microarray platform of the Washington University
(WU) Microarray Core and related experimental proto-
cols (Supplementary information Dataset 2) were as de-
scribed (Gerke et al, 2006).

Experimental variation was designed to be orthogonal
to the biological variation. Differences in sample batch,
DNA microarray platform and protocols were imple-
mented among and prevented within pairs of shutoff
and control time courses. Samples were hybridized in
batches of odd or even time points from each of the four
pairs of shutoff and control time courses (Supplementary
Table II).

2. Mathematical Framework: HOSVD

The structure of the data in this study is of an order
higher than that of a matrix. Each of the biological and
experimental settings represents a degree of freedom in

a cuboid, i.e., a third-order tensor of mRNA expression
of genes × “x-settings,” i.e., settings of the experimental
variable x, e.g., time points × “y-settings,” e.g., time
courses. Unfolded into a matrix these degrees of freedom
are lost and much of the information in the data tensor
might also be lost.

We integrate these data by using a tensor higher-
order singular value decomposition (HOSVD) (Supple-
mentary information Section 3, and Mathematica Note-
book). This tensor HOSVD (Supplementary information
Section 2.1) was recently reformulated such that it sep-
arates the data tensor into a weighted sum of combi-
nations, i.e., “subtensors,” of three patterns each: one
“eigenarray,” i.e., a pattern of mRNA expression varia-
tion across the genes, one “x-eigengene,” i.e., a pattern of
expression across the x-settings, and one “y-eigengene,”
i.e., a pattern of expression across the y-settings. Each
of these sets of mathematically orthogonal patterns, the
eigenarrays, x-eigengenes and y-eigengenes, is computed
by using the matrix singular value decomposition (SVD)
(Supplementary information Section 2.2), as described
(Golub and Van Loan, 1996; Alter et al, 2000; Nielsen
et al, 2002; Alter and Golub, 2004; Alter, 2006; Li and
Klevecz, 2006; Omberg et al, 2007).



SI-4 | alterlab.org/verification of prediction/ Omberg, Meyerson, Kobayashi, Drury, Diffley & Alter (2009)

Sample Time Microarray Hybridization Synchronized
(a) Array ID Batch Strain Condition Time Point Platform Batch Culture Label

1 SC18-083 1 W303-1a Cdc6+ 5 min 2 UT 1 Cy5 (Red)
2 SC18-084 1 W303-1a Cdc6+ 15 min 4 UT 1 Cy5 (Red)
3 SC18-085 1 W303-1a Cdc6+ 25 min 6 UT 1 Cy5 (Red)
4 SC18-086 1 W303-1a Cdc6+ 35 min 8 UT 1 Cy5 (Red)
5 SC18-087 1 W303-1a Cdc6+ 45 min 10 UT 1 Cy5 (Red)
6 SC18-088 1 W303-1a Cdc6+ 55 min 12 UT 1 Cy5 (Red)
7 SC18-091 1 YGP81 Cdc6− 5 min 2 UT 1 Cy5 (Red)
8 SC18-093 1 YGP81 Cdc6− 15 min 4 UT 1 Cy5 (Red)
9 SC18-092 1 YGP81 Cdc6− 25 min 6 UT 1 Cy5 (Red)

10 SC18-094 1 YGP81 Cdc6− 35 min 8 UT 1 Cy5 (Red)
11 SC18-095 1 YGP81 Cdc6− 45 min 10 UT 1 Cy5 (Red)
12 SC18-096 1 YGP81 Cdc6− 55 min 12 UT 1 Cy5 (Red)

13 STL-010 2 W303-1a Cdc6+ 5 min 2 WU 2 Cy3 (Green)
14 STL-011 2 W303-1a Cdc6+ 15 min 4 WU 2 Cy3 (Green)
15 STL-012 2 W303-1a Cdc6+ 25 min 6 WU 2 Cy3 (Green)
16 STL-013 2 W303-1a Cdc6+ 35 min 8 WU 2 Cy3 (Green)
17 STL-014 2 W303-1a Cdc6+ 45 min 10 WU 2 Cy3 (Green)
18 STL-015 2 W303-1a Cdc6+ 55 min 12 WU 2 Cy3 (Green)
19 STL-001 2 YGP81 Cdc6− 5 min 2 WU 2 Cy3 (Green)
20 STL-002 2 YGP81 Cdc6− 15 min 4 WU 2 Cy3 (Green)
21 STL-003 2 YGP81 Cdc6− 25 min 6 WU 2 Cy3 (Green)
22 STL-004 2 YGP81 Cdc6− 35 min 8 WU 2 Cy3 (Green)
23 STL-005 2 YGP81 Cdc6− 45 min 10 WU 2 Cy3 (Green)
24 STL-006 2 YGP81 Cdc6− 55 min 12 WU 2 Cy3 (Green)

25 STL-107 3 YKL83 Cdc45+ 6 min 2 WU 3 Cy5 (Red)
26 STL-108 3 YKL83 Cdc45+ 18 min 4 WU 3 Cy5 (Red)
27 STL-109 3 YKL83 Cdc45+ 30 min 6 WU 3 Cy5 (Red)
28 STL-110 3 YKL83 Cdc45+ 42 min 8 WU 3 Cy5 (Red)
29 STL-111 3 YKL83 Cdc45+ 54 min 10 WU 3 Cy5 (Red)
30 STL-112 3 YKL83 Cdc45+ 66 min 12 WU 3 Cy5 (Red)
31 STL-097 3 YJT18 Cdc45− 6 min 2 WU 3 Cy5 (Red)
32 STL-098 3 YJT18 Cdc45− 18 min 4 WU 3 Cy5 (Red)
33 STL-099 3 YJT18 Cdc45− 30 min 6 WU 3 Cy5 (Red)
34 STL-100 3 YJT18 Cdc45− 42 min 8 WU 3 Cy5 (Red)
35 STL-102 3 YJT18 Cdc45− 54 min 10 WU 3 Cy5 (Red)
36 STL-103 3 YJT18 Cdc45− 66 min 12 WU 3 Cy5 (Red)

37 STL-169 4 YKL83 Cdc45+ 6 min 2 WU 4 Cy3 (Green)
38 STL-170 4 YKL83 Cdc45+ 18 min 4 WU 4 Cy3 (Green)
39 STL-171 4 YKL83 Cdc45+ 30 min 6 WU 4 Cy3 (Green)
40 STL-172 4 YKL83 Cdc45+ 42 min 8 WU 4 Cy3 (Green)
41 STL-173 4 YKL83 Cdc45+ 54 min 10 WU 4 Cy3 (Green)
42 STL-174 4 YKL83 Cdc45+ 66 min 12 WU 4 Cy3 (Green)
43 STL-161 4 YJT18 Cdc45− 6 min 2 WU 4 Cy3 (Green)
44 STL-162 4 YJT18 Cdc45− 18 min 4 WU 4 Cy3 (Green)
45 STL-163y 4 YJT18 Cdc45− 30 min 6 WU 4 Cy3 (Green)
46 STL-164y 4 YJT18 Cdc45− 42 min 8 WU 4 Cy3 (Green)
47 STL-165 4 YJT18 Cdc45− 54 min 10 WU 4 Cy3 (Green)
48 STL-166 4 YJT18 Cdc45− 66 min 12 WU 4 Cy3 (Green)

