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Abstract. This paper presents a novel method of optimizing point-
based correspondence among populations of human cortical surfaces by
combining structural cues with probabilistic connectivity maps. The pro-
posed method establishes a tradeoff between an even sampling of the
cortical surfaces (a low surface entropy) and the similarity of corre-
sponding points across the population (a low ensemble entropy). The
similarity metric, however, isn’t constrained to be just spatial proximity,
but uses local sulcal depth measurements as well as probabilistic con-
nectivity maps, computed from DWI scans via a stochastic tractography
algorithm, to enhance the correspondence definition. We propose a novel
method for projecting this fiber connectivity information on the cortical
surface, using a surface evolution technique. Our cortical correspondence
method does not require a spherical parameterization. Experimental re-
sults are presented, showing improved correspondence quality demon-
strated by a cortical thickness analysis, as compared to correspondence
methods using spatial metrics as the sole correspondence criterion.

1 Introduction

Measurements of cerebral topographical properties such as cortical thickness and
curvature are of great interest for quantitative investigations of neural develop-
ment and anatomic connectivity, both for healthy populations and for clinical
studies. Group analysis of such cerebral properties requires the ability to compute
corresponding points across a population of cortical surfaces. Consistent compu-
tation of corresponding points on the cortical surface (defined as the boundary
between the white matter (WM) and gray matter (GM) surfaces) is a difficult
task, given the highly convoluted geometry of the brain and the high variability of
folding patterns across subjects. It should also be noted that no generic “ground
truth” definition of dense correspondence exists for the cortex. The choice of
particular correspondence metric must, therefore, be application-driven.

A variety of automated cortical correspondence computation algorithms have
been proposed. The FreeSurfer system [1,2] provides an entire framework for the
segmentation, surface reconstruction, topology correction, cortical flattening and
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spherical parameterization of the cortex. The correspondence across a population
of cortical surfaces is established through the registration of their respective
spherical representations with an average surface, based on an average convexity
measure referred to as the sulcal depth, discussed in Section 3.3. Tosun et al. [3]
estimate a multispectral optical flow warping procedure that aims to align the
shape measure maps of an atlas and a subject brain’s normalized maps, based
on the shape index and curvedness metrics.

A shortcoming of these methods is that they use an atlas or a template surface
to which the other surfaces are aligned in a pair-wise manner. It has been shown
that group-wise correspondence methods that consider the entire population at
once rather than processing one surface at a time yield better statistical popu-
lation models [4,5,6]. In one of the earliest such methods by Kotcheff and Taylor
[7], each shape is represented as a point in 2N-dimensional space, with associated
covariance Σ. The method minimizes information content across an ensemble via
a cost function

∑
k log(λk + α), where λk are the eigenvalues of Σ and α is a

regularization term. The Minimum Description Length (MDL) method proposed
by Davies et al. [8] hypothesizes that the simplest description of a population
is the best; in this context, they measure simplicity by the length of the code
to transmit the data as well as the model parameters. MDL implementations in
3D usually rely on spherical parameterizations of the surfaces, which must be
obtained through a preprocessing step, such as the method proposed in [9], that
relaxes a spherical parameterization onto the input mesh. In [10], we present a
gradient descent optimization method for the MDL algorithm and explore using
local curvature in addition to spatial locations in the MDL cost function.

An empirical study by Styner et al.[6] demonstrates that ensemble-based
statistics improve correspondences relative to pure geometric regularization, and
that MDL performance is virtually the same as that of (min log |Σ+αI|), as pro-
posed in Kotcheff and Taylor’s method described above. This last observation is
consistent with the well-known result from information theory: in general, MDL
is equivalent to minimum entropy [11]. Cates et al. [12,13] propose a system
exploring this property; their entropy-based particle correspondence framework
is the underlying technique for the methodology presented in this paper and will
be discussed in more detail in Sec. 3.

