
Crash Early, Crash Often, Explain Well
Practical Formal Correctness Checking of Million-core Problem Solving Environments for HPC

Diego Caminha B. de Oliveira,
Zvonimir Rakamarić,

Ganesh Gopalakrishnan
School of Computing

University of Utah, USA
{caminha,zvonimir,ganesh}@cs.utah.edu

Alan Humphrey,
Qingyu Meng,
Martin Berzins

School of Computing and SCI Institute
University of Utah, USA

{ahumphre,qymeng,mb}@cs.utah.edu

Abstract—While formal correctness checking methods have
been deployed at scale in a number of important practical
domains, we believe that such an experiment has yet to occur
in the domain of high performance computing at the scale of
a million CPU cores. This paper presents preliminary results
from the Uintah Runtime Verification (URV) project that has
been launched with this objective. Uintah is an asynchronous
task-graph based problem-solving environment that has shown
promising results on problems as diverse as fluid-structure
interaction and turbulent combustion at well over 200K cores to
date. Uintah has been tested on leading platforms such as Kraken,
Keenland, and Titan consisting of multicore CPUs and GPUs,
incorporates several innovative design features, and is following
a roadmap for development well into the million core regime. The
main results from the URV project to date are crystallized in two
observations: (1) A diverse array of well-known ideas from light-
weight formal methods and testing/observing HPC systems at
scale have an excellent chance of succeeding. The real challenges
are in finding out exactly which combinations of ideas to deploy,
and where. (2) Large-scale problem solving environments for
HPC must be designed such that they can be “crashed early”
(at smaller scales of deployment) and “crashed often” (have
effective ways of input generation and schedule perturbation
that cause vulnerabilities to be attacked with higher probability).
Furthermore, following each crash, one must “explain well”
(given the extremely obscure ways in which an error finally
manifests itself, we must develop ways to record information
leading up to the crash in informative ways, to minimize off-
site debugging burden). Our plans to achieve these goals and to
measure our success are described. We also highlight some of
the broadly applicable concepts and approaches.

I. INTRODUCTION

Any software system that retains its initial conceptual
blueprint and achieves substantial scale over a relatively short
period of time must have good underlying organizational
principles and software architecture. In this sense, there are
many well-engineered high performance computing (HPC)
systems in existence. However, parallel computing for HPC is
almost perpetually at the cutting edge of available processor
types and is incorporating heterogeneous concurrency models,
hence maintaining the integrity of the code is a constant
challenge. It is clear that code-level bugs can take away from
the amount of useful science that can be conducted on today’s
scarce high-end HPC platforms.

This paper1 summarizes preliminary results from an ongo-
ing collaboration between a subset of its authors interested
in building a high-end problem solving environment called
Uintah, and another subset interested in developing formal
software testing approaches that can help eliminate code-level
bugs, and hence enhance the value offered by Uintah. While
this collaboration is in its early stages, our ongoing research
project dubbed Uintah Runtime Verification (URV) already
offers a number of valuable insights.

This paper is largely focused on scalable formal testing
techniques that we plan to develop and experiment with
during the URV project. Long-term, we anticipate the role of
formal methods to go beyond code-level correctness checks,
informing future software architectural evolutions in response
to the ever-growing demand for computational power. We
discuss some of these long-term plans as well.
Growth Phases of Uintah. One of the main approaches sug-
gested for the move to multi-petaflop architectures (and even-
tually exascale) is to use a graph representation of the com-
putation to schedule work, as opposed to a bulk-synchronous
approach in which blocks of communication follow blocks of
computation [2]. The importance of this approach for exascale
computing is expressed by recent studies [3]. Following this
general direction, Uintah has evolved over the past decade over
three significant phases:

• 1998-2005 [4]: having a static task-graph structure and
running at about 1000 cores;

• 2005-2010 [5], [6]: incorporating many dynamic tech-
niques, including new adaptive mesh refinement methods,
and scaling to about 100K cores;

• 2010-2013 [7], [8]: Uintah has shown promising results
on problems as diverse as fluid-structure interaction and
turbulent combustion at scales well over 200K CPU cores.
It presently incorporates shared memory (thread-based)
schedulers as well as GPU-based schedulers.

Problem solving environments such as Uintah aspire to be
critically important components of our national high perfor-
mance computing infrastructure, contributing to the solution
of computationally challenging problems of great national

1Title modeled after C.A.R. Hoare’s talk “Assert Early, Assert Often” [1].



consequence. Being based on sound and scalable organiza-
tional principles, they lend themselves to easy adaptation
as witnessed by the Uintah phases mentioned above. For
example, GPU schedulers were incorporated into Uintah in
a matter of weeks. This fundamentally leads to systems such
as Uintah being in a state of perpetual development. End-users
have no apparent limits on the scale of problems they want to
study or the levels of resolution they want to achieve. There
is always a shortage of CPU cycles, total memory capacity,
network bandwidth, and advanced developer time. In addition,
there is constant pressure to achieve useful science under tight
budgets. Structured software development and documentation
compete for expert designer time as much as the demands
to simulate new problems and to achieve higher operating
efficiencies by switching over to new machine architectures.

