
CORTICAL CORRESPONDENCE