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3-D magnetic inversion with data compression
and image focusing

Oleg Portniaguine∗ and Michael S. Zhdanov∗

ABSTRACT

We develop a method of 3-D magnetic anomaly inver-
sion based on traditional Tikhonov regularization the-
ory. We use a minimum support stabilizing functional to
generate a sharp, focused inverse image. An iterative in-
version process is constructed in the space of weighted
model parameters that accelerates the convergence and
robustness of the method. The weighting functions are
selected based on sensitivity analysis. To speed up the
computations and to decrease the size of memory re-
quired, we use a compression technique based on cubic
interpolation.

Our method is designed for inversion of total mag-
netic anomalies, assuming the anomalous field is caused
by induced magnetization only. The method is applied to
synthetic data for typical models of magnetic anomalies
and is tested on real airborne data provided by Exxon-
Mobil Upstream Research Company.

INTRODUCTION

Interpretation of 3-D magnetic data over inhomogeneous
geological structures is a challenging problem in exploration
geophysics. Despite significant progress made over the last
decade, inversion of magnetic survey data still has many prac-
tical difficulties. The major difficulty is related to theoretical
nonuniqueness of the magnetic inverse problem. It is well
known that there exist magnetic mass distributions generating
zero external fields. These nonradiating masses cause equiva-
lence in inverse problem solution, which can be overcome only
by introducing a priori information about the geological struc-
tures. Several methods have been developed for dealing with
the nonuniqueness problem. Most of these methods are based
on the parametric inversion, where the geometric parameters
of the model are fixed and the parameters inverted for are the
magnetic susceptibilities on the grid within the given geometry
(e.g., Bhattacharyya, 1980; Rao and Babu, 1991).
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Another approach to the solution of this problem was taken
by Li and Oldenburg (1996). They applied the powerful tool
of a general inversion method to solve the underdetermined
problem, with the number of cells significantly larger than the
amount of data available. Li and Oldenburg used a priori in-
formation to select the desired geological model from a class
of possible solutions. This goal was reached by constructing a
model objective function with appropriate weighting functions.
The parameters of the weighting functions were selected em-
pirically, based on numerical modeling and qualitative analysis
of typical magnetic anomalies. Note that the objective func-
tion introduced in Li and Oldenburg (1996) has the flexibility
to construct many different models that generate practically
the same data.

We develop an inversion method based on traditional
Tikhonov regularization theory. The objective function (the
Tikhonov parametric functional) consists of two terms: a mis-
fit functional and a stabilizing functional. The misfit functional
is responsible for fitting the observed data with synthetic data
predicted for the given model. The stabilizing functional in-
corporates information about the basic properties of the type
of models used in the inversion. We suggest using the mini-
mum support stabilizing functional, similar to the one intro-
duced by Last and Kubic (1983), for compact 2-D inversion of
gravity data. This functional helps generate a sharp, focused in-
verse image similar to the 3-D gravity inversion considered in
Portniaguine and Zhdanov (1999a). The main difference be-
tween our approach and the one discussed by Last and Kubic
(1983) is in constructing an iterative inversion process in the
space of the weighted model parameters. The weighting func-
tions are selected based on sensitivity analysis. They provide
equal sensitivity of the observed data to the cells located at
different depths and at different horizontal positions. Thus,
our weighting functions automatically introduce appropriate
corrections for the vertical and horizontal distribution of the
anomalous susceptibility. This is one of the main differences
between our approach and the one developed by Li and
Oldenburg (1996).

Another difficulty in magnetic inverse problems is related
to the enormous areal coverage of modern magnetic surveys,
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especially in airborne magnetic exploration. Processing a large
amount of data collected in an airborne survey requires access
to a huge data file stored on a hard drive, which slows the in-
version process. To speed the computations and to decrease
the amount of memory required, we use the compression tech-
nique we outlined earlier in Portniaguine and Zhdanov (1999b)
and Portniaguine (1999). We now consider a method with a
higher compression factor, based on using cubic polynomials
in the compression algorithm.

Our inversion method is designed to invert any component
of the anomalous magnetic field, including the total magnetic
anomaly, under the assumption that the anomalous field is
caused by induced magnetization only.

The code is applied to synthetic data for typical models of
magnetic anomalies. It is also tested on real airborne magnetic
data, provided by ExxonMobil Upstream Research Company.