Previously, the formal methods authors of this paper have
explored various scalable formal debugging techniques for
large-scale HPC systems and thread-based systems [9]–[13].
A few other researchers also have investigated the use of
formal methods for enhancing the correctness of HPC systems
[14]–[16]. As far as we know, the URV project is different
from these efforts in that it is an attempt to integrate light-
weight and scalable formal methods into a problem-solving
environment that is undergoing rapid development and real
usage at scale.

There are many active projects in which parallel compu-
tation is organized around task-graphs. Charm++ [17] has
pioneered the task-graph approach and finds applications
in high-end molecular dynamics simulations. The DAGuE
framework [18] is a generic framework for architecture-aware
scheduling and management of micro-tasks on distributed
many-core heterogeneous architectures. Our interest in Uintah
stems from two factors: (1) Uintah has scaled by a factor of
100 in core-count over a decade, and finds numerous real-
world applications, (2) we are able to track its development
and apply and evaluate formal methods in a judicious manner.
We believe that our insights and results would transfer over to
other systems, eventually. We now expand on the three themes
set forth in the title. A roadmap for the rest of this paper then
follows.
Crash Early. As mentioned earlier, the current focus of URV
is to help enhance the value of Uintah by eliminating show-
stopper code-level bugs as early as possible. In this connection,
it is too tempting to dismiss the use of formal testing methods
on account of the fact that many of these methods do not scale
well, and that many interesting field bugs (and the associated
crashes) occur only at scale. While this may be true in general,
there are a number of bugs which are reproducible at lower
scales—provided of course we know how to force the system
under test to follow different executions. This observation is
supported by error logs from previous Uintah versions where
many of the errors (e.g., double-free of a lock, mismatched
MPI send and receive addresses) were unrelated to problem
scale. However, not every system can be easily tested at
lower scales such as lower number of threads, processes,
address ranges, etc. The ease with which a system can be

downscaled depends on how well structured it is. There are
many poorly structured systems that allow only certain delicate
combinations of such operating parameters; sometimes, these
parameters are not well documented.

Uintah, on the other hand, follows a fairly modular design,
allowing many problems to be run across a wide range of op-
erating scales—from two to thousands of CPU cores in many
cases. There are only relatively simple and well-documented
parameter dependencies that must be respected (relating to
problem sizes and the number of processes and threads).
This gives us a fair amount of confidence that well-designed
formal methods can be applied to Uintah at lower scales. This
will avoid the nightmarish problem of obtaining large-scale
CPU/thread allocations, and then facing the extreme difficulty
of discerning errors when they occur.

In our research, we do not directly target bugs that depend
on system scale, as they are dependent on factors such
as resource exhaustion, faulty components, and misbehaving
libraries (e.g., MPI). Uintah’s modular checkpoint and restart
facilities can ameliorate the severity of these errors.
Crash Often. The second testing problem is to discover
effective ways of perturbing a system under test. A system may
appear to be working correctly—lulling its users into a false
sense of confidence—but suddenly crash when the CPU/thread
scheduling policies are changed or various subsystems interact
at different rates. A system’s testing efficacy depends on
the number of transient behaviors that the testing method
induces. This is the view espoused by the proponents of model-
checking, which can be viewed as the extreme limit of all such
schedule perturbation methods. Unfortunately, not all transient
behaviors are relevant: applying schedule perturbations blindly
can simply waste testing cycles without hitting bugs. In our
preliminary experiments with Uintah, we introduced such
schedule perturbations within Uintah’s mainline scheduler,
without any discernible benefits. We suspect that all we
accomplished was to change the specific thread assigned to
carry out a particular Uintah task—and not the nature of the
task itself.

Our ongoing research is aimed at calibrating execution per-
turbation methods in terms of their effect on system behavior.
The approach is hinged on developing a practical technique
to (indirectly) observe the internal state of a system. Even
though the internal state of a large-scale system is impractical
to directly observe, we believe that it can be characterized
by sequences of key events that threads and processes engage
in. This intuition is the basis of many HPC debugging tools
and approaches such as STAT [19], HPCToolkit [20], and
AutomaDed [21]. Large-scale systems such as Uintah have
a correspondingly large number of threads and processes that
engage in “similar” activities over time. Every now and then,
interesting outlier events occurs, and it is these outliers that
we hope to observe as a function of execution perturbation.

In ongoing research, we are collecting such instrumented
event traces in the form of key function call sequences. We
are building a framework to collect and equivalence-class the
traces in a manner that filters out spatial (e.g., process/thread



ID) and temporal (e.g., time-recurrent behavioral) symmetry.
We will employ this framework to discern outlier behaviors.
Armed with this framework, we will experiment with vari-
ous execution perturbation methods, and rank them in their
importance. Higher ranked schedule perturbation methods
will be those that increase the variety of transient behaviors
manifested.

In terms of execution perturbation methods, one approach
is clearly that of schedule perturbations—changing the order
in which interacting (and presumably commuting) events oc-
cur. Another important way to cause execution perturbation
is likely to be through the problem description file, which
specifies the exact simulation problem and its parameters.
Our plans to explore these execution perturbation methods are
detailed in §IV.
Explain Well. While tripping an error requires the use of
well-designed execution inputs as well as schedule selection,
it is also equally important to develop effective techniques for
explaining and root-causing errors.