Supplementary Table IIa. The DNA microarray experiments in this study. Hybridization batches of the six even
time points from each of the four pairs of shutoff and control time courses.
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Sample Time Microarray Hybridization Synchronized
(b) Array ID Batch Strain Condition Time Point Platform Batch Culture Label
49 SC18-074 1 W303-1a Cdc6+ 0 min 1 UT 5 Cy5 (Red)
50 SC18-075 1 W303-1a Cdc6+ 10 min 3 UT 5 Cy5 (Red)
51 SC18-076 1 W303-1a Cdc6+ 20 min 5 UT 5 Cy5 (Red)
52 SC18-077 1 W303-1a Cdc6+ 30 min 7 UT 5 Cy5 (Red)
53 SC18-078 1 W303-1a Cdc6+ 40 min 9 UT 5 Cy5 (Red)
54 SC18-079 1 W303-1a Cdc6+ 50 min 11 UT 5 Cy5 (Red)
55 SC18-065 1 YGP81 Cdc6− 0 min 1 UT 5 Cy5 (Red)
56 SC18-066 1 YGP81 Cdc6− 10 min 3 UT 5 Cy5 (Red)
57 SC18-067 1 YGP81 Cdc6− 20 min 5 UT 5 Cy5 (Red)
58 SC18-068 1 YGP81 Cdc6− 30 min 7 UT 5 Cy5 (Red)
59 SC18-069 1 YGP81 Cdc6− 40 min 9 UT 5 Cy5 (Red)
60 SC18-070 1 YGP81 Cdc6− 50 min 11 UT 5 Cy5 (Red)

61 STL-019 2 W303-1a Cdc6+ 0 min 1 WU 6 Cy3 (Green)
62 STL-020 2 W303-1a Cdc6+ 10 min 3 WU 6 Cy3 (Green)
63 STL-021 2 W303-1a Cdc6+ 20 min 5 WU 6 Cy3 (Green)
64 STL-022 2 W303-1a Cdc6+ 30 min 7 WU 6 Cy3 (Green)
65 STL-023 2 W303-1a Cdc6+ 40 min 9 WU 6 Cy3 (Green)
66 STL-024 2 W303-1a Cdc6+ 50 min 11 WU 6 Cy3 (Green)
67 STL-041 2 YGP81 Cdc6− 0 min 1 WU 6 Cy3 (Green)
68 STL-042 2 YGP81 Cdc6− 10 min 3 WU 6 Cy3 (Green)
69 STL-043 2 YGP81 Cdc6− 20 min 5 WU 6 Cy3 (Green)
70 STL-044 2 YGP81 Cdc6− 30 min 7 WU 6 Cy3 (Green)
71 STL-045 2 YGP81 Cdc6− 40 min 9 WU 6 Cy3 (Green)
72 STL-046 2 YGP81 Cdc6− 50 min 11 WU 6 Cy3 (Green)

73 STL-087 3 YKL83 Cdc45+ 0 min 1 WU 7 Cy5 (Red)
74 STL-088 3 YKL83 Cdc45+ 12 min 3 WU 7 Cy5 (Red)
75 STL-089 3 YKL83 Cdc45+ 24 min 5 WU 7 Cy5 (Red)
76 STL-090 3 YKL83 Cdc45+ 36 min 7 WU 7 Cy5 (Red)
77 STL-091 3 YKL83 Cdc45+ 48 min 9 WU 7 Cy5 (Red)
78 STL-092 3 YKL83 Cdc45+ 60 min 11 WU 7 Cy5 (Red)
79 STL-077 3 YJT18 Cdc45− 0 min 1 WU 7 Cy5 (Red)
80 STL-078 3 YJT18 Cdc45− 12 min 3 WU 7 Cy5 (Red)
81 STL-079 3 YJT18 Cdc45− 24 min 5 WU 7 Cy5 (Red)
82 STL-080 3 YJT18 Cdc45− 36 min 7 WU 7 Cy5 (Red)
83 STL-081 3 YJT18 Cdc45− 48 min 9 WU 7 Cy5 (Red)
84 STL-082 3 YJT18 Cdc45− 60 min 11 WU 7 Cy5 (Red)

85 STL-151 4 YKL83 Cdc45+ 0 min 1 WU 8 Cy3 (Green)
86 STL-152 4 YKL83 Cdc45+ 12 min 3 WU 8 Cy3 (Green)
87 STL-153 4 YKL83 Cdc45+ 24 min 5 WU 8 Cy3 (Green)
88 STL-154 4 YKL83 Cdc45+ 36 min 7 WU 8 Cy3 (Green)
89 STL-155 4 YKL83 Cdc45+ 48 min 9 WU 8 Cy3 (Green)
90 STL-156 4 YKL83 Cdc45+ 60 min 11 WU 8 Cy3 (Green)
91 STL-139 4 YJT18 Cdc45− 0 min 1 WU 8 Cy3 (Green)
92 STL-141 4 YJT18 Cdc45− 12 min 3 WU 8 Cy3 (Green)
93 STL-142 4 YJT18 Cdc45− 24 min 5 WU 8 Cy3 (Green)
94 STL-143 4 YJT18 Cdc45− 36 min 7 WU 8 Cy3 (Green)
95 STL-145 4 YJT18 Cdc45− 48 min 9 WU 8 Cy3 (Green)
96 STL-146 4 YJT18 Cdc45− 60 min 11 WU 8 Cy3 (Green)

Supplementary Table IIb. The DNA microarray experiments in this study. Hybridization batches of the six odd
time points from each of the four pairs of shutoff and control time courses.
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The SVD (Golub and Van Loan, 1996) separates a data
matrix of, e.g., mRNA expression of genes × arrays into
a weighted sum of combinations, i.e., “submatrices,” of
two patterns each: an eigenarray and its corresponding
eigengene. The significance of each combination relative
to all other combinations is defined in terms of the frac-
tion of the overall mRNA expression information that
this combination captures in the data matrix, and is pro-
portional to its weight in this sum. The distribution of
the overall expression information among the different
combinations defines the “normalized entropy,” i.e., in-
formation content of the data matrix. It was shown that
the mathematical variables of the SVD, i.e., the signifi-
cant and unique eigenarrays and eigengenes, can be in-
terpreted in terms of the independent cellular states and
the corresponding biological processes and experimental
artifacts that compose the data matrix (Alter et al, 2000;
Nielsen et al, 2002; Alter, 2006; Li and Klevecz, 2006).

The eigenarrays and eigengenes are in general unique,
except in degenerate submatrix spaces, defined by eige-
narrays and corresponding eigengenes that are of equal
significance in the data matrix. Because the mathemat-
ical separation of a degenerate submatrix space into a
weighted sum of combinations of eigenarrays and corre-
sponding eigengenes is not unique, this separation may
not be biologically interpreted. It was shown, however,
that a unique orthogonal rotation in a degenerate sub-
matrix space can be defined, that enables the interpreta-
tion of this subspace, by subjecting the rotated eigenar-
rays and corresponding eigengenes to unique constraints
based on the experimental and biological settings (Alter
et al, 2000). For example, such a unique rotation can
be selected that effectively decouples patterns that cor-
relate with the experimental variation from patterns that
correlate with the biological variation.

The SVD can also be used to define a reconstruction of
a data matrix in the subspace spanned by several selected
eigenarrays and eigengenes, effectively filtering out all the
remaining eigenarrays and eigengenes. This SVD recon-
struction was shown to simulate observation of only the
cellular states and biological processes that the selected
eigenarrays and eigengenes represent. For example, this
SVD reconstruction can be used to remove experimental
artifacts from the data matrix (Alter et al, 2000; Nielsen
et al, 2002; Li and Klevecz, 2006). Thus, it was shown
that the mathematical operations of the SVD, e.g., clas-
sification, rotation or reconstruction in a subspace of se-
lected eigenarrays and eigengenes, can be interpreted in
terms of biological or experimental reality (Alter, 2006).