FORWARD MODELING OF MAGNETIC ANOMALIES

We divide the lower half-space into small rectangular cells,
each filled by magnetic masses with intensity of magnetization
I(r), which is given as a product of the magnetic susceptibility
χ(r), the strength of the inducing geomagnetic field H0, and its
direction, given by a vector l of unit length.

We denote the coordinates of the cell center as
rk= (xk, yk, zk), where k= 1, . . . , Nm, and the cell sides as dx,
dy, dz. Also, we have a discrete number of observation points
r′n= (x′n, y′n, 0), where n= 1, . . . , Nd. The field at point n from a
small cell k with unit susceptibility (the magnetic field kernel
fnk) is equal to

fnk = H 0
[

3(l · r)2

‖r‖2
− 1

]
dx dy dz

‖r‖3
, (1)

where r= r′n− rk is the vector between the observation point
and the cell center. The magnetized small cubic cell is approx-
imated by a dipole located at its center.

The discrete forward modeling operator for total field mag-
netic anomalies produced by the arbitrary distribution of sus-
ceptibility can be expressed in matrix notation as

d = F̂m. (2)

Here, m is a vector of model parameters (each component of
that vector is the magnetic susceptibilityχ of the corresponding
cell) of length Nm, d is a vector of the observed data of length
Nd, and F̂ is a rectangular matrix of size Nd× Nm, formed by
the corresponding magnetic field kernels [equation (1)].

COMPRESSION IN SOLVING INVERSE PROBLEMS

Expression (2) becomes a matrix equation if the data d are
given and m is unknown. The matrix F̂ of equation (2) is a
full matrix. In the 3-D case, the size of F̂ is large. To store
it efficiently, we represent it as a product of sparse matrices.
This also speeds the algorithm as a result of the use of sparse
arithmetic.

In the magnetic inverse problem, the data dimension Nd is
commonly smaller than the model dimension Nm. This suggests
applying compression to the model side of F̂. That produces
incomplete factorization of F̂:

F̂ ≈ F̂mcŴT
mr, (3)

where T denotes matrix transposition, F̂mc is a compressed ma-
trix of the forward operator,

F̂mc= threshold
(
F̂ŴT

mc, ε
)
, (4)

and Ŵmc and Ŵmr are the model compression and restoration
matrices, respectively, with dimensions of Nm× Nm. Parameter
ε is a threshold level (in percent) that determines the accuracy
of restoration. In actual applications, we set ε equal to the noise
level in the data.

Substituting equation (3) into equation (2), we obtain

F̂mcŴT
mrm = d. (5)

Formula (5) provides the compressed form of the inverse prob-
lem equation.

The greater the amount of information under compression,
the higher the compression factor, which is determined as a ra-
tio of the total number of elements of the matrix to the number
of nonzero elements. Model side compression not only allows
the use of a fine model grid in the lateral direction (without
running out of memory to store a huge full matrix), but it also
makes it possible to use regular small cells at every depth in
the model. This significantly simplifies optimal mesh genera-
tion and also streamlines handling and representing the results.
The basic principles of the compression technique are outlined
in Appendices A and B.

REGULARIZED SOLUTION OF THE MAGNETIC INVERSE
PROBLEM IN THE COMPRESSED FORM

In this section we apply the conjugate gradient method for
solving a 3-D magnetic inverse problem. We first describe
the conventional conjugate gradient method. Remarkably, this
method is very versatile. Applied to an overdetermined linear
problem, the conjugate gradient method produces the least-
squares solution. Applied to an underdetermined linear prob-
lem, the method converges to the minimum norm solution. We
also demonstrate that the linear problem with Tikhonov reg-
ularization can be reformulated easily as a conjugate gradient
for the overdetermined problem. In this approach, the reg-
ularization parameter must be chosen iteratively. Finally, we
consider the basic principles of focusing inversion and intro-
duce a reweighted optimization algorithm for a stable focusing
solution of the magnetic inverse problem.