• Large-scale HPC systems often have impoverished exe-
cution environments. For instance, many do not have the
option to generate a core file following a crash. This
fact implies that explaining field failures can be next
to impossible. A few options suggest themselves quite
naturally:
– Develop better (more incisive) pre-deployment de-

bugging methods, to minimize the need for post-
deployment error checking.

– Develop better error monitors. For instance, instead of
relying on accidental architectural or OS feature being
triggered at the end of a cascading failure sequence
(e.g., illegal memory reference, segfault), it would
be far more informative to have a simple finite-state
machines look for an erroneous execution sequence
(e.g., double-free of a lock) and report that.

– Develop parsimonious representations of the execution
state—akin to a well-designed air-craft black box—
instead of traditional core files. Ideally, ‘black-boxes’
generated from systems such as Uintah must contain
the most recent history of events prior to the crash. This
history should be maintained in a temporally-refined
manner: include major system events well before the
crash, and finer details of events approaching the crash.

• The difficulty of explaining errors was described recently
by the authors of the popular Photoshop tool [22]:

...the single longest-lived bug I know of in Photo-
shop ended up being nestled in that code. It hid out
in there for about 10 years. We would turn on the
asynchronous I/O and end up hitting that bug. We
would search for it for weeks, but then just have to
give up and ship the app without the asynchronous
I/O being turned on. Every couple of versions we
would turn it back on so we could set off looking
for the bug again.
It turned out to be a very simple problem. Like

so many other aspects of Photoshop, it had to do
with the fact that the app was written first for the
Macintosh and then moved over to Windows. On
the Macintosh, the set file position call is atomic—
a single call—whereas on Windows, it’s a pair of
calls. The person who put that in there didn’t think
about the fact that the pair of calls has to be made
atomic whenever you’re sharing the file position
across threads.

With the increasing scale of HPC systems, it appears that
errors that were once elusive can be made to occur on
a more predictable basis (“law of large numbers”). Even
so, the root-causing of bugs remains extremely difficult—
especially if the system scale is large.

In §V, we provide details of how we plan to work towards
synthesizing better run-time error explanations.
Roadmap. We first describe the Uintah framework (§II).
Ongoing work on schedule instrumentation (§III) and state
equivalencing (§IV) are then described. Our thoughts on
building a dynamic verifier for Uintah are described in §V.
Concluding remarks then follow (§VI).

II. THE UINTAH FRAMEWORK

The aim of Uintah is to be able to solve complex multiscale
multi-physics problems, such as the benchmark C-SAFE prob-
lem. This is a multi-physics, large deformation, fluid-structure
problem consisting of a small cylindrical steel container filled
with a plastic bonded explosive (PBX9501) subjected to
convective and radiative heat fluxes from a fire [23]. In order to
solve many such complex multiscale multi-physics problems
(e.g., [24]–[27]), Uintah makes use of a component design that
enforces separation between large entities of software and can
be swapped in and out, allowing them to be independently
developed and tested within the entire framework (see Fig. 1).

Uintah is novel in its use of a task-based paradigm, with
complete isolation of the user from parallelism. The individual
tasks are viewed as part of a directed acyclic graph (DAG) and
are executed adaptively, asynchronously, and now also often
out of order [7]. This is done by utilizing an abstract task-graph
representation of parallel computation and communication to
express data dependencies between components. The task-
graph is a directed acyclic graph of tasks (see Fig. 2). Each
task consumes some input and produces some output, which
is in turn the input of some future task. These inputs and
outputs are specified for each patch in a structured Adaptive
Mesh Refinement (AMR) grid. Adaptive structured meshes
consist of hexahedral patches, often of 163 elements, that hold
the problem data [4]. Associated with each task is a C++
method which is used to perform the actual computation. Each
component specifies a list of tasks to be performed and the
data dependencies between them. The task-graph approach
of Uintah shares many features with the migratable object
philosophy of Charm++ [28]. In order to increase efficiency,
the task graph is created and stored locally [5]. We now
describe the main distributed subsystems of Uintah shown in
Fig. 1.



Fig. 1. Overall Uintah System Organization and Operation.

Task Scheduler. Uintah’s task scheduler, given in Fig. 3, is
responsible for computing the dependencies of tasks, deter-
mining the order of execution, and ensuring that the correct
inter-process communication is performed [5]. In this mapping
communication is automatically overlapped with computation.
Originally, Uintah used a static scheduler in which tasks
were executed in a predetermined order. This caused delays
when a single task was waiting for a message. The new
Uintah dynamic scheduler changes the task order during the
execution to ensure that processors do not have to wait [7].
As of recently, the dynamic scheduler has been extended
with support for GPU tasks [8], [29]. This hybrid scheduler
required a large amount of development to support the out-
of-order execution, which produced a significant performance
benefit in lowering both the MPI wait time and the overall
runtime. The hybrid scheduler utilizes four task queues. For
CPU tasks, it has an internal ready queue and an external ready
queue. For GPU tasks, it has an initially ready GPU queue,
containing tasks that have requisite simulation variable data
copies from host-to-device pending, and a second queue for the
corresponding device-to-host data copies pending completion.
First, if a task’s internal dependencies are satisfied, it will be

Fig. 2. Example of Uintah Task Graph (from [7]).