In analogy with the SVD, it was shown that the refor-
mulation of the HOSVD enables its biological interpreta-
tion by mathematically defining (Omberg et al, 2007):
(i) the relative significance of each combination of an
eigenarray, an x-eigengene and a y-eigengene, in terms
of the fraction of the overall mRNA expression informa-
tion that this combination captures in the data tensor
(Supplementary information Section 2.3.1); (ii) the nor-
malized entropy, i.e., the information content of the data

tensor in terms of the distribution of the overall expres-
sion information among the different combinations (Sup-
plementary information Section 2.3.2); and (iii) a unique
rotation of either the eigenarrays, the x-eigengenes or
the y-eigengenes that span a degenerate subtensor space
(Supplementary information Section 2.3.3).

In this study, we extend the analogy between the SVD
and this HOSVD by using the reformulated HOSVD
to mathematically define the reconstruction of a data
tensor in the subspace of several selected eigenarrays,
x-eigengenes and y-eigengenes, effectively filtering out
all patterns of expression variation that are orthogonal
to these selected patterns (Supplementary information
Section 2.4).

2.1. HOSVD Definition
Let the data be structured as a third-order tensor, i.e., a
cuboid, of mRNA expression of K-genes × L-x-settings
× M -y-settings, where K > LM . Each element of the
data tensor T , i.e., Tklm, is the expression measured for
the kth gene under the lth x-setting and mth y-setting.
Each column vector of T , i.e., T:lm, lists the global gene
expression measured under the lth x-setting and mth y-
setting. The x-row vector Tk:m lists the expression mea-
sured for the kth gene under the mth y-setting across
all x-settings. Similarly, the y-row vector Tkl: lists the
expression measured for the kth gene under the lth x-
setting across all y-settings.

The N -mode SVD, a tensor HOSVD, transforms the
data tensor T to the reduced space of LM -eigenarrays ×
L-x-eigengenes × M -y-eigengenes by using the orthogo-
nal transformation matrices U , Vx and Vy,

T = R×a U ×b Vx ×c Vy,

Tklm =
LM∑
a=1

L∑
b=1

M∑
c=1

RabcUkaV
T
x,blV

T
y,cm, (1)

where ×aU , ×bVx and ×cVy denote multiplications of the
tensor R and the matrices U , Vx and Vy, which contract
the first, second and third indices of R with the second
indices of U , Vx and Vy or, equivalently, the first indices
of UT , V T

x and V T
y , respectively. In this space, the data

are represented by the third-order “core tensor”R, which
in general is full.

The transformation matrix U defines the K-genes ×
LM -eigenarrays basis set, i.e., the set of LM orthonor-
mal patterns of expression variation across the K genes.
The vector in the ath column of U , i.e., U:a, lists the
global gene expression of the ath eigenarray. The trans-
formation matrix V T

x defines the L-x-eigengenes × L-x-
settings, i.e., the set of L orthonormal patterns of gene
expression variation across the L settings of the experi-
mental variable x. The vector in the bth row of V T

x , i.e.,
V T

x,b:, lists the expression of the bth x-eigengene across
all y-settings. Similarly, the transformation matrix V T

y

defines the M -y-eigengenes × M -y-settings. The vector
in the cth row of V T

y , i.e., V T
y,c:, lists the expression of the

cth y-eigengene across all x-settings.
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The eigenarrays are orthonormal, i.e., normalized and
orthogonal superpositions, i.e., weighted sums, of the
global patterns of expression measured by the arrays.
The x-eigengenes and the y-eigengenes are orthonormal
superpositions of the gene expression patterns measured
across the x-settings and y-settings, respectively.

This HOSVD holds for a tensor T of any order N .
For a second-order tensor of N=2, i.e., a matrix, this
HOSVD reduces to the matrix SVD (Golub and Van
Loan, 1996).

2.2. HOSVD Computation by Using the SVD
The eigenarrays, which are listed in the transformation
matrix U , are computed from the singular value decom-
position (SVD) (Golub and Van Loan, 1996; Alter et al,
2000) of the matrix Tk, which is obtained by appending
all column vectors of the data tensor along the K-genes
axis,

Tk = (T:11, . . . , T:1M , . . . , T:LM ) = UDV T . (2)

Note that U is independent of the order of the appended
arrays. Similarly, the x-eigengenes and y-eigengenes,
which are listed in the transformation matrices Vx and
Vy, are computed from the SVD of the matrices Tl and
Tm, which are obtained by appending all x-row vectors
along the L-x-settings axis and all the y-row vectors along
the M -y-settings axis, respectively,

Tl = (T1:1, . . . , T1:M , . . . , TK:M ) = UxDxV
T
x , (3)

Tm = (T11:, . . . , T1L:, . . . , TKL:) = UyDyV
T
y . (4)

Following Equation (1), the core tensor R is computed
by multiplying the data tensor T and the transformation
matrices U , Vx and Vy,

R = T ×k U
T ×l V

T
x ×m V T

y . (5)

The significance of each eigenarray, x-eigengene or y-
eigengene is defined in terms of the fraction of the overall
mRNA expression information that this pattern captures
in the data matrix Tk, Tl or Tm, and is proportional to
the corresponding singular value listed in D, Dx or Dy,
respectively. These singular values are ordered in de-
creasing order, such that the patterns are ordered in U ,
V T

x and V T
y in decreasing order of their relative signifi-

cance. Note that for a real data tensor the singular values
are real and nonnegative.

It was shown that the mathematical variables of the
SVD, i.e., the significant and unique eigenarrays and
eigengenes, can be interpreted in terms of the indepen-
dent cellular states and corresponding biological pro-
cesses and experimental artifacts that compose the data
matrix. The eigenarrays, x-eigengenes and y-eigengenes
are in general unique, up to phase factors of ±1 for a real
data tensor, except in degenerate subspaces (Alter et al,
2000) . These subspaces are defined by equal singular
values in either D, Dx or Dy, respectively. Eigenarrays,
x-eigengenes or y-eigengenes that span degenerate sub-
spaces may not be biologically interpreted.

It was shown, however, that a unique orthogonal ro-
tation of these eigenarrays, x-eigengenes or y-eigengenes
can be defined, that enables the interpretation of these
patterns by subjecting the rotated patterns to unique
constraints based on the experimental and biological set-
tings (Alter et al, 2000). For example, the y-eigengenes
V T

y,c: and V T
y,m:, which satisfy Dy,cc ≈ Dy,mm, span an

approximately degenerate subspace (Supplementary Fig-
ure 5). Following the unique rotation R of these y-
eigengenes, i.e., RV T

y,c: and RV T
y,m: (Supplementary Fig-

ure 6), the core tensor R is computed by multiplying the
data tensor T and the transformation matrices U , Vx and
the rotated RVy,

R = T ×k U
T ×l V

T
x ×m (RV T

y ),

RV T
y = (V T

y,1:, . . . , RV
T
y,c:, . . . , RV

T
y,m:, . . . , V

T
y,M :). (6)

Note that this core tensor R and the HOSVD of the
data tensor T remain exact even if the subspace is only
approximately degenerate.

2.3. HOSVD Reformulation
This HOSVD was recently reformulated in analogy with
the SVD such that it separates the data tensor T into
a superposition, i.e., a weighted sum, of (LM)2 rank-1
subtensors,

T =
LM∑
a=1

L∑
b=1

M∑
c=1

RabcS(a, b, c),

S(a, b, c) = U:a ⊗ V T
x,b: ⊗ V T

y,c:, (7)

where each subtensor S(a, b, c) is the outer product,
denoted by ⊗, of three vectors, an eigenarray, an x-
eigengene and a y-eigengene. The superposition coeffi-
cients, i.e., the weights, are the “higher-order singular
values” tabulated in the core tensor R. Note that for a
real data tensor the higher-order singular values are real
but not necessarily nonnegative.