Conjugate gradient method for linear inverse problem solution

The solution of compressed inverse problem (5) is found
iteratively according to the following formulas (Fletcher, 1981):

Compressed version Uncompressed version

li = Ŵmr
(
F̂T

mcri−1
)

(a) li = F̂T ri−1 (h)

si = lTi li (b)

hi = li + hi−1
si

si−1 (c)

fi = F̂mc
(
ŴT

mrhi
)

(d) fi = F̂hi (i )

ki = fT
i ri

fT
i fi

(e)

mi = mi−1 − ki hi ( f )

ri = ri−1 − ki fi (g)

, (6)
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where i is the iteration number, r is the residual vector, l is
the gradient vector, s is its length, h is the conjugate direction
vector in the space of models, f is its projection in the space of
data, and k is the step length, a scalar. The starting values (for
i = 0) are 

m0 = 0 (a)

r0 = F̂m0 − d = −d (b)

s0 = 1 (c)

. (7)

Note that in equation (6) the matrix-to-vector multiplica-
tions in items (a) and (d) take the most computer time. An
uncompressed version of the algorithm is produced by sub-
stituting items (h) and (i) for (a) and (d), respectively. Two
sparse multiplications in (a) and (d) are much faster than one
multiplication by a full matrix in (i) and (h). That is why the
compression method speeds up the algorithm.

If the number of parameters in vector m, which we denote
as Nm, is not equal to the number of data points in vector d (de-
noted as Nd), then F̂ is rectangular. Interestingly, the conjugate
gradient method can be applied even in this case.

For an underdetermined problem (where Nm> Nd), the con-
jugate gradient iterations (6) converge to the minimum norm
solution mmin:

mmin = F̂T (F̂F̂T )−1d. (8)

Expression (8) is also known as the Riesz representation for-
mula (Parker, 1994).

Regularized conjugate gradient method

The original magnetic inverse problem and its reformulation
in the compressed form [equation (5)] are ill posed because of
the nonuniqueness and instability of the solution. The con-
ventional way of solving ill-posed inverse problems, accord-
ing to the regularization theory (Tikhonov and Arsenin, 1977;
Zhdanov, 2002), is based on the minimization of the Tikhonov
parametric functional, Pα(m):

Pα(m) = ‖F̂m− d‖2 + α‖m‖2, (9)

where ‖F̂m− d‖2 is a misfit functional between theoretical val-
ues F̂m and the observed data d, ‖m‖2 is a minimum norm
stabilizing functional, and α is a regularization parameter.

The problem of parametric functional minimization,

Pα(m) = min, (10)

can be reformulated to apply formula (6). Consider the linear
inverse problem: [

F̂
√
αÎ

]
m =

[
d

0

]
, (11)

where Î is the unit matrix. Two matrices in square brackets
denote a single matrix created by appending the two:

Â1 =
[

F̂
√
αÎ

]
, d1 =

[
d

0

]
. (12)

For example, vector d1 is created from vector d by appending
a zero vector 0 to its tail. Matrix Â1 is created by appending a
diagonal matrix (with

√
α on the main diagonal) to matrix F̂.

Equation (11) is the result of adding extra equations to the
original equation (2). The number of existing equations in the
original formula is Nd. The number of additional equations is
equal to the number of free parameters Nm, so the system of lin-
ear equations (11) always contains more equations (Nm+ Nd)
than unknowns (Nm), i.e., it is overdetermined. For an overde-
termined system, the conjugate gradient method converges to
the least-squares solution. This is equivalent to the minimiza-
tion of the parametric functional expressed in combined matrix
notations:

‖Â1m− d1‖2 = min . (13)

Reformulating equation (9) as equation (13) and applying
formula (6) to the minimization of formula (13), we arrive
at the conventional regularized conjugate gradient method
(Zhdanov, 2002).

To select an optimal regularization parameter α, we use the
Tikhonov method. First, α is set to balance the contribution of
a misfit and a stabilizer after the first iteration of a conjugate
gradient method:

m1 = k1F̂T d, r1 =−d − k1F̂m1, α1 = ‖r1‖
‖m1‖ . (14)

The subsequent iterative values are determined by decreasing
α to one-half of its previous value (Tikhonov and Arsenin,
1977):

αi+1 = αi

2
.

The process stops when the value of the misfit functional de-
creases below the noise level in the data φ:

‖ri ‖ < φ.

Method of reweighted optimization

In our previous paper (Portniaguine and Zhdanov, 1999a) we
introduced a minimum support stabilizing functional sMS(m)
to generate a sharp, focused inverse gravity problem solution,
similar to the one developed by Last and Kubik (1983):

sMS(m) =
Nm∑
k=1

m2
k

m2
k + β2

, (15)

where β > 0 is a small positive number.
Substituting the minimum norm stabilizing functional in for-

mula (9) by formula (15), we obtain

Pα(m) = ‖F̂m− d‖2 + α
Nm∑
k=1

m2
k

m2
k + β2

= min, (16)

whereβ is a small number needed to avoid the singularity when
mk= 0. Thus, the focusing inversion is reduced to the solution
of the minimization problem (16). The problem is solved using
reweighted optimization (O’Leary, 1990).