Fig. 3. Architecture of Uintah Hybrid Task Scheduling System (from [29]).

put in the CPU internal ready queue, where it will wait until
all required MPI communication has finished. Then, the task
moves to the external ready queue. In this same step, if the
task is GPU-enabled, it is put into the host-to-device copy
queue for advancement toward execution. Ultimately, the task
goes to the pending device-to-host copies queue. As long as
the external queue (resp., GPU task queue) is not empty, the
processor (resp., GPU) always has tasks to run. This can help
to overlap the MPI communication time with task execution,
and the approach significantly reduces MPI wait times [5], [7],
[29].
Data Warehouse. The core scheduler component stores sim-
ulation variables in a data warehouse. The data warehouse



is a dictionary-based hash-map which maps a variable name
and patch id to the memory address of a variable. Each task
can get its read and write variable memory by querying the
data warehouse with a variable name and a patch id. The task
dependencies of the task graph guarantee that there are no
memory conflicts on local variables access, while variable
versioning guarantees that there are no memory conflicts
on foreign variables access. These mechanisms have been
implemented for supporting out-of-order task execution in our
previous work using a dynamic MPI scheduler [7]. This means
that a task’s variable memory has already been isolated. Hence,
no locks are needed for reads and writes on a task’s variables
memory. However, the dictionary data itself still needs to be
protected when a new variable is created or an old variable
is no longer needed by other tasks. As dictionary data must
be consistent across the worker threads, the data warehouse
has to be modified to be thread-safe by the addition of read-
only and read-write locks. When a task needs to query the
memory position of a variable, a read-only lock must be
acquired before this operation is done. When a task needs
the data warehouse to allocate a new variable, or to cleanup
an old variable, a read-write lock must be acquired before this
operation is done. While this increases the overhead of multi-
threaded scheduling, locking on dictionary data is still more
efficient than locking all the variables.
Adaptive Mesh Refinement (AMR). Dynamically refining
the mesh allows the simulation to reduce error in regions
where it is significant, while maintaining a coarse mesh in
other regions for performance reasons. This is particularly im-
portant for simulations with moving features. The simulation
components maintain a set of refinement flags, which specify
the regions that need to be refined. As the simulation evolves,
the refinement flags are used to create new grids with the
necessary refinement.

Whenever the grid changes, a series of steps must be
taken prior to continuing the simulation. First, the patches
must be redistributed evenly across processors through load
balancing. Second, all patches must be populated with data
either by copying from the same region of the previous grid
or by interpolating from a coarser region of the previous grid.
Finally, the task graph must be recompiled.
Load Balancer. A load balancer component is responsible for
assigning patches to processors. It attempts to distribute work
evenly while minimizing communication by placing patches
that communicate with each other on the same processor. A
large load imbalance will cause processors with less work
to wait for others to finish their computation, leading to
poor utilization of system resources. In addition, too much
communication also causes performance issues. By clustering
neighboring patches together, the framework can greatly re-
duce the necessary communication overhead, and hence also
the overall runtime. Finally, both AMR and particle methods
require constant rebalancing of workload: with AMR methods,
the workload changes as the mesh changes, while with particle
methods, the workload can change on each time step as
particles move throughout the domain. If a slow load balancing

waitPermission(Condition c){
IsendRequestMsg(c, masterRank);
waitPermissionMsg(masterRank);

}

Fig. 4. Pseudocode of waitPermission.

algorithm is used and load balancing occurs often, the time to
load balance can dominate the overall runtime. In this case,
it may be preferable to use a faster load balancing algorithm
at the cost of more load imbalance. In addition, the time to
migrate data between processors may also become significant
when load balancing often.

III. SCHEDULE INSTRUMENTATION

Early on in the URV project, it became apparent to us that
we need a flexible scheme to observe the Uintah system under
operation and to control its internal schedules. We preferred
our own home-grown solution implemented using MPI (a later
implementation will perhaps use PnMPI [30] or MPE [31]).
This implementation is based around a master controller, and
is now briefly described and illustrated in Fig. 6.

The master controller is an extra MPI process dynamically
created during the execution of a MPI program. It is used to
take control of the execution of threads (or MPI processes) and
return the control back when certain conditions are satisfied.
The user of the master controller inserts conditional control
points in the main application. When a thread reaches a control
point, it sends a message to the master controller asking to
continue the execution. The master controller is responsible
for managing these requests and sending back a message
giving the permission to the original thread when conditions
are satisfied.

There are two important functions in the master controller:

• waitPermission(Condition c) and
• processRequests().

Function waitPermission(Condition c) is called by
any thread and will block it until condition c is satisfied (see
Fig. 4). A condition can be, for example, a time to wait or an
event to happen. Function processRequests() receives
all the requests from any process in the main application,
and sends back messages to unblock the threads when the
conditions of the requests are satisfied (see Fig. 5). A thread
that calls waitPermission will send an asynchronous
message to the master controller, and then get blocked while
waiting for the permission message to arrive.

The master controller will spend most of its runtime in the
main loop of processRequests, until a request to finish it
is fired. In the first part of each iteration, the master controller
calls Iprobe that asynchronously checks if a new message
needs to be received from any of the other MPI processes. If
that is the case, the new message is received and saved. In
the second part of each iteration, the master controller goes
through all the requests that are not yet satisfied, and for each
it checks if now they are. When a request becomes satisfied,



processRequests(){
while (!FINALIZE) {

Iprobe(ANY_SOURCE, newMsg);
if (newMsg){
receiveRequestMsg(request);
saveRequest(request);

}
foreach unsatisfied request do {
if (request.satisfied()) {

sendPermissionMsg(request.sourceRank);
request.satisfy();

}
}

}
}

Fig. 5. Pseudocode of processRequests.