The reformulated HOSVD separates the data tensor
into a weighted sum of all possible combinations of three
patterns of mRNA expression variation: one across
the genes, one across the x-settings and one across the
y-settings. This reformulation of the HOSVD enables
its interpretation: It was shown that the significant and
unique subtensors might be interpreted in terms of the
cellular states, biological processess and experimental
artifacts that compose the data tensor (Omberg et al,
2007).

2.3.1. Relative significance of a subtensor. The
significance of a combination of patterns, i.e., a subten-
sor S(a, b, c), relative to all other combinations, is defined
in terms of the “fraction” Pabc of the overall mRNA ex-
pression information that this combination captures in
the data tensor, and is computed by using the higher-
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order singular values tabulated in the core tensor R,

0 ≤ Pabc ≡
R2

abc
LM∑
a=1

L∑
b=1

M∑
c=1

R2
abc

≤ 1. (8)

Note that each fraction Pabc can be thought of as
the probability that any given gene in the data tensor
expresses both the corresponding bth x-eigengene and
the cth y-eigengene.

2.3.2. Normalized entropy of a data tensor. The
normalized “Shannon entropy,” a measure of the infor-
mation content or complexity of the data tensor, is de-
fined in terms of the distribution of the overall mRNA
expression information among the different subtensors,
i.e., among the different combinations of patterns,

0 ≤ d ≡ −1
2 log(LM)

LM∑
a=1

L∑
b=1

M∑
c=1

Pabc log(Pabc) ≤ 1. (9)

A normalized entropy of d = 0 corresponds to an or-
dered and redundant data tensor in which all expression
is captured by a single combination of one eigenarray,
one x-eigengene and one y-eigengene. A normalized
entropy of d = 1 corresponds to a disordered and random
data tensor where all combinations are equally expressed.

2.3.3. Approximately degenerate subtensor space
rotation. The space spanned by two or more subtensors
is defined to be approximately degenerate if the higher-
order singular values of these subtensors are approxi-
mately equal in magnitude and if N−1=2 of their N=3
indices are equal, such that they share all but one of the
patterns of expression variation that compose them.

For example, the subtensors S(a, b, c) and S(k, b, c),
that share the bth x-eigengene and the cth y-eigengene,
and satisfy |Rabc| ≈ |Rkbc|, span together an “approx-
imately degenerate subtensor space,” RabcS(a, b, c) +
RkbcS(k, b, c). The separation of this degenerate subten-
sor space into these two subtensors is not unique. These
two mathematical subtensors, therefore, may not be bi-
ologically interpreted.

A single unique rank-1 subtensor S(a + k, b, c) is de-
fined (Figure 1), that replaces the two subtensors in the
superposition (Supplementary Figure 11), i.e., weighted
sum of Equation (7),

Ra+k,b,cS(a+ k, b, c) = RabcS(a, b, c) +RkbcS(k, b, c),

R2
a+k,b,c = R2

a,b,c +R2
k,b,c, (10)

where Ra+k,b,c is the corresponding higher-order singu-
lar value of this subtensor. This subtensor is computed
from the outer product of U:,a+k, the normalized sum of
the eigenarrays U:a and U:k, weighted by the correspond-
ing higher-order singular values Rabc and Rkbc, and the

shared x-eigengenes and y-eigengenes, V T
x,b: and V T

y,c:,

S(a+ k, b, c) = U:,a+k ⊗ V T
x,b: ⊗ V T

y,c:,

U:,a+k = R−1
a+k,b,c(RabcU:a +RkbcU:k). (11)

Note that the HOSVD of the data tensor T remains
exact even if the rotated subtensor space is only ap-
proximately degenerate. It was shown that this unique
subtensor can be biologically interpreted (Omberg et al,
2007).

2.4. HOSVD Reconstruction
In analogy with the SVD, we use in this study the re-
formulated HOSVD to mathematically define the recon-
struction of a data tensor in a subspace of several se-
lected eigenarrays, x-eigengenes and y-eigengenes, effec-
tively filtering out all patterns of expression variation
that are orthogonal to these selected patterns. For ex-
ample, HOSVD reconstruction in the subspace of the x-
eigengenes and y-eigengenes that correlate with the bio-
logical variation across the x-settings and y-settings can
be used to remove experimental artifacts from the data
tensor. The transformation matrix U of Equation (2)
is reconstructed by appending only the selected eigenar-
rays along the K-genes axis, and removing all remaining
eigenarrays,

U = (U:1, . . . , U:k, . . . , U:K)
→ (U:1, . . . , U:k)

= Ũ . (12)

Similarly, the transformation matrices Vx and Vy of
Equations (3) and (4) are reconstructed by appending
only the selected x-eigengenes (Supplementary Figure 4)
and y-eigengenes (Supplementary Figures 5 and 6) along
the L-x-settings axis and the M -y-settings axis, and re-
moving all remaining x-eigengenes and y-eigengenes, re-
spectively,

V T
x = (V T

x,1:, . . . , V
T
x,l:, . . . , V

T
x,L:)

→ (V T
x,1:, . . . , V

T
x,l:)

= Ṽ T
x , (13)

V T
y = (V T

y,1:, . . . , V
T
y,m:, . . . , V

T
y,M :)

→ (V T
y,1:, . . . , V

T
y,m:)

= Ṽ T
y . (14)

The core tensor R is reconstructed by multiplying the
data tensor T and the reconstructed transformation ma-
trices Ũ , Ṽx and Ṽy,

R → T ×k Ũ
T ×l Ṽ

T
x ×m Ṽ T

y = R̃. (15)

The data tensor T is then reconstructed by multiplying
the reconstructed core tensor R̃ and transformation ma-
trices Ũ , Ṽx and Ṽy,

T → R̃ ×a Ũ ×b Ṽx ×c Ṽy = T̃ . (16)
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Note that this reconstruction is mathematically equiv-
alent to setting to zero the higher-order singular values
in the core tensor R, that correspond to the x-eigengenes
and y-eigengenes which are to be removed or filtered
out, and then computing the data tensor T following
Equation (1). This HOSVD data tensor reconstruction,
therefore, is analogous to the SVD reconstruction of a
data matrix (Alter et al, 2000; Nielsen et al, 2002; Alter
and Golub, 2004; Alter, 2006; Li and Klevecz, 2006),
which was shown to give computationally similar results
to those of the analysis of variance (ANOVA) following
SVD detection of the experimental artifacts (Nielsen et
al, 2002).

2.5. Subtensor Interpretation
A significant and unique subtensor is inferred to be rep-
resenting an independent cellular state and the corre-
sponding biological process or experimental artifact when
a consistent biological or experimental theme is reflected
in the interpretations of the patterns of the eigenarray,
the x-eigengene and the y-eigengene that mathematically
define the subtensor, taking into account the sign of the
superposition coefficient of this subtensor, i.e., the sign
of the corresponding higher-order singular value.

An eigenarray is parallel- and antiparallel-associated
with the most likely parallel and antiparallel cellular
states according to the annotations (Supplementary in-
formation Datasets 4 and 5) of the two groups of k genes
each, with largest and smallest levels of expression in
this eigenarray (Supplementary information Dataset 6)
among all K genes, respectively. The P -value of a given
association, i.e., P (j; k,K, J), is calculated assuming hy-
pergeometric probability distribution of the J annota-
tions among the K genes, and of the subset of j ⊆ J
annotations among the subset of k genes, as described
(Tavazoie et al, 1999),

P (j; k,K, J) =
(
K

k

)−1 k∑
i=j

(
J

i

)(
K − J
k − i

)
. (17)

An x-eigengene or a y-eigengene is associated with a
biological process or an experimental artifact when its
pattern of expression variation across the x-settings or
the y-settings, respectively, is interpretable.