To account for the different sensitivities of the data to the
model parameters, we have to use an additional weighting ma-
trix Ŵm for the model parameters. Mehanee et al. (1998) and
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Portniaguine and Zhdanov (1999a) have shown that the matrix
Ŵm with this property can be determined as the square root of
the integrated sensitivity matrix:

Ŵm =
√

Ŝ, (17)

where Ŝ is a diagonal matrix formed by the integrated sensitiv-
ities of d to the parameter mk, determined as the ratio

Sk = ‖δd‖
δmk

=
√∑

i

(Fik)2. (18)

In formula (18), Fik are the elements of the forward modeling
matrix F̂. We denote the diagonal elements of the matrix Ŵm

by {w1, w2, . . . , wk, . . . , wNm
}.

Let us consider the minimization problem with the minimum
support stabilizer, weighted with sensitivity weights wk:

Pα(m) = ‖Fm− d‖2 + α
Nm∑
k=1

w2
km2

k

m2
k + β2

= min. (19)

We introduce an iterative weighting matrix as follows:

Ŵ2(m) = diag[m2 + β2I]Ŵ−2
m , (20)

where diag[m2+β2I] is a diagonal matrix formed by the ele-
ments m2

k+β2.
Now we can reformulate problem (19) using matrix notation:

Pα(m) = ‖F̂Ŵ(m)Ŵ−1(m)m− d‖2 + α‖Ŵ−1(m)m‖2

= min. (21)

We transform problem (21) into a space of weighted model
parameters mw by replacing the variables:

m = Ŵ(m)mw, F̂w = F̂Ŵ(m). (22)

Substituting equation (22) in expression (21), we find

Pα(mw) = ‖F̂wmw − d‖2 + α‖mw‖2 = min. (23)

Problem (23) seems to be completely similar to the classi-
cal minimum norm optimization problem (9) with only one
important difference: the new forward modeling operator,
F̂w = F̂Ŵ(m), depends on mw , so it changes in the iteration
process.

We can solve problem (23) using the reweighting algorithm,
where a minimization problem for mw is solved in each step
with fixed F̂w using the regularized conjugate gradient algo-
rithm, described above. Then, m and F̂w are updated using
equation (22) and Ŵ(m) is updated using equation (20), where
m is the inversion result in the previous step. This algorithm
generates a set of equivalent solutions of the inverse prob-
lem which fit the data with the same accuracy. The different
models within this set have different degrees of focusing. The
model after the first iteration is actually a maximum smooth-
ness solution. The process continues until the required degree
of focusing is reached.

To conclude this section, we should note that the reweighted
optimization technique has been considered in several ear-
lier publications (Last and Kubic, 1983; Wolke and Schwetlick,
1988; O’Leary, 1990; Farquharson and Oldenburg, 1998). The
most significant difficulty in the numerical implementation of
this technique is related to selecting the parameter β, because

for very small values of β the problem has a singularity where
the individual parameters mi are close to zero. Our approach
is different in the way the weighting is introduced in the opti-
mization process. The most significant practical advantage of
our approach is that the final set of equations, (22) and (23),
involves only Ŵ(m) and not the inverse, Ŵ−1(m). In this case,
according to equation (20), we can assume that β = 0 without
generating any singularity:

Ŵ2(m) = diag[m2]Ŵ−2
m . (24)

This idea is similar to the one considered by Gorodnitsky and
Rao (1997). They have also found that the reweighting equa-
tion (22) focuses the image.

Also note that our algorithm includes constraints on ma-
terial properties, implemented via a penalization algorithm
(Portniaguine and Zhdanov, 1999a).

Assume that the geological model can be described as a com-
posite of two materials with known physical properties (for
example, magnetic susceptibility). One material corresponds
to the homogeneous background; the other characterizes the
anomalous body. In this situation, the values of the material
property in the inversion image can be equal to the background
value or to the anomalous value. However, the geometric dis-
tribution of these values is unknown. Numerical tests show that
focusing tends to produce the smallest possible anomalous do-
main. At the same time, the material property values m outside
of this domain tend to be equal to the background values mb.
We can impose the upper bound for the positive anomalous
parameter values ma and, during the iterative process, cut off
all values above this bound. This algorithm can be described as

m−mb = ma, if m−mb > ma,
(25)

m−mb = 0, if m−mb < 0.