We present a method that extends the entropy-based particle framework to
allow the usage of additional local information, called correspondence features
throughout this manuscript, for computing correspondence. Specifically, we pro-
pose a novel method for integrating fiber connectivity information into the corre-
spondence framework. Structural MRI scans show white matter homogeneously,
such that it is impossible to infer the orientation of the fiber tracts within each
voxel. The understanding of the WM structure, however, can be significantly
improved by additional information on fiber tracts that can be extracted from
diffusion weighted imaging (DWI) scans. One of the main contributions of this
manuscript is a suitable mapping of the fiber tract structure to the cortical
surface. Connectivity maps, which represent whether each voxel on the cortical
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surface is connected via fiber tracts to a given region of interest (ROI), is the
proposed solution to this problem.

Various tractography algorithms have been proposed in recent years to ex-
tract fiber tract paths from DWI scans. Streamline tractography [14] generates
tracts by following the direction of maximal diffusion at each voxel. While these
methods have low computation costs and simplify the visualization of the ex-
tracted fiber tracts, they cannot deal with noisy input images, regions of high
isotropy, or partial volume effect. In contrast, stochastic tractography methods
[15,16,17] take the uncertainty of fiber orientations into account, and therefore
yield results that are more suitable for our purposes, as discussed in Sec. 2.

In the next section, a summary of our proposed approach is provided. Then, in
Sec. 3, we discuss in detail the entropy-based particle correspondence framework
and its extension to incorporate local correspondence features. Sec. 4 presents
the two main novel contributions of this manuscript, namely, the methodology
followed for projecting DWI-based connectivity information to the cortical sur-
face and the surface deflation algorithm proposed for overcoming the problems
associated with fiber tracking near the WM/GM boundary. We then define our
evaluation criteria in Sec. 5 and present experimental results in Sec. 6. Fig.1
summarizes our pipeline.

2 Methodology Overview

In this work, we are presenting a cortical correspondence system that incorpo-
rates various local functions of spatial coordinates. We choose to use a particle-
based entropy minimizing system, as introduced by Cates et al.[12,13], for the
correspondence computation in a population-based manner. Specifically, we use
the extension to this methodology we presented in [5] that allows the use of cor-
respondence features for establishing correspondence. These features are locally
defined functions that provide additional information about the surface, such
as curvature. This extension is critical for the application of the entropy-based
particle correspondence framework to populations of cortical surfaces, as addi-
tional information sources can have significant impact on correspondence quality.
Structural features such as sulcal depth and local curvature provide additional
information about the geometry of the brain; DWI-based fiber connectivity fea-
tures provide augmented knowledge about the white matter structure. Further-
more, given the highly folded and curved nature of the cortex surface, Euclidean
distances measured in 3D space between points do not reflect the actual distance
along the cortical sheet (e.g. in the case of two points lying on different banks of
a sulcus); it therefore makes little sense to use spatial proximity as a standalone
measure of correspondence strength.

The particle framework uses a point-based surface sampling to optimize sur-
face correspondence in a population-based manner. Like-numbered samples,
named particles, define correspondence across the population. The optimiza-
tion consists of moving the particles along the surfaces in the direction of the
gradient of an energy functional that strikes a balance between an even sampling
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of each surface (characterized by shape entropy) and a high spatial similarity
of the corresponding samples across the population (ensemble entropy). Local
measurements on the object surfaces, referred to as correspondence features, are
incorporated into the ensemble entropy to provide a generalized correspondence
definition.

One of the main contributions of this work is the use of fiber connectivity
patterns for optimizing cortical correspondence. This is achieved by using con-
nectivity of the cortex to various ROI’s as correspondence features. A stochastic
tractography algorithm, described in Sec. 4.1, generates connectivity maps that
represent the probability of each voxel being connected to these ROI’s. A sepa-
rate feature channel is used for connectivity to each individual ROI.

There is, however, a major obstacle to using these connectivity maps for cor-
tical correspondence: the connectivity probabilities typically decrease drastically
near the WM/GM boundary, as the diffusion gets too isotropic and noisy near the
surface. This effect is more emphasized at the ridges of the gyri (as opposed to the
valleys of the sulci). Thus, the tractography values at the cortical boundary voxels
are more of a function of local sulcal depth than of actual connectivity. A major
contribution of this work is a method of computing the connectivity probability
at the cortical surface using a surface deflation algorithm, as described in Sec. 4.2.
This produces a new, smoother surface that follows the cortical boundary closely
while leaving out the gyri. Then, the connectivity probability at each cortical voxel
is defined as the connectivity probability value at the corresponding inner-surface
voxel.