Process 1

Threads
2

Process 2Master Controller

Thread

sendPerm()

waitPerm()

E
la

ps
ed

 T
im

e

1
Threads

211

waitPerm()

waitPerm()

waitPerm()

waitPerm()

sendPerm()

sendPerm()

sendPerm()

sendPerm()

Fig. 6. Interaction between Two Processes and the Master Controller.

a message is sent to the original thread giving it permission
to continue its execution.

In the simple example of Fig. 6, we see how two processes
with two threads each interact with the master controller. When
a control point is reached during the execution of the main
application, a message is sent to the master controller and
the thread gets blocked waiting for a message back with the
permission to continue. A permission will be granted when
the sent condition is satisfied.

Our instrumentation scheme using the master controller has
allowed us to understand salient aspects of Uintah’s internal
operation. It will be the main infrastructure for our initial set
of schedule perturbation and event observation experiments.

IV. STATE EQUIVALENCING AND VISUALIZATION

Efficient techniques for summarizing the internal state of
large-scale concurrent systems are of great interest. Intuitively,
the state of any system is described by (equivalence classes
of) its executions, where the equivalencing is done based on
observational criteria of interest (e.g., modulo some specific
output assertions or invariants). Function call sequence tracing
is, for example, one convenient way to summarize its states,
as demonstrated in debugging tools such as STAT [19], HPC-
Toolkit [20], and AutomaDed [21]). How do these ideas apply
to very large-scale distributed system such as Uintah? Clearly,

exact state estimation is a very hard problem. However, in
the URV project, our interest is not to answer this question
exactly. Rather, we are primarily interested in discovering what
schedule perturbations or problem-specification files make new
behaviors happen. For this purpose, we have come up with the
concept of (what we call) relevant concurrent events (RCE).
For each concurrent thread τ , an RCE is a finite sequence
f1, f2, . . . , fN , g where f1, . . . , fN are function calls made
by τ and g is a global event such as lock acquire/release,
MPI message activity—and anything that is globally visible to
other threads. Clearly, each thread of a system such as Uintah
is associated with thousands of RCEs. However, intuition
suggests that in systems that have many identical components
and threads, many RCEs tend to recur during the course of a
large-scale simulation.

At present, we have instrumented Uintah using our master-
controller based architecture explained in §III. We are in the
process of recording various RCEs emitted by the Uintah
threads. Currently, we are generating extremely simple RCEs
where the sequence f1, . . . , fN is very short, or in some cases
even empty (thus going purely by the global events). Our
intuition is that the longer the function call sequence of an
RCE, the more context information we are associating with
the global action g; however, the cost of logging and studying
the RCEs also correspondingly goes up.

We are in the process of experimenting with different
equivalencing criteria for RCEs. Our hope is that if we trace
the sequence of RCEs that a system transitions through (after
we suitably equivalence the RCEs), we will be able to tell
better which sequences of events are outliers and which
are merely repetitions of prior actions. In a system such as
Uintah, there is a high degree of spatial symmetry (identical
or nearly identical components) as well as temporal symmetry
(behaviors that tend to recur over simulation time steps).
Thus, we are considering both spatial equivalencing (e.g.,
forget the distinction between two identical RCEs performed
by distinct threads during one simulation step) and temporal
equivalencing (one RCE performed by two threads across
distinct simulation steps) approaches.

Following the equivalencing, we will produce visualizations
of RCE transitions produced by typical Uintah simulations,
portraying the recurrent nature of RCEs, and of course high-
lighting outlier behaviors. We will then subject Uintah to
different perturbations and hope to rank the efficacy of these
perturbations based on the degree of salient changes they
induce across RCE transition diagrams. We believe that this
study will lead to a better understanding of which active testing
approaches [32] are more effective for large-scale systems.

The purpose of the aforesaid visualization studies is to
design better perturbation methods. However, in the final
deployment of Uintah, we will still log key system events
and maintain them in a ‘black box’ in the temporally-refined
manner mentioned earlier. In fact, key system invariants and
contracts (e.g., no unlock before a prior lock) will be checked
at runtime. The “law of large numbers” observation suggests
that we do not need to perform these contract checks within



each and every one of the millions of threads; instead, we
might be able to take a sampling approach (spatial or tem-
poral). In fact, checking invariants at each and every thread
can detrimentally impact performance and energy consump-
tion, and so we strongly believe that suitable sampling-based
approaches are essential. We anticipate our studies pertaining
to RCEs and the generation of ‘black boxes’ to be finished
over the coming year.

V. DYNAMIC AND RUNTIME VERIFICATION

Bugs encountered during the development of Uintah can be
roughly classified into two equivalence classes:

• Shallow bugs that are easy to trigger and reproduce using
existing regressions and configurations at small scale,
and therefore much easier to fix. Such bugs often appear
during, or right after the implementation of a new feature.