2.6. HOSVD Data Classification
Inferring that subtensors represent independent cellular
states and corresponding biological processes and exper-
imental artifacts allows sorting the data by similarity in
the expression of any chosen subset of subtensors.

For example, given three significant and unique sub-
tensors that share the cth y-eigengene, two of which are
S(a, b, c) and S(k, l, c), we plot the expression of each
gene in the ath eigenarray along the θ = 0-axis vs. that
in the kth eigenarray along the θ = π/2-axis, normal-
ized by the overall expression of this gene in all three
subtensors. In this plot, the distance of each gene from
the origin is its amplitude of expression in the subtensor

space spanned by the two subtensors relative to its am-
plitude of expression in the space spanned by the three
subtensors. The “angular distance” of each gene from the
0-axis is its phase in the transition from the cellular state
represented by the ath eigenarray to that represented by
the kth eigenarray, θ: = arctan(U:k/U:a). The genes are,
therefore, sorted by their angular distances θ:.

Similarly, we plot the expression of each x-setting in
the bth x-eigengene along the θ = 0-axis vs. that in the
lth x-eigengene along the θ = π/2-axis, normalized by
the overall expression of this x-setting in all three sub-
tensors. The distance of each x-setting from the origin
is its amplitude of expression in the subspace spanned
by the two subtensors relative to that by the three sub-
tensors. The angular distance of each x-setting from the
0-axis is its phase in the progression from the biological
process represented by the bth x-eigengene to that repre-
sented by the lth x-eigengene. The x-settings are sorted
by θ: = arctan(V T

x,l:/V
T
x,b:) (Supplementary Figure 12).

Note that for visualization, the average of the expres-
sion of each gene across the x-settings is set to zero,
such that gene expression is centered at its x-setting-
invariant level (Box 1 and Figure 2, and Supplementary
Figure 12).

3. Computational Data Integration

We organize the data in this study (Supplementary infor-
mation Section 1) in a third-order cuboid, i.e., a tensor
(Supplementary information Section 3.1), and computa-
tionally integrate it by using a tensor HOSVD (Supple-
mentary information Section 2 and Figure 3, and Math-
ematica Notebook). This tensor HOSVD was recently
reformulated and used in the integration of global gene
expression from cell cycle time courses under different ox-
idative stress conditions. The picture that emerged iden-
tified conserved genes and cellular processes, some known
from traditional assays and some previously unrecog-
nized, as having significant roles in the time-dependent
effects of these oxidative stress conditions on cell cycle
progression (Omberg et al, 2007).

First, we use this HOSVD as described (Alter et al,
2000; Nielsen et al, 2002; Alter and Golub, 2004; Alter,
2006; Li and Klevecz, 2006; Omberg et al, 2007) to detect
orthogonal patterns of expression variation across the
time points and the time courses (Supplementary infor-
mation Section 2.2). We show that this HOSVD enables
decoupling of patterns that correlate with the experimen-
tal variation from patterns that correlate with the bio-
logical variation, because, in this study, the experimental
variation was designed to be orthogonal to the biologi-
cal variation (Supplementary information Section 3.2).
Differences in sample batch, DNA microarray platform
and protocols were implemented among and prevented
within pairs of shutoff and control time courses. Expres-
sion patterns that vary among but are invariant within
these pairs, therefore, correlate with the experimental
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Supplementary Figure 3. Flowchart of the computational integration of the data. (a) Structure of the data
cuboid (Supplementary information Section 3.1). (b) Detection of experimental artifacts (Supplementary information
Section 3.2). (c) HOSVD data reconstruction and removal of experimental artifacts (Supplementary information Sec-
tion 3.3). (d) Uncovering the cell cycle phase-dependent effects of Mcm2-7 origin binding (Supplementary information
Section 3.4).
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variation. Similarly, since the samples were hybridized
in batches of odd or even time points from each of the
pairs of shutoff and control time courses, patterns that
are invariant across each hybridization batch, but show
consistent variation between the batches, represent ex-
perimental artifacts. Patterns, that are invariant within
the duplicated time courses and show consistent varia-
tion within the odd and even time points of the same
time course, correlate with the biological variation, and
are interpreted in terms of the cellular programs and bi-
ological processes that compose the data cuboid.

Second, we use this HOSVD to reconstruct the data
cuboid in the subspace of gene expression patterns that
correlate with the biological variation across the time
points and the time courses, effectively filtering out, i.e.,
removing from the data cuboid, gene expression patterns
that represent experimental artifacts (Supplementary in-
formation Section 2.4). We show that, in analogy with
the SVD, this HOSVD enables filtering out experimental
artifacts without eliminating genes or samples, since the
patterns that correlate with experimental variation are
decoupled from these that correlate with the biological
variation (Supplementary information Section 3.3).

Third, after removing the experimental artifacts
and averaging the duplicated time courses, we use
this HOSVD as described (Supplementary information
Section 2.3) to identify in the averaged data cuboid
significant combinations of patterns of expression varia-
tion across the genes, the time points and the biological
conditions of Mcm2-7 origin binding. We interpret these
patterns in terms of the cell cycle phase-dependent
effects of DNA replication and DNA replication origin
activity on gene expression (Supplementary information
Section 3.4).

3.1. Structure of the Data Cuboid
Integrating the data from the two different DNA microar-
ray platforms, the log2 of the relative mRNA expression
levels from different probes of the same gene in each DNA
microarray are averaged. The 4270 genes that are se-
lected have valid data in at least four time points in each
of the six odd and six even samples of each time course,
and in ≥92 of the 96 samples. These genes also have
log2 of the relative mRNA expression ≥1, i.e., a twofold
change in expression, in ≥12 of the 96 samples (Supple-
mentary information Datasets 1 and 2). A relative ex-
pression level is defined valid if its signal to background
ratio is >1 in both the synchronized culture and asyn-
chronous reference.

The structure of these data is of an order higher than
that of a matrix. The biological and experimental set-
tings, i.e., the time point or the cell cycle phase, and the
time course or the strain, the environmental conditions,
the sample batch and the DNA microarray platform and
protocols, each represent a degree of freedom in a ten-
sor. Unfolded into a matrix these degrees of freedom are
lost. The data are, therefore, organized in a third-order

tensor, i.e., a cuboid, tabulating the log2 of the relative
mRNA expression of the 4270 genes across the 12 time
points and across the eight time courses.

Of the 409,920 elements in the data cuboid, 2323 ele-
ments, i.e., <0.5%, are missing valid data. SVD (Golub
and Van Loan, 1996; Alter et al, 2000) is used to estimate
the missing data in the six odd and six even samples of
each time course separately (Supplementary information
Section 2.2) as described (Nielsen et al, 2002; Alter and
Golub, 2004; Omberg et al, 2007). In each of these 16
sets of hybridization batches (Supplementary Table II),
SVD of the expression patterns of the <4270 genes with
no missing data uncovered six orthogonal patterns of
gene expression, i.e., eigengenes. The most significant
of these patterns, in terms of the fraction of the mRNA
expression that it captures, is used to estimate the
missing data in the remaining genes. For each of the
16 sets, the three most significant eigengenes and their
corresponding fractions are almost identical to those
computed for the 4270 genes after the missing data were
estimated, with the corresponding correlations >0.99
(Supplementary information Mathematica Notebook).
This suggests that the most significant eigengene, as
computed for the genes with no missing data, is a valid
pattern for estimation. This also indicates that this SVD
estimation of missing data is robust to variations in the
data selection cutoffs. After missing data estimation, the
data from each sample are normalized to zero average
and unit variance.