Thus, according to formula (25), the material property values
m are always distributed within the interval

mb < m< mb +ma.

A similar rule is applied in the case of negative anomalous
parameter values.

In summary, the whole algorithm of 3-D magnetic focusing
inversion with compression consists of the following steps:

1) precomputing the compressed matrix Fmc using formula
(3),

2) calculating the sensitivity weights according to equation
(17), and

3) using an iterative focusing inversion, which consist of
(a) inversion of data via the conjugate gradient method
according to formulas (6), (b) changing weights accord-
ing to equation (24), and (c) performing penalization of
material property distribution, as described above.

MODEL STUDY

We tested our method on typical models of magnetic anoma-
lies. We considered three models similar to those discussed by
Li and Oldenburg (1996): (1) a cube with anomalous mag-
netic susceptibility (Figure 1a), (2) a 3-D magnetic susceptibil-
ity model of a dipping slab (Figure 1b), and (3) a 3-D magnetic
susceptibility model of a faulted slab (Figure 1c).
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For all three models we used a coordinate system where the
x-axis is directed toward geographic north, the y-axis points
to geographic west, and the z-axis is directed downward. The
data at the surface are measured on a 20× 20 grid in the x- and
y-directions, with sampling intervals of 50 m in both directions.

The model grid used in the inversion consists of cubic cells
of 50× 50× 50 m3. In the lateral direction, it covers the area
of the data grid and extends down to 500 m in the vertical
direction. The number of cells in the model grid is 20× 20× 10
(4000 cells).

Li and Oldenburg (1996) have noticed the instability of 3-D
magnetic inversion to the uppermost layer of the cells. They
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FIG. 1. (a) Model of a cube with anomalous magnetic susceptibility. (b) Model of a dipping slab. The slab strike direction points to
the north, continuing from x1= 250 to x2= 750 m. (c) Model of a faulted dipping slab. The anomalous susceptibility is uniform within
each slab and is equal to 0.06 SI units. (d–f) Data for cube, dipping slab, and faulted dipping slab models, respectively. Gaussian
noise with a standard deviation of 2% of data magnitude plus 1 nT was added to the data.

proposed to cure that by inverting the data obtained by upward
analytical continuation to a height equal to the length of the
side of the cubic cell. We followed the same strategy.

The data for models 1, 2, and 3 are displayed in Figures 1d–f,
respectively. These pictures represent the total field anomaly
at the observation surface. However, for inversion we used
the data at a height of 50 m (equal to the length of the cell
side). The data were contaminated by Gaussian noise, whose
standard deviation was equal to 2% of the data magnitude
plus 1 nT. The strength of the inducing field for each model
was 50 000 nT. The polarization of the inducing field differed
from one model to another.
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We applied smooth inversion and focused inversion for each
model. The sensitivity matrix was stored in compressed form,
using the compression algorithm based on the cubic interpola-
tion pyramid. The compression factor for all three models was
22%.

The first model is a cube with a side of 200 m. The top of the
cube is buried at a depth of 150 m. Figure 1a shows the slice of
the cube through the x= 500 m profile. The anomalous suscep-
tibility is uniform within the cube and is equal to 0.06 SI units.
The inducing field has a strength of 50 000 nT and vertical polar-
ization (inclination I = 90◦ and declination D= 0◦). Figure 1d
shows a map of the synthetic observed data for this model.
Figure 2a presents the result of the smooth inversion, and
Figure 2d demonstrates the result of the focusing inversion.
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FIG. 2. Results of smooth inversion for (a) cube, (b) dipping slab, and (c) faulted dipping slab. Results of focusing inversion for
(d) cube, (e) dipping slab, and (f) faulted dipping slab.

The smooth inversion generates a diffused image of a cube,
while the focusing inversion produces a sharp, clear image of
the magnetic target. For this model the initial value of regular-
ization parameter α was 0.3, and the final value of α was 0.0094.

The second model is a 3-D magnetic susceptibility model of
a dipping slab. Figure 1b shows the slice of the slab through the
x= 500 m profile. The slab strike direction points to the north,
continuing from x1= 250 to x2= 750 m. The anomalous suscep-
tibility is uniform within the slab and is equal to 0.06 SI units.
The inducing field has the strength of 50 000 nT, I = 75◦, and
D= 25◦. Figure 1e shows the synthetic observed data for this
model. Figures 2b and 2e present the results of the smooth and
focusing inversions, respectively. The smooth image provides
some information about the location and inclination of the slab,
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but the image is diffused and unfocused, while the focusing in-
version reconstructs very well the original model of the slab.