A major challenge in using the particle framework for solving the cortical
correspondence problem is the highly convoluted geometry of the human cortex.
In the current implementation, the particles are assumed to be living on the
local tangent planes of the surfaces for computational efficiency purposes; highly
convoluted surfaces present a challenge to this assumption due to the rapidly
changing tangent planes. We solve this problem by defining an alternative do-
main to the problem, by ‘inflating’ the cortical surface. This results in much
smoother surfaces. A one-to-one mapping between this surface and the original
cortical surface is necessary, as the particles live on the inflated surface, whereas
the correspondence features (such as the sulcal depth or the probabilistic con-
nectivity) are only defined on the original surface. A set of automated tools
distributed as part of the FreeSurfer [1,2] package are used for preprocessing the
data as well as for the cortical inflation, as described in Sec. 3.3.

3 Entropy-Based Cortical Correspondence with Local
Features

3.1 Entropy-Based Shape Correspondence

Entropy-Based Surface Sampling. In this work, we use a surface sampling tech-
nique, described in [13], using a discrete set of points called particles. These
particles move away from each other under a repulsive force, while constrained
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to lie on the surface. The repulsive forces are weighted by a Gaussian function
of inter-particle distance; interactions are therefore local for sufficiently small σ.

It is noteworthy that the current formulation computes Euclidean distance
between particles, rather than the geodesic distance on the surface, for compu-
tational efficiency purposes. Thus, a sufficiently dense sampling is assumed, so
that nearby particles lie in the tangent planes of the zero sets of a scalar function
F which provides the implicit object surface. This is an important considera-
tion for the application to the cortical surface; the highly convoluted surface
challenges this assumption, and the distribution of particles may be affected by
neighbors that are outside of the true manifold neighborhood. As discussed in
Sec. 2, we overcome this problem by transforming the domain of the problem to
a smoother one, obtained by cortex inflation.

Ensemble Entropy of Correspondence Positions. An ensemble E is a collection
of M surfaces, each with their own set of particles, i.e. E = z1, . . . , zM . The
ordering of the particles on each shape implies a correspondence among shapes,
and thus we have a matrix of particle positions P = xk

j , with particle positions
along the rows and shapes across the columns. We model each surface zk ∈ �Nd

as an instance of a random variable Z (where N is the number of particles and d
is the surface dimension), and propose to minimize the combined ensemble and
shape cost function

Q = H(Z) −
∑

k

H(P k), (1)

which favors a compact ensemble representation balanced against a uniform
distribution of particles on each surface as discussed in the previous paragraph.
The different entropies are commensurate so there is no need for ad-hoc weighting
of the two function terms.

Given the low number of examples relative to the dimensionality of the space,
we must impose some conditions in order to perform the density estimation. For
this work we assume a normal distribution and model p(Z) parametrically using
a Gaussian with covariance Σ. The entropy is then given by

H(Z) ≈ 1
2

log |Σ| =
1
2

Nd∑

j=1

log λj , (2)

where λ1, ..., λNd are the eigenvalues of Σ.
Since, in practice, Σ will not have full rank, the covariance is estimated from

the data, letting Y denote the matrix of points minus the sample mean for the
ensemble, which gives Σ = (1/(M − 1))Y Y T . The negative gradient −∂H/∂P
gives a vector of updates for the entire system, which is recomputed once per
system update. This term is added to the shape-based updates described in the
previous section to give the update of each particle.

3.2 Using Local Features for Improving Correspondence

In the case of computing entropy of vector-valued functions of the correspondence
positions P , we now consider the more general case where P̃ = f(xk

j ), where
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f : �d → �q, where d is the dimensionality of the surface and q is the dimension
of f (number of correspondence features). Ỹ becomes a matrix of the function
values at the particle points minus the means of those functions at the points,
and we compute the general cost function simply as

H̃(P̃ ) = log
∣
∣
∣
∣

1
M − 1

Ỹ T Ỹ ,

∣
∣
∣
∣ . (3)

Then, the gradient of H̃ with respect to each shape k can be computed using
the chain rule, by introducing the Jacobian of the functional data for shape k.