3.2. Detection of Experimental Artifacts
After missing data estimation, a tensor HOSVD of the
data cuboid is used as described (Alter et al, 2000;
Nielsen et al, 2002; Alter and Golub, 2004; Alter,
2006; Li and Klevecz, 2006; Omberg et al, 2007) to
uncover orthogonal patterns of gene expression variation
across the 12 time points and across the eight time
courses, i.e., x-eigengenes and y-eigengenes. It was
shown that significant and unique x-eigengenes and
y-eigengenes, which are computed by using the SVD
(Supplementary information Section 2.2), can be inter-
preted in terms of the independent biological processes
and experimental artifacts that compose the data cuboid.

3.2.1. Hybridization batch artifacts. The first,
third and fourth most significant x-eigengenes, which
capture ∼50%, 7% and 6% of the overall expression
information in the data cuboid, respectively, describe
variation that is consistent within the odd and even
hybridization batches (Supplementary Figure 4). The
second most significant x-eigengene describes invariant
expression across each batch that varies consistently
between the two batches. The correlation of this pattern
with the experimental variation in hybridization batch
is ∼0.99. This pattern, therefore, is inferred to represent
an hybridization batch artifact.
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Supplementary Figure 4. The x-eigengenes, i.e., the HOSVD patterns of expression variation across the
time points. (a) Raster display of the expression of the 12 x-eigengenes across the 12 time points, ordered by hy-
bridization batch, with overexpression (red), no change in expression (black) and underexpression (green) around the
time-invariant expression, that is represented by the first x-eigengene. The white line separates the even and the odd
hybridization batches, indicated by the black arrows. (b) Bar chart of the fractions of mRNA expression that these
orthogonal patterns capture in the data cuboid. The four most significant patterns capture ∼50%, 13%, 7% and 6%
of the expression of the 4270 genes, respectively. (c) Line-joined graphs of the first (red), second (blue), third (green)
and fourth (orange) expression patterns across the time points. The color bars indicate the cell cycle classifications
of the time points in the averaged Cdc6+/45+ control (Supplementary Figure 7) as described (Spellman et al, 1998):
M/G1 (yellow), G1 (green), S (blue), S/G2 (red) and G2/M (orange). The grid line separates the even and the odd
hybridization batches, indicated by the black arrows. The first pattern is approximately time invariant. The second
pattern correlates with the variation in hybridization batch. The third and fourth patterns describe oscillations
consistent within the hybridization batches, that peak at M/G1 and G1/S and trough at S/G2 and G2/M, respectively.

3.2.2. Sample batch and DNA microarray plat-
form artifacts. The first and second most significant
y-eigengenes capture each ∼25% of the expression of the
4270 genes and span an approximately degenerate sub-
matrix space. The fifth through eighth y-eigengenes cap-
ture each ∼5% of the overall expression information, and
span another approximately degenerate submatrix space
(Supplementary Figure 5). These y-eigengenes are not
unique and may not be biologically or experimentally in-
terpreted.

We define, therefore, unique orthogonal rotations in
these degenerate submatrix spaces (Supplementary in-
formation Section 2.2) as described (Alter et al, 2000).
These rotations subject the rotated y-eigengenes to
unique constraints based on the experimental variation
in sample batch, DNA microarray platform and proto-
cols, in order to decouple patterns that correlate with
these experimental settings from patterns that correlate
with the variation in the biological condition of Mcm2-7
origin binding across the time courses.

The first and second most significant y-eigengenes cor-
relate with a time course-invariant pattern of expression

as well as with a pattern of variation among and invari-
ance within the four pairs of shutoff and control time
courses (Supplementary Figure 5). Requiring the ro-
tated second y-eigengene to be orthogonal to the time
course-invariant pattern of expression, such that the ro-
tated first y-eigengene is of maximal correlation with that
pattern, gives a unique angle of rotation ≈ π/3 in the
two-dimensional submatrix space spanned by these two
y-eigengenes,

V T
y,1: → RV T

y,1: ≈ − sin(π/3)V T
y,1: − cos(π/3)V T

y,2:,

V T
y,2: → RV T

y,2: ≈ − cos(π/3)V T
y,1: + sin(π/3)V T

y,2:. (18)

This unique rotation decouples the time course-invariant
pattern, that corresponds to biological invariance among
the time courses, and has ∼0.99 correlation with the
rotated first y-eigengene, from the pattern of variation
among and invariance within the four pairs of shutoff and
control time courses, that corresponds to experimental
variation among the time courses, and is described by the
rotated second y-eigengene (Supplementary Figure 6).
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Supplementary Figure 5. The y-eigengenes, i.e., the HOSVD patterns of expression variation across the time
courses. (a) Raster display of the expression of the eight y-eigengenes across the eight time courses, ordered by
sample batch (Supplementary Table II). (b) Bar chart of the fractions of mRNA expression that these orthogonal
expression patterns capture. The first and second most significant patterns capture each ∼25% of the expression of the
4270 genes, and span an approximately degenerate submatrix space. The fifth through eighth patterns capture each
∼5% of the overall expression information, and span another approximately degenerate submatrix space. (c) Line-
joined graphs of the first (red), second (blue), third (green) and fourth (orange) expression patterns across the time
courses. These four patterns of variation among the four pairs of shutoff and control time courses correlate with a
time course-invariant pattern of expression as well as with the variation in the experimental settings but not with the
variation in the biological conditions of Mcm2-7 origin binding.

Supplementary Figure 6. The rotated y-eigengenes, i.e., the HOSVD patterns of expression variation across the
time courses, after mathematical decoupling of the patterns that correlate with the experimental variation from the
patterns that correlate with the biological variation. (a) Raster display of the expression of the eight rotated y-
eigengenes across the eight time courses, ordered by sample batch (Supplementary Table II). (b) Bar chart of the
approximate fractions of mRNA expression that these orthogonal patterns capture. (c) Line-joined graphs of the first
(red), fifth (blue) and sixth (green) rotated expression patterns across the time courses. The first pattern correlates
with a time course-invariant pattern of expression. The fifth pattern is of consistent variation between the two Cdc45+

and the two Cdc45− time courses. The sixth pattern is of consistent variation between the two Cdc6+ and the two
Cdc6− time courses. These three patterns describe the variation in the biological condition of Mcm2-7 origin binding
across the time courses.
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Supplementary Figure 7. Probabilistic significance of the enrichment of the time points in the averaged Cdc6+/45+

control in overexpressed or underexpressed cell cycle-regulated genes. Following Equation (17), the P -value of each
enrichment is calculated according to the cell cycle annotations of the genes (Supplementary information Dataset 4),
assuming hypergeometric distribution of the J annotations among the K=4270 genes, and of the subset of j ⊆ J
annotations among the subset of k=200 genes with largest or smallest levels of expression at the corresponding time
point, as described (Tavazoie et al, 1999). Bar chart of − log10(P -value) of the enrichment of each of the 12 time
points in overexpressed (right) or underexpressed (left) M/G1 (yellow), G1 (green), S (blue), S/G2 (red) and G2/M
(orange) genes. The grid line separates the even and the odd hybridization batches, indicated by the black arrows.
These bar charts show that in the averaged control, the time points sample the exit from the pheromone-induced
arrest and M/G1 (the first and second time points) and entry into G1 (the third through sixth time points) through
S (the seventh through ninth time points) and S/G2 (10th and 11th time points) to the beginning of G2/M (12th
time point) just before nuclear division. These are consistent with the flow cytometry, i.e., fluorescent-activated cell
sorting (FACS) measurements of cell synchrony in the Cdc6+ and Cdc45+ cells (Supplementary Figures 1 and 2) as
well as with previous global gene expression analyses of α-factor synchronized cultures (Spellman et al, 1998).