The third model is a slab with a normal fault. Figure 1c shows
the slice of the slab through the x= 500 m profile. The fault ex-
ists at y= 500 m. The inducing field has a strength of 50 000 nT,
I = 45◦, and D= 45◦. Figure 1f shows the total field data for this
model. Figures 2c and 2f present the results of the smooth and
focusing inversions, respectively. The fault is vaguely visible in
the smooth image, while it is clearly recognized in the sharp
image.

The performance of the compression method was tested us-
ing model 1, shown in Figure 1a. On a computer with 200 MHz
processor speed and 256 Mbytes of memory, we solved five
problems with models of different sizes: Nx , Ny, Nz= 20× 20×
10, 25× 25× 12, 30× 30× 15, 35× 35× 17, and 40× 40× 20. In
each case, data dimensions were changed proportionally to the
Nx and Ny model dimensions. Results of testing requirements
are shown in Figure 3. Figure 3a shows timing, while Figure 3b
shows memory consumption. The Dashed and solid lines show
the performance of the uncompressed and compressed ver-
sions, respectively. For the uncompressed version, we used
matrices with full storage memory organization to preserve
efficiency. The size of the problem is referred to the number of
points in x-direction, assuming that other dimensions change
proportionally for the five considered cases.
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FIG. 3. (a) Increased speed and (b) memory savings because
of compression. Compressed version performance is shown by
the solid line. Uncompressed version performance is shown by
the dashed line. Calculations are performed for test model 1,
shown in Figure 1a.

For cases where the dimensions are small, the uncompressed
problem has the same speed as the compressed one. That hap-
pens because the compressed problem has overhead to fill
out the compressed matrix. As the dimension increases, the
compressed version performs much better. For the last case,
where Nx = 40, the uncompressed version does not fit into
memory (256 Mbytes); therefore, its execution time increases
dramatically.

INVERSION OF REAL DATA

We applied the developed code to interpret airborne mag-
netic data collected for ExxonMobil Upstream Research Com-
pany over an area in northern Canada. Figure 4a presents the
map of the observed total magnetic field. The flight line spacing
was about 300 m, and the flight elevation was about 100 m. The
measurements were taken approximately every 16 m along the
lines. In our inversion study, we assumed that the direction of
the inducing magnetic field was close to vertical, since the ob-
servation area was in northern Canada. The basement (granite)
is buried at a depth of about 450 m and is covered by sediments
formed by till and sand layers. The goal of the interpretation
was to locate the magnetization zones in the upper parts of the
section, which manifest themselves as the magnetic anomalies.

In the first stage of interpretation, we divided the observed
total magnetic field into regional and residual anomalies. This
problem can be solved using polynomial approximation of the
regional anomalies. One can use the inversion program to sep-
arate the field as well, as described below.

The lower half-space below the observation area was divided
into 1× 1× 1 km3 cells to a depth of 20 km. Applying our 3-D
inversion code, we obtained the distribution of the magnetic
susceptibility within these cells. We determined the regional
magnetic anomaly by applying the forward modeling code to
the cells located only at depths between 4 and 20 km. The
residual field was obtained by subtracting the regional part
from the observed data.

In the next stage of interpretation, we divided the residual
field into subregional and local anomalies. We introduced a new
mesh at depths from 0 to 4 km, formed by cubic cells measuring
400× 400× 400 m3. The distribution of the magnetic suscep-
tibility within this mesh was found by 3-D inversion. The sub-
regional field was computed as the effect of the cells at depths
from 1.6–4 km. This field was subtracted from the residual field
to calculate the corresponding local anomalies (Figure 4b).

In the last round of the inversion, we applied the 3-D in-
version code to the local anomalies only, using a mesh formed
by cubic cells measuring 300× 300× 300 m3 located at depths
from 0 to 1.5 km. In this stage we used two types of inversion:
(1) the conventional maximum smoothness inversion and (2)
the focusing inversion.

Figure 4c shows the result of the smooth inversion. It pres-
ents a horizontal slice of the anomalous magnetic susceptibility
distribution at a depth of 800 m. The result of the focusing
inversion is shown in Figure 4d.