3.3 Surface Reconstruction and Cortex Inflation

In this work, we use FreeSurfer for the cortical surface reconstruction as well
as surface inflation. We initialize the FreeSurfer algorithm with the output of
the atlas based tissue segmentation tool itkEMS, which uses an Expectation-
Maximization approach to segment the major brain tissue classes and correct
for intensity inhomogeneity using both T1 and T2 weighted images[18].

The inflation algorithm of FreeSurfer[1] provides a much smoother surface
than the cortical surface while minimizing metric distortions. This is achieved
via the optimization of an energy functional consisting of the weighted sum of a
spring force that works towards ‘inflating’ the surface and a metric preservation
term that ensures that as little metric distortion as possible is introduced. The
inflation process is such that points that lie in convex regions move inwards
while points in concave regions move outwards over time. Thus, the average
convexity/concavity of the surface over a region, referred to as sulcal depth, can
be computed as the integral of the normal movement of a point during inflation.

4 Using Probabilistic Fiber Connectivity for Cortical
Correspondence

4.1 Stochastic Tractography

In this work, we use an open-source implementation of a modification of Friman’s
stochastic tractography algorithm[15]. In this approach, fiber tracts are modeled
as sequences of unit vectors whose orientation is determined by sampling a pos-
terior probability distribution. The posterior distribution is given by a prior
likelihood of the fiber orientation multiplied by the likelihood of the orienta-
tion given the DWI data. Friman uses a tensor model constrained to be linearly
anisotropic to lower the computational cost of the algorithm; deviations from
this distribution are modeled as uncertainty in the fiber orientation. At each
step, the orientation of the previous vector in the sequence affects the prior,
ensuring no backtracking occurs. The tracking stops when the tract reaches a
voxel with a low posterior probability of belonging to the white matter. We
use the output of the itkEMS algorithm described above, co-registered with the
DWI data (by registering the T2-weighted image with the DWI baseline using
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an affine transformation with 15 dof’s), as the necessary soft WM segmentation
input. The ROI’s are obtained from the FreeSurfer segmentation.

A high number of sample fibers are tracked from each voxel included in the
input ROI; the probabilistic connectivity of a voxel to the ROI is defined as
the ratio of fiber samples that travel through a voxel over the total number
of samples. As described in the next section, the connectivity values on the
WM/GM boundary are discarded, and the values at the corresponding deflated
surface location are used instead, to compensate for the fading DWI signal at the
boundary. Finally, to normalize for various effects such as number of voxels in the
ROI’s and brain size, we perform a histogram equalization on the connectivity
feature values read on the deflated surface, for each individual and for each ROI.

4.2 Surface Deflation for Connectivity Mapping

In order to get accurate readings of fiber connectivity probability values, an inner
white matter surface with one-to-one correspondence to the WM/GM boundary
is necessary. This surface should be not only sufficiently away from the bound-
ary, but also without the convolutions caused by sulci and gyri. Without such
a deflated surface, the probabilistic fiber connectivity values become heavily

Fig. 1. Left, pipeline overview. We use T1 images to generate WM surfaces and inflated
cortical surfaces, as well as local sulcal depth. Selected ROI’s and the DWI image are
input to the stochastic tractography (ST) algorithm. WM surface deflated using pro-
posed algorithm is used to construct connectivity maps on the surface from ST results.
Inflated cortical surfaces and the connectivity maps are used to optimize correspon-
dence. Right, impact of brain deflation algorithm on surface connectivity values. The
stochastic tractography algorithm gives connectivity probabilities for the brainstem for
this subject(A). The noisy tracking around temporal lobe is reflected on the connec-
tivity map that uses simple averaging(B). The surface deflation method ignores the
noisy signal and reflects a more accurate connectivity map(C). Note how strongly the
averaging method depends on sulcal depth(D), illustrated in highlighted regions.
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Fig. 2. Brain deflation progress for one subject. The surface outline is shown in con-
trasting colors overlayed on an axial slice of the brain. The leftmost image shows the
original WM surface, and the consequent images show the progress of the deflation
at 1000 iteration intervals. The second rightmost surface is used for retrieving proba-
bilistic connectivity images after a final scaling step, shown on the far right. Note the
progressive smoothing of the gyri as the surrounding regions become flat, which relaxes
the velocity constraint on these vertices.