• Deep-seated bugs are triggered only by very specific
configuration and runtime parameters, and often are not
easy to reproduce. Such bugs can be dormant for months,
and typically manifest when the code of Uintah is ported
to a new platform. These bugs sap designer productivity,
often requiring weeks of their undivided attention.

The primary goal of the runtime verification approaches being
developed during the URV project is to help find and explain
deep-seated bugs.

Our runtime testing approaches fall under the umbrella of
active testing [32]. They aim to perturb execution schedules
while not violating the causal order of task executions im-
plied by the Uintah task graphs. Such perturbations can be
introduced into any of the Uintah components (scheduler, data
warehouse, AMR, or load balancer). More specifically, we
are investigating two complementary perturbation techniques:
schedule perturbation and configuration fuzzing.

The goal of schedule perturbation is to alter the order in
which interacting events (e.g., thread locking, MPI messages)
occur during the execution of Uintah. Configuration fuzzing,
on the other hand, tries to trigger perturbations in executions
by altering Uintah’s input configuration file, which specifies
the Uintah simulation problem and its parameters.
Schedule Perturbation. Schedule perturbation has already
proved to be effective for finding bugs in the context of multi-
threaded shared-memory programs (e.g., [10], [33]) and small-
scale message-passing applications (e.g., [9]). However, to the
best of our knowledge, efficient schedule perturbation for a
large computational science problem solving environment such
as Uintah has not been attempted before. The number of events
that could be perturbed in a system such as Uintah is simply
too large for the conventional approaches, which pick events
to perturb either blindly or using simple heuristics without
any domain knowledge. As said before, blindly perturbing
schedules of worker threads in the Uintah’s task scheduler
might only alter which thread will execute which Uintah task.

The URV project aims to develop methods that leverage
knowledge of the system architecture and code to improve the
schedule perturbation methods. For example, we can exploit
the fact that Uintah’s execution advances along the lines of

<LoadBalancer type="DLB">
<costAlgorithm>ModelLS</costAlgorithm>
<hasParticles>true</hasParticles>
<timestepInterval>25</timestepInterval>
<gainThreshold>0.15</gainThreshold>
<outputNthProc>1</outputNthProc>
<doSpaceCurve>true</doSpaceCurve>

</LoadBalancer>

Fig. 7. Excerpt from a Uintah Problem Specification (UPS) File. The excerpt
provides parameters for a load balancer.

simulation time steps that are fairly symmetric (across time).
This may give us the opportunity to pursue novel schedule
perturbation methods that do not apply in a general active-
testing framework. As an example, if the Uintah active tester
determines in simulation timestep t that a specific schedule
perturbation is productive to explore, it need not re-execute the
Uintah simulation beginning timestep t with this new schedule
perturbation, similar to what a model checker [34] might
have done. Instead, we believe that we can exercise the same
schedule perturbation during the subsequent timestep t+1. Of
course, we plan to measure the efficacy of such heuristics in
our future work.

We are currently working on improving the effectiveness
of schedule perturbation by (1) incorporating domain-specific
knowledge about Uintah into our schedule perturbation engine,
and (2) relying on state equivalencing and visualization tech-
niques described in §IV to guide the perturbation algorithm
and provide user feedback. Therefore, developers of the system
will have the ability to customize our perturbation engine
based on their knowledge of the system and their intuitions
about where bugs are likely hidden. They will also be guided
by the visualizations of RCE sequences, as described in §IV.
We will allow developers to specify the events they are inter-
ested in causing schedule perturbations around. Furthermore,
we will develop a simple interface for modularly plugging in
different perturbation strategies. While the perturbation engine
will come with several default perturbation strategy plugins,
it will also allow developers to modify them based on their
domain knowledge. The ultimate goal is to empower the
developers of the system with different ways in which they
could focus the strength of our tools on the parts of the system
they currently find interesting or challenging. We believe that
these mechanisms are essential to achieve the desired degree
of scalability and practical usability of formal ideas in the
context of large-scale computational science problem solving
environments.
Configuration Fuzzing. Configuration fuzzing aims to push
Uintah into different interesting executions by fuzzing [35]
its problem description input files. Fuzzing is a well-known
testing technique that systematically introduces random data
into structured input files while trying to keep them well-
formed. Combined with formal techniques, fuzzing has shown
great success in finding security vulnerabilities in software
(e.g., [36], [37]). In the context of Uintah, we use fuzzing



on problem description input files, called Uintah Problem
Specification (UPS) files, in order to perturb executions of
the system. UPS files use a well-specified XML format in
which the exact simulation problem and its parameters, as
well as the different parameters of the Uintah framework
itself, are defined. Fig. 7 gives a UPS file excerpt provid-
ing parameters for the load balancer component of Uintah
introduced in §II. First, a type of the used load balancer
has to be specified, which is dynamic load balancer (DLB)
in this case [38]. Then, various parameters used to control
the load balancer are set. For example, costAlgorithm
defines which cost estimation algorithm should be used, while
timestepInterval specifies how many simulation steps
have to pass before load balancing gets reevaluated. Our
fuzzing approach will alter values of relevant input parameters
in a meaningful way guided by domain-specific knowledge
about the system. The goal is to push Uintah into potentially
disruptive and unusual execution paths, for example by setting
timestepInterval to 1 and therefore stressing the load
balancer and its interaction with the rest of the system.