We can clearly see the lateral shape and extent of the mag-
netized rock formations in these figures. However, the smooth
solution produces a diffused image of the magnetic targets,
while the focused solution provides a much clearer and sharper
image.



Magnetic Inversion and Compression 1539

FIG. 4. (a) Airborne magnetic data. (b) Local anomalies. (c) Smooth inversion result, slice at 800 m depth. The color scale shows
the anomalous susceptibility in SI units. (d) Focused inversion result, slice at 800 m depth.
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APPENDIX A

COMPRESSION IN ONE DIMENSION

To understand how to represent a full matrix as a product of
sparse matrices, let us consider the compression of a full vector.
The full matrix can be viewed as a collection of its columns (or
rows), which are vectors.

Before we go to the complicated 3-D case, let us consider a
simple 1-D vector d. As an illustration, Figure A-1a, shows a
smooth function, given as a vector of 17 values.

Let us retain the even values of d in vector de, which has
zeroes in place of the odd values. Vector do retains the odd
values of d and has zeroes in place of the even values:

d = de+ do. (A-1)

Vectors de and do are connected to d via diagonal matrices Ŵe

and Ŵo:

do = Ŵod, (A-2)

de = Ŵed. (A-3)

The main diagonal of Ŵe has ones for even indices and zeroes
for odd indices. The diagonal of Ŵo has ones for odd indices
and zeroes for even indices. Based on that definition, one can
easily establish the following properties of Ŵe and Ŵo:

Ŵo + Ŵe = Î, ŴoŴo = Ŵo, ŴeŴe = Ŵe,

ŴeŴo = ŴoŴe = 0, (A-4)

where Î is the identity matrix.
Consider an interpolation matrix Ŵi which predicts values at

even nodes from values at odd nodes only using cubic polyno-
mials. The matrix Ŵi contains coefficients of cubic polynomials.
Simple calculations show that Ŵi satisfies the equation

Ŵi = ŴeŴi Ŵo. (A-5)

One round of compression transformation consists of (1)
predicting even node values, (2) subtracting true even values
from those predicted, and (3) retaining odd node values as is.
The result of this tranformation is illustrated in Figure A-1b.
This transformation can be expressed in matrix notation as

dc1 = Ŵi do − de+ do,

where dc1 is the transformed data. Taking into account equa-
tions (A-2), (A-3), and (A-5), we obtain

dc1 = ŴeŴi Ŵod− Ŵed+ Ŵod = dc1 = Ŵnd,

where

Ŵn = ŴeŴi Ŵo − Ŵe+ Ŵo. (A-6)

We call Ŵn an elementary compression matrix. Note that Ŵn

is inverse to itself because of equations (A-4) and (A-5):

ŴnŴn = (ŴeŴi Ŵo− Ŵe+ Ŵo)(ŴeŴi Ŵo− Ŵe+ Ŵo)

= ŴeŴi Ŵo− ŴeŴi Ŵo+ Ŵe+ Ŵo

= Ŵe+ Ŵo = Î. (A-7)

In the next round of compression transformation, we use
data that is twice as coarse. Such successive transformations are
called interpolation pyramids. One compression round is called
an elementary compression level. The elementary compression
matrices for level n are denoted above as Ŵn. For the first
level, for example, it is Ŵ1; for the second level it is Ŵ2; etc.
Figures A-1c and A-1d show the results of compression through
the second and third levels.
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FIG. A-1. Compression with interpolation pyramid for a 1-D
vector. (a) Original vector of 17 values. (b, c) Intermediate
compression levels. (d) Compressed vector. (e) Restored vec-
tor, solid line; original vector, dots. (f, g) Intermediate restora-
tion results. (h) Thresholded and sparsified vector; only three
values are retained.
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Combining N levels together, we arrive at the full compres-
sion transformation:

dc = ŴN, . . . , Ŵ2Ŵ1d = Ŵcd, (A-8)

where Ŵc is a compression matrix,

Ŵc = ŴN, . . . , Ŵ2Ŵ1. (A-9)

Figure A-1a shows the original vector d, a smooth function
of 17 values. The result of the compression transformation is
shown in Figure A-1d. Note that cubic interpolation predicts
the intermediate values of the smooth function very well, and
the compressed vector dc contains the differences between such
predictions and the actual values. Therefore, only a few values
in dc are significant, and the rest are close to zero. It is therefore
possible to store dc as sparse, using threshold transformation

dc = threshold(Ŵcd, ε). (A-10)

The inverse operation, restoration, is described by the same
matrices Ŵn applied in the reverse [order from property
(A-7)]:

d = Ŵ1, . . . , ŴN−1ŴNdc = Ŵr dc, (A-11)

where Ŵr is a restoration matrix:

Ŵr = Ŵ1, . . . , ŴN−1ŴN . (A-12)

Figure A-1h shows vector dc thresholded at 1% of its maxi-
mum, which contains only three nonzero values and therefore
is sparse. Figures A-1f and A-1g illustrate the restoration pro-
cess. Figure A-1e shows the restored vector as a solid line; the
original vector is shown by dots.