The sixth and seventh y-eigengenes describe expres-
sion variation among the Cdc6+ and Cdc6− time courses,
that is decoupled from that in the Cdc45+ and Cdc45−
time courses (Supplementary Figure 5). Requiring the
rotated sixth y-eigengene to be of maximal correlation
with a pattern of invariance within and consistent vari-
ation between the Cdc6+ and Cdc6− time courses, such
that the seventh rotated y-eigengene is almost orthogonal
to that pattern, gives a unique angle of rotation ≈ π/3
in the two-dimensional submatrix space spanned by these
two y-eigengenes,

V T
y,6: → RV T

y,6: ≈ sin(π/3)V T
y,6: + cos(π/3)V T

y,7:,

V T
y,7: → RV T

y,7: ≈ − cos(π/3)V T
y,6: + sin(π/3)V T

y,7:. (19)

This unique rotation decouples the biological variation
between the Cdc6+ and Cdc6− time courses, that has
∼0.99 correlation with the rotated sixth y-eigengene,
from the pattern of variation among and invariance
within the two pairs of Cdc6-shutoff and control time
courses, that corresponds to experimental variation

among the time courses, and is described by the rotated
seventh y-eigengene (Supplementary Figure 6).

Similarly, requiring the rotated fifth y-eigengene to
be of maximal correlation with a pattern of invariance
within and consistent variation between the Cdc45+ and
Cdc45− time courses, such that the eighth rotated y-
eigengene is almost orthogonal to that pattern, gives a
unique angle of rotation ≈ π/4 in the two-dimensional
submatrix space spanned by these two y-eigengenes,

V T
y,5: → RV T

y,5: ≈ − sin(π/4)V T
y,5: − cos(π/4)V T

y,8:,

V T
y,8: → RV T

y,8: ≈ − cos(π/4)V T
y,5: + sin(π/4)V T

y,8:. (20)

This unique rotation decouples the biological variation
between the Cdc45+ and Cdc45− time courses, that has
∼0.98 correlation with the rotated fifth y-eigengene, from
the pattern of variation among and invariance within
the two pairs of Cdc45-shutoff and control time courses,
that corresponds to experimental variation among the
time courses, and is described by the rotated eighth y-
eigengene (Supplementary Figure 6).
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Supplementary Figure 8. The eigengenes V T corresponding to the eigenarrays, i.e., the HOSVD patterns of
expression variation across the 4270 genes, in the reconstructed and averaged data cuboid. (a) Raster display of
the expression of the nine eigengenes across the 36 time points, ordered by condition and by hybridization batch,
with overexpression (red), no change in expression (black) and underexpression (green) around the time-invariant
expression, that is represented by the first eigengene. The white lines separate the conditions and the even and odd
hybridization batches, also indicated by the black arrows. (b) Bar chart of the fractions of mRNA expression that
these orthogonal patterns capture in the data cuboid. (c) Line-joined graphs of the first (red), second (blue), third
(green) and fourth (orange) expression patterns across the conditions and time points. The color bars indicate the
cell cycle classifications of the time points in the averaged Cdc6+/45+ control (Supplementary Figure 7) as described
(Spellman et al, 1998): M/G1 (yellow), G1 (green), S (blue), S/G2 (red) and G2/M (orange). The grid lines separate
the conditions and the even and odd hybridization batches, also indicated by the black arrows.
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Supplementary Figure 9. The x-eigengenes, i.e., the HOSVD patterns of expression variation across the
time points, in the reconstructed and averaged data cuboid. (a) Raster display of the expression of the 12
x-eigengenes across the 12 time points, ordered by hybridization batch, with overexpression (red), no change in
expression (black) and underexpression (green) around the time-invariant expression, that is represented by the first
x-eigengene. The white line separates the even and odd hybridization batches, indicated by the black arrows. (b) Bar
chart of the fractions of mRNA expression that these orthogonal patterns capture in the data cuboid. The three
most significant x-eigengenes, that were selected to reconstruct the data cuboid, capture >99% of the expression of
the 4270 genes after the reconstruction. (c) Line-joined graphs of the first (red), second (blue) and third (green)
expression patterns across the time points. The color bars indicate the cell cycle classifications of the time points in
the averaged Cdc6+/45+ control (Supplementary Figure 7) as described (Spellman et al, 1998): M/G1 (yellow), G1
(green), S (blue), S/G2 (red) and G2/M (orange). The grid line separates the even and odd hybridization batches,
indicated by the black arrows.

Supplementary Figure 10. The y-eigengenes, i.e., the HOSVD patterns of expression variation across the
conditions, in the reconstructed and averaged data cuboid. (a) Raster display of the expression of the three y-
eigengenes across the three conditions, with overexpression (red), no change in expression (black) and underexpression
(green) around the condition-invariant expression, that is represented by the first y-eigengene. (b) Bar chart of the
fractions of mRNA expression that these orthogonal patterns capture in the data cuboid. The first, second and third
patterns capture ∼89%, 7% and 4% of the overall expression information, respectively. (c) Line-joined graphs of the
first (red), second (blue) and third (green) expression patterns across the conditions.
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Supplementary Figure 11. Significant HOSVD subtensors before rotation in the approximately degenerate
subtensor space spanned by S(5, 1, 3) and S(6, 1, 3). (a) Bar chart of the fractions of the eight most significant
subtensors. The higher-order singular values corresponding to subtensors highlighted in gray, i.e., S(5, 1, 3) and
S(6, 1, 3), are <0. The subtensor spaces S(5, 1, 3) and S(6, 1, 3) capture each ∼1% of the overall expression
information in the data cuboid, and span an approximately degenerate subtensor space. The entropy of the data
tensor is 0.23. (b) Line-joined graphs of the first (red), second (blue) and third (green) x-eigengenes, which define
the expression variation across time in these subtensors. The color bars indicate the cell cycle classifications of the
time points in the averaged Cdc6+/45+ control (Supplementary Figure 7). The grid line separates the even and
odd hybridization batches, indicated by the black arrows. The first pattern is approximately time invariant. The
second and third patterns describe oscillations consistent within the hybridization batches, that peak at M/G1 and
G1/S and trough at S/G2 and G2/M, respectively. (c) Line-joined graphs of the first (red), second (blue) and third
(green) y-eigengenes, which define the expression variation across the biological conditions. The first pattern is
condition invariant. The second pattern correlates with underexpression in both conditions where DNA replication is
prevented, i.e., in both the Cdc6− and Cdc45− cells, relative to the averaged Cdc6+/45+ control. The third pattern
correlates with overexpression in the Cdc6− cells and underexpression in the Cdc45− cells relative to the control.

3.3. HOSVD Data Reconstruction
After the gene expression patterns that correlate with ex-
perimental variation are decoupled from these that corre-
late with the biological variation, we use this HOSVD to
reconstruct the data cuboid in the subspace of the pat-
terns that correlate with biological variation across the
12 time points and across the eight time courses, effec-
tively filtering out patterns that represent experimental
artifacts (Supplementary information Section 2.4).

Following Equations (13) and (14), the transformation
matrices Vx and RVy are reconstructed by appending
only the selected x-eigengenes and y-eigengenes along the
L-x-settings axis and the M -y-settings axis, and remov-
ing all remaining x-eigengenes and y-eigengenes, respec-
tively,

V T
x = (V T

x,1:, . . . , V
T
x,12:)

→ (V T
x,1:, V

T
x,3:, V

T
x,4:) = Ṽ T

x , (21)

RV T
y = (RV T

y,1:, . . . , RV
T
y,8:)

→ (RV T
y,1:, RV

T
y,5:, RV

T
y,6:) = Ṽ T

y . (22)

Note that the rotated first, fifth and sixth y-eigengenes,

that compose the reconstructed transformation matrix
Ṽy are orthogonal to gene expression variation between
the Cdc6+/− and Cdc45+/− cells. Experimental arti-
facts that correlate with the variation in the environ-
mental conditions or the parental genetic background be-
tween these cells are therefore also removed by the data
cuboid reconstruction.