VI. CONCLUDING REMARKS

Status. While much of this paper has portrayed the URV
project and its goals, the master-controller-based scheduler is
in operation, and we have begun developing visualizations of
RCE transition diagrams. Here are a few concrete data sets
from our preliminary studies:

• Events for the visualization tool:
– File name: hotBlob AMR
– Number of processes: 4
– Number of threads in each process: 4
– Number of patches in total: 16
– Number of events been monitored: 9 (5 in the sched-

uler, 3 in MPI, 1 in AMR).
– Running time: around 1 min.
– Number of events recorded: 255k (50k MPI Isend,

50k MPI Irecev, 150k tasks total, 372 time steps, 360
regridding steps).

• Lock study, capturing every lock call:
– Running time: about 25 minutes.
– Number of lock calls: 900k

We have casually observed a very high degree of symmetry
in these events, as expected. Of course, a more exact and
systematic portrayal of symmetry modulo various equivalenc-
ing criteria is a much awaited future result. Clearly, all the
scalability directions suggested in this paper are essential
in order to observe the system state transitions, check for
invariant violations online, and then to log a temporally refined
sequence of events for the ultimate Uintah Blackbox.
Some Tangible Metrics of Success. As we are unaware of
a previous study of applying formal methods to a problem
solving environment for HPC, we would also like to develop
a set of metrics to assess our own success. Some plausible
metrics are now listed:

• How many prior bugs (gleaned from Uintah regressions
and svn logs) can be reproduced using our new methods?

• What scale reduction was possible in configuring Uintah
such that the bug was still reproduced? (This sheds light
on whether some of the bugs encountered are problem-
size dependent.)

• How easy has bug root-causing and explanation become?
• What are the overheads of keeping error-monitors con-

tinuously in operation? How much do they slow down
and/or increase power consumption?

• What sampling approaches, scheduler perturbation, and
fuzzing approaches are effective for what kinds of prob-
lems and scales?

• What are measured bug omission rates (if this number
can be obtained) and how can they be lowered?

• Are there any possible “probe effects”, i.e., does the
deployment of our runtime techniques itself mask bugs?

Our ongoing work is aimed at answering these questions and
developing solutions that can be used at various stages of
software evolution: from design validation to runtime monitors
that can continually monitor correctness.
Broadly Applicable Concepts and Approaches. We are
interested in developing concepts and methods that will apply
to other high performance computing software installations
besides Uintah. The obvious difficulty is of course that each
HPC system differs from the other in terms of overall organiza-
tional principles, the scale at which it is meant to operate, and
the life-cycle of the software itself (how many developers are
involved and over what period of time the code has evolved).
Even if focusing just on HPC problem solving environments
based on task-graph reduction, these details vary widely.
However, we strongly believe that some of the instrumentation,
monitoring, and schedule perturbation techniques we develop
will have broader appeal in similar systems. Most importantly,
the HPC community and the computer science formal methods
community have very rarely overlapped in the past—a point
also made recently by Gopalakrishnan et al. [9]. One of the
most tangible high-level outcomes of the URV project may
be to lend credence to our strong belief that collaborations
such as ours are possible, and are beneficial to both sides:
to HPC researchers who gain an appreciation of CS formal
methods; and to CS researchers who get a chance to involve
in concurrency verification problems of a more fundamental
nature that directly contributes to a nation’s ability to conduct
science and engineering research.

REFERENCES

[1] C. Hoare, “Assert early, assert often,” http://research.microsoft.com/
en-us/people/thoare/.

[2] M. Berzins, J. Schmidt, Q. Meng, and A. Humphrey, “Past, present, and
future scalability of the Uintah software,” in Proceedings of the Blue
Waters Workshop, 2013, to appear.

[3] D. L. Brown and P. Messina, “Scientific grand challenges,
crosscutting technologies for computing at the exascale,” 2010,
http://science.energy.gov/∼/media/ascr/pdf/program-documents/docs/
crosscutting grand challenges.pdf.



[4] J. D. d. S. Germain, J. McCorquodale, S. G. Parker, and C. R.
Johnson, “Uintah: A massively parallel problem solving environment,” in
Proceedings of the IEEE International Symposium on High Performance
Distributed Computing (HPDC), 2000, pp. 33–41.

[5] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. A. Wight, and
J. R. Peterson, “Uintah: A scalable framework for hazard analysis,” in
Proceedings of the TeraGrid Conference, 2010, pp. 3:1–3:8.

[6] J. Luitjens and M. Berzins, “Improving the performance of Uintah: A
large-scale adaptive meshing computational framework,” in Proceedings
of the IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2010, pp. 1–10.

[7] Q. Meng, J. Luitjens, and M. Berzins, “Dynamic task scheduling for the
Uintah framework,” in Proceedings of the IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS), 2010, pp. 1–10.

[8] A. Humphrey, Q. Meng, M. Berzins, and T. Harman, “Radiation
modeling using the Uintah heterogeneous CPU/GPU runtime system,” in
Proceedings of the Conference of the Extreme Science and Engineering
Discovery Environment (XSEDE): Bridging from the eXtreme to the
campus and beyond, 2012, pp. 4:1–4:8.