APPENDIX B

FACTORIZATION OF MATRICES FOR 3-D COMPRESSION

When solving 3-D magnetic inverse problems, we have to
handle model parameters and data in three dimensions. In this
section we discuss how the basic principles of 1-D compression
can be generalized to the 3-D case.

Consider, for example, a two-level interpolation pyramid ap-
plied to a 3-D function depending on three Cartesian coordi-
nates (x, y, z). The compression matrix Ŵc is the product of six
elementary compression matrices:

Ŵc = Ŵz2Ŵy2Ŵx2Ŵz1Ŵy1Ŵx1, (B-1)

where the indices x, y, zdenote the axis along which a particular
matrix is applied and the numerical indices 1, 2 denote the
pyramid level.

In the case of 1-D linear compression, we interpolate a func-
tion using a two-point scheme. The first-level matrix Ŵx1 has
two nonzero off-diagonal elements. The matrix Ŵc turns into
a 1-D compression matrix in the x-direction if

Ŵz1 = Ŵy1 = Ŵz2 = Ŵy2 = Î.

In 1-D finite-difference cubic interpolation, for example, the
scheme is four point and Ŵx1 has four off-diagonal elements.
This decreases the sparsity of Ŵc.

A 2-D compression matrix over the x- and y-directions is
obtained if Ŵz1= Ŵz2= Î. The compression matrix at the first
pyramid level is equal to Ŵy1Ŵx1. In 2-D bilinear interpola-
tion, the scheme is four point; in 2-D finite-difference cubic
interpolation, the scheme is 16 point.

For 3-D interpolation, the compression matrix at the first
pyramid level is a product of all three elementary matrices
over the x-, y-, and z-directions:

Ŵc = Ŵz1Ŵy1Ŵx1. (B-2)

The interpolation scheme is eight point for trilinear interpola-
tion and 64 point for tricubic interpolation.

The compression matrices tend to be less and less sparse
with growth of the dimension and in the complexity of the
interpolating function. This effect can be countered by storing
Ŵc as a factorization of elementary compression matrices, as
in equation (B-1), without computing their product.

Further, we notice that the structure of the elementary com-
pression matrices is such that at higher pyramid levels only
a few points are reduced. The other points are passed without
a change, being already reduced on lower levels. For example, a
volume of 64× 64× 64 points has six pyramid levels, and there
are three elementary matrices in the x-, y-, and z-directions at
each level correspondingly. Therefore, Ŵc will be stored as a
product of 18 matrices. For the last several levels, these matrices
contain few off-diagonal elements (because the last reduction
levels are coarse). On the main diagonal, the elements mostly
equal 1. We may therefore further reduce the amount of stor-
age by keeping the elementary matrices with the main diagonal
subtracted:

Ŵ1 = Ŵx1 − Î,

Ŵ2 = Ŵy1 − Î,

Ŵ3 = Ŵz1 − Î,
(B-3)

Ŵ4 = Ŵx2 − Î,

Ŵ5 = Ŵy2 − Î,

Ŵ6 = Ŵz2 − Î.

Storing matrices Ŵ1, Ŵ2, etc., requires less storage than storing
Ŵx1, Ŵy1, etc.

Now the compression procedure of a vector d̂ can be de-
scribed by the recursive formula

d̂n+1 = Ŵnd̂n + d̂n, (B-4)

where n changes from 1 to a number of elementary matrices in
the factorization. The restoration is described by formula (B-4)
applied in the reverse order:

d̂n = Ŵnd̂n+1 + d̂n+1, (B-5)

where n changes from the number of elementary matrices to 1.
The use of formulas (B-4) and (B-5) saves space and execution
time because the vector under transformation is not multiplied
by Î, which would have been the case if we had used matrices
Ŵx1, Ŵy1, etc., directly.