dependent on the local sulcal depth, yielding high connectivity values near sulci
and low connectivity values near the gyri, as the fibers must be tracked a longer
distance through the isotropic boundary region to reach the gyri (see Fig. 1). We
propose a surface evolution method that evolves the WM surface by progressively
smoothing out the gyri. To prevent the local sulcal depth from dominating the
connectivity values, it’s important to have a surface that is not only sufficiently
away from the WM-GM boundary but also much smoother. This is accomplished
by a mean-curvature-based smoothing algorithm, described in [19,20]. This iter-
ative method smoothes the surface mesh using a relaxation operator, such that
the vertices are repositioned according to

V t+1
i = (1 − λ)V t

i + λV̄ t
i ,

where Vi is the position of the ith vertex, t is the number of iterations, λ ∈ [0, 1]
is a smoothing parameter, and V̄i is the average vertex position, which is the
average position of neighboring triangle centers weighted by the triangle areas.

However, we alter this algorithm such that vertices located near the valleys of
the sulci are fixed (by forcing the velocity λ to 0 at these vertices), which results
in the smoothing of only the gyri, while keeping the rest of the mesh intact.
The fixed locations are progressively released, to avoid creating singular points
on the surface due to the hard constraints posed. The progressive relaxation is
based on thresholding of the L2 norm of the mean curvature H , defined as

||H ||2 =

√
1
4π

∫

H2dA.

The vertices to be fixed initially are determined based on the sulcal depth. All
positive local maxima of the sulcal depth are marked as fixed, and all vertices of
the mesh that are located between already fixed locations are also fixed, in order
to create merged surface patches rather than standalone points. It is preferable
to start with too many fixed vertices rather than too few, as the progressive
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relaxation stage ensures no vertices remain fixed for more than necessary. Con-
straining the fixed points to positive sulcal depth values ensures vertices located
on the gyri are free to move at all times, whereas the sulci can start moving only
after the surrounding gyri have been smoothed out.

The progressive relaxation of the fixed locations is necessary to avoid any
patches from remaining fixed indefinitely despite the fact that the rest of the
mesh around it has sufficiently deflated. Once the fixed sulcal region becomes
flat (detected by the mean curvature threshold), the zero-velocity constraint on
the vertex is released, and the vertex is free to move.

As a final step in the deflation, we shrink the entire surface inwards by about
one voxel, to ensure that the vertices at the sulci move away from the WM/GM
boundary. Without this shrinking step, the probabilistic connectivity values at
the sulci and gyri would be treated differently, which would introduce unwanted
bias by only moving the gyri away from the WM/GM boundary. Note that the
shrinking has to be done in small increments to avoid introducing topological
changes to the surface. Fig. 2 shows intermediate results of the surface deflation
on an axial slice of the brain scan as well as the final scaling.

5 Evaluation Criteria for Correspondence Quality

To compare the results of the various correspondence methods, evaluation met-
rics are needed. The choice of evaluation metrics is important since the definition
of a “good” correspondence can greatly vary among different applications. In this
work, we are using the well established generalization and specificity metrics[6],
based on the cortical thickness and sulcal depth measures. It should be noted
that sulcal depth based evaluation is biased, since sulcal depth is used for op-
timization both by FreeSurfer and partially by our method. Cortical thickness
based metrics provide an unbiased evaluation. We also use the mean variance
(averaged across the surface) of cortical thickness and sulcal depth given the
various correspondence results as an additional evaluation criterion.

Given a statistical shape model, generalization is a measure of how well the
model can describe unseen objects of the same class. The generalization ability
G(M) is computed by performing a leave-one-out principal components analy-
sis (PCA), reconstructing the left-out object, and averaging the reconstruction
error for each object, where M is the number of shape eigenmodes used in re-
construction. A good model should exhibit low generalization values.