[9] G. Gopalakrishnan, R. M. Kirby, S. Siegel, R. Thakur, W. Gropp,
E. Lusk, B. R. de Supinski, M. Schulz, and G. Bronevetsky, “Formal
analysis of MPI-based parallel programs,” Communications of ACM,
vol. 54, no. 12, pp. 82–91, Dec. 2011.

[10] M. Emmi, S. Qadeer, and Z. Rakamarić, “Delay-bounded scheduling,”
in Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 2011, pp. 411–422.

[11] S. F. Siegel and G. Gopalakrishnan, “Formal analysis of message
passing,” in International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), 2007, invited tutorial.

[12] A. Vo, G. Gopalakrishnan, R. M. Kirby, B. R. de Supinski, M. Schulz,
and G. Bronevetsky, “Large scale verification of MPI programs using
Lamport clocks with lazy update,” in Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2011, pp. 330–339.

[13] M. Müller, B. de Supinski, G. Gopalakrishnan, T. Hilbrich, and
D. Lecomber, “Dealing with MPI bugs at scale: Best practices, automatic
detection, debugging, and formal verification,” http://www.cs.utah.edu/
fv/publications/sc11 with handson.pptx, Nov. 2011, full-day tutorial at
Supercomputing.

[14] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient data race
detection for distributed memory parallel programs,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2011, pp. 51:1–51:12.

[15] S. F. Siegel, “Model checking nonblocking MPI programs,” in Proceed-
ings of the International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), 2007, pp. 44–58.

[16] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke, “Combining
symbolic execution with model checking to verify parallel numerical
programs,” ACM Transactions on Software Engineering and Methodol-
ogy, vol. 17, no. 2, pp. 1–34, 2008.

[17] L. V. Kale and S. Krishnan, “Charm++: Parallel Programming with
Message-Driven Objects,” in Parallel Programming using C++. MIT
Press, 1996, pp. 175–213.

[18] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “DAGuE: A generic distributed DAG engine for high
performance computing,” Parallel Computing, vol. 38, no. 1-2, pp. 37–
51, 2012.

[19] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller,
and M. Schulz, “Stack trace analysis for large scale debugging,” in
Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), 2007, pp. 1–10.

[20] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[21] G. Bronevetsky, I. Laguna, S. Bagchi, B. de Supinski, D. Ahn, and
M. Schulz, “AutomaDeD: Automata-based debugging for dissimilar par-
allel tasks,” in Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2010, pp. 231–240.

[22] C. Cole and R. Williams, “Photoshop scalability : Keeping it simple,” in
ACM Queue, Sep. 2010, http://queue.acm.org/detail.cfm?id=1858330.

[23] J. E. Guilkey, T. B. Harman, and B. Banerjee, “An Eulerian-Lagrangian
approach for simulating explosions of energetic devices,” Comput.
Struct., vol. 85, no. 11-14, pp. 660–674, 2007.

[24] I. Ionescu, J. E. Guilkey, M. Berzins, R. M. Kirby, and J. A. Weiss,
“Simulation of soft tissue failure using the material point method,”
Journal of Biomechanical Engineering, vol. 128, pp. 917–924, 2006.

[25] J. E. Guilkey, J. B. Hoying, and J. A. Weiss, “Computational modeling
of multicellular constructs with the material point method,” Journal of
Biomechanics, vol. 39, no. 11, pp. 2074–2086, 2006.

[26] G. Krishnamoorthy, S. Borodai, R. Rawat, J. Spinti, and P. J. Smith,
“Numerical modeling of radiative heat transfer in pool fire simulations,”
in Proceedings of the ASME International Mechanical Engineering
Congress and Exposition (IMECE), 2005, pp. 327–337.

[27] A. Brydon, S. Bardenhagen, E. Miller, and G. Seidler, “Simulation of
the densification of real open-celled foam microstructures,” Journal of
the Mechanics and Physics of Solids, vol. 53, no. 12, pp. 2638–2660,
2005.

[28] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng,
“Programming petascale applications with Charm++ and AMPI,” in
Petascale Computing: Algorithms and Applications, 2008, pp. 421–441.

[29] Q. Meng, A. Humphrey, and M. Berzins, “The Uintah framework: A
unified heterogeneous task scheduling and runtime system,” in Proceed-
ings of the International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing (WOLFHPC),
2012.

[30] M. Schulz and B. R. de Supinski, “PNMPI tools: A whole lot greater
than the sum of their parts,” in Proceedings of the ACM/IEEE Conference
on Supercomputing (SC), 2007, pp. 30:1–30:10.

[31] “MPI: Performance visualization,” http://www.mcs.anl.gov/research/
projects/perfvis/software/MPE/index.htm.

[32] P. Joshi, M. Naik, C.-S. Park, and K. Sen, “CalFuzzer: An extensible
active testing framework for concurrent programs,” in Proceedings of the
International Conference on Computer Aided Verification (CAV), 2009,
pp. 675–681.

[33] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), 2007, pp. 446–455.

[34] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[35] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley Professional, 2007.

[36] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2008, pp. 206–215.

[37] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2009, pp. 474–484.

[38] Q. Meng, J. Luitjens, and M. Berzins, “A comparison of load balancing
algorithms for AMR in Uintah,” Scientific Computing and Imaging
Institute, University of Utah, Tech. Rep. UUSCI-2008-006, October
2008.