Following Equations (15) and (16), the reconstructed
data tensor T̃ is then computed by multiplying the data
tensor T and the reconstructed transformation matrices
Ṽx and Ṽy,

T → (T ×l Ṽ
T
x ×m Ṽ T

y )×b Ṽ
T
x ×c Ṽ

T
y = T̃ . (23)

Note that this HOSVD reconstruction of a data tensor
(Supplementary information Section 2.4) is analogous to
the previously described SVD reconstruction of a data
matrix (Alter et al, 2000; Nielsen et al, 2002; Alter
and Golub, 2004; Alter, 2006; Li and Klevecz, 2006),
which was shown to give computationally similar results
to those of the analysis of variance (ANOVA) following
SVD detection of the experimental artifacts (Nielsen et
al, 2002).
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Supplementary Figure 12. The unperturbed cell cycle mRNA expression subspace spanned by the second
and third HOSVD combinations, i.e., subtensors, S(2, 2, 1) and S(3, 3, 1) (Figure 1 and Table I). (a) The normalized
expression of each time point in the second x-eigengene along the θ = 0-axis vs. that in the third x-eigengene along
the θ = π/2-axis color-coded as described (Spellman et al, 1998) according to the cell cycle classification of the time
point in the averaged Cdc6+/45+ control time course (Supplementary Figure 7). The distance of each time point
from the origin is its amplitude of expression in the subspace spanned by these two x-eigengenes and therefore also
by the two corresponding subtensors. The dashed half-unit and unit circles show that this subspace captures more
than 25% of the global mRNA expression of each time point and close to 100% of the global expression of most of the
time points, respectively. Sorting the time points according to their angular distances from the 0-axis is consistent
with their order, which describes the progression through less than a period of the cell cycle, from M/G1 to G1
through S and S/G2 to the beginning of G2/M. This is consistent with the second and third x-eigengenes representing
expression oscillations that peak at M/G1 and G1/S and trough at S/G2 and G2/M, respectively (Figure 1). (b) The
normalized expression of each of the 576 cell cycle-regulated genes (Spellman et al, 1998) in the second eigenarray
along the θ = 0-axis vs. that in the third eigenarray along the θ = π/2-axis, color-coded as described according to
the cell cycle classification of the gene. The second and third eigenarrays which describe the global gene expression
in the S(2, 2, 1) and S(3, 3, 1) HOSVD combinations are enriched with overexpressed M/G1 and G1/S genes and
underexpressed S/G2 and G2/M genes, respectively (Table I). Of the 576 cell cycle-regulated genes, 528 have more
than 25% of their expression in this subspace, outlined by the dashed half-unit line. (c) The HOSVD picture of the
unperturbed Saccharomyces cerevisiae cell cycle, based on the consistent cell cycle themes reflected in the second and
third eigenarrays and the second and third x-eigengenes that compose the second and third subtensors, respectively.

3.4. Uncovering the Cell Cycle Phase-Dependent
Effects of Mcm2-7 Origin Binding.
After reconstruction of the data cuboid, the two Cdc6−
time courses are averaged, and separately also the two
Cdc45− and the four Cdc6+ and Cdc45+ time courses,
and the data from each time point and condition are nor-
malized to zero average and unit variance (Supplemen-
tary information Dataset 3). We find that the probabilis-
tic significance of the enrichment of the time points in
the averaged Cdc6+/45+ control in overexpressed or un-
derexpressed cell cycle-regulated genes (Supplementary
Figure 7) is consistent with the flow cytometry measure-
ments of cell synchrony in the Cdc6+ and Cdc45+ cells
(Supplementary Figures 1 and 2) as well as with previous
analyses of α-factor synchronized cultures (Spellman et
al, 1998).

The tensor HOSVD of the gene expression data cuboid
of K=4270 genes across L=12 time points across M=3
conditions of Cdc6−, Cdc45− and control (Supplemen-
tary information Dataset 3) is used (Box 1 and Supple-

mentary information Section 3.3) as described (Omberg
et al, 2007) to uncover combinations, i.e., subtensors,
of three patterns of expression variation, one across the
genes (Supplementary Figure 8), one across the time
points (Supplementary Figure 9), and one across the
conditions (Figure 10), and rotate the approximately de-
generate subtensor spaces S(5, 1, 3) and S(6, 1, 3) (Sup-
plementary Figure 11) by defining the unique subtensor
S(5 + 6, 1, 3) according to Equations (10) and (11) (Fig-
ure 1 and Table I).

It was shown that significant and unique subtensors
can be interpreted in terms of the cellular programs
and biological processes that compose the data cuboid
(Omberg et al, 2007). We find that the seven most sig-
nificant among the unique subtensors uncovered in this
gene expression data cuboid capture ∼94% of the mRNA
expression of the 4270 genes. We also find that the inter-
pretation of these seven significant and unique subtensors
is robust to modifications in the processing of the data,
e.g., changes in the data selection cutoffs.
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Supplementary information Mathematica Notebook. (a) A Mathematica 5.2 code file, executable by Math-
ematica 5.2 and readable by Mathematica Player, freely available at http://www.wolfram.com/products/player/.
(b) A PDF format file, readable by Adobe Acrobat Reader.

Supplementary information Dataset 1. A tab-delimited text format file, readable by both Mathematica and
Microsoft Excel, tabulating relative mRNA expression levels of 4771 probes of the UT DNA microarrays that
correspond to the K=4270 genes across 24 samples.

Supplementary information Dataset 2. A tab-delimited text format file, readable by both Mathematica and
Microsoft Excel, tabulating relative mRNA expression levels of 8540 probes of the WU DNA microarrays that
correspond to the K=4270 genes across 72 samples.

Supplementary information Dataset 3. A tab-delimited text format file, readable by both Mathematica and
Microsoft Excel, tabulating the averaged log2 of the relative mRNA expression of the K=4270 genes across the
L=12 time points and across the M=3 conditions of Mcm2-7 origin binding. The genes are sorted by their angular
distances between the second and third HOSVD combinations (Supplementary information Section 2.6 and Dataset
6), which represent the unperturbed cell cycle expression oscillations (Figure 2 and Supplementary Figure 12). The
angular distance of each gene is also listed.

Supplementary information Dataset 4. A tab-delimited text format file, readable by both Mathematica and
Microsoft Excel, reproducing descriptions and genomic coordinates (Nieduszynski et al, 2007) of the 325 confirmed
ARSs in Saccharomyces cerevisiae.

Supplementary information Dataset 5. A tab-delimited text format file, readable by both Mathematica and
Microsoft Excel, reproducing cell cycle annotations (Spellman et al, 1998), DNA damage responses (Jelinsky and
Samson, 1999), descriptions and genomic coordinates (Cherry et al, 1997) of the 4270 Saccharomyces cerevisiae genes.

Supplementary information Dataset 6. A tab-delimited text format file, readable by both Mathematica and
Microsoft Excel, tabulating the eigenarrays and superpositions of eigenarrays that define the global gene expression
patterns of the seven significant and unique subtensors of the averaged data cuboid. The expression levels of the genes
in the intersections of the fourth through seventh HOSVD combinations, as computed by using the corresponding
eigenarrays, are also tabulated. The ten significant among the 1294 genes that are underexpressed in the fourth and
overexpressed in the fifth and sixth combinations are enriched in histone genes. The 100 significant among the 1412
genes that are overexpressed in the fourth and underexpressed in the fifth and seventh combinations are enriched in
genes with ARSs near their 3’ ends.
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