Specificity is a metric of how well the model fits the object class, in that it
measures the distance between measurements in the training set and new mea-
surements generated using the model. A specific model should only generate
measurements similar to those in the training set. The specificity S(M) is com-
puted via generating a large number of random measurement vectors (such as
cortical thickness) from the model PCA shape space and comparing them to the
measurement vectors in the training set.
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6 Results and Discussion

We applied our methodology to a dataset of 9 healthy subjects with 1.5T DTI
scans as well as structural MRI scans. The DTI scans had 60 gradient directions
and 10 baselines, with b = 700s/mm2 and (2mm)3 voxel size. Cortical surfaces
were reconstructed via FreeSurfer from T1 images that have been corrected for
bias via the itkEMS tool using both T1 and T2 scans. No manual interventions
were made to the FreeSurfer pipeline. Only left hemispheres were used.

We compare three methods of correspondence computation: FreeSurfer, xyz-
based particle system, and connectivity-based particle system. For the latter, we
used probabilistic connectivity measurements to the corpus callosum, the brain-
stem and the left caudate, with the ROI segmentations provided by FreeSurfer.
We also use sulcal depth as an additional feature channel. Each feature channel
was weighted such that the variance of the features across the population would
have a mean value of 1.0 across the surface. This is necessary to prevent fea-
tures with large absolute values (such as spatial location, typically in the range
[−128..128]) from dominating the features with small absolute values (such as
connectivity probabilities, in the range [0..1]).

In general, we expect our method to produce improved correspondence over
certain regions (for instance, the ones that are strongly identifiable by fiber tract
connections to subcortical regions chosen as ROI’s) and smaller improvement in
other regions where no relevant additional local information is provided. The
goal of our approach is to improve local cortical correspondence in given regions
by using relevant data. Note that it would be up to each individual application
to define what regions are important for the given context, and what additional
data can be used to improve the correspondence in these critical regions.

In particular, for this study, since we observed fiber connections to the tem-
poral lobe from both the corpus callosum and the left caudate, we expect to see
significantly improved correspondence in this region. Therefore, in addition to
the cortical thickness variance averaged across the entire surface, we also report
the same values computed over the temporal lobe only.

The results are summarized in Fig. 3. FreeSurfer yields a much tighter sul-
cal depth distribution than our method, which is to be expected as this is a
biased evaluation metric. The sulcal depth based generalization and specificity
plots (not shown) also show better results for FreeSurfer. However, the unbiased

Fig. 3. Average variances of cortical thickness and sulcal depth measurements across
the whole cortical surface as well as across the temporal lobe, given different corre-
spondence maps
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Fig. 4. Cortical thickness based generalization and specificity comparison. For both
evaluation metrics, a lower value indicates a better correspondence. Therefore, we see
that our method outperforms the other two algorithms regarding these two metrics.

cortical thickness measurements show, as seen in Fig. 4, that the connectivity-
based entropy system has better generalization and specificity properties, inde-
pendent of the number of shape eigenmodes used (M). Our method also yields
tighter cortical thickness distribution overall compared to both FreeSurfer and
the spatial location based particle system. In particular, the correspondence qual-
ity was significantly enhanced in the temporal lobe, which appears to present
a ’problem area’ for the other two algorithms (as evidenced by higher than av-
erage cortical thickness variance). The incorporation of additional connectivity
information clearly improves correspondence. Our results are also in agreement
with the previous findings [4,5,6] that group-wise approaches tend to be more
efficient than pair-wise correspondence optimization methods.

7 Conclusion

We present a novel method that allows using data from diffusion weighted im-
ages along with structural MRI scans in a cortical correspondence setting. Our
algorithm allows for the fiber connectivity information extracted from the DWI
to be effectively projected on the cortical surface using a novel surface deflation
technique. We then use our entropy-based dynamic particle framework to seam-
lessly integrate this information with geometrical cues, such as spatial location
and sulcal depth, in order to improve cortical correspondence.

Our results illustrate the powerful generalizability of this technique: the user
can improve the correspondence in all regions of the cortical surface, as long as
strongly identifiable local features can be provided. Such local features can be
extracted from structural images, DTI, or other imaging modalities such as mag-
netic resonance angiography (MRA). Future work includes exploring additional
features to be used for this purpose as well as applying the technique to group
analysis studies.
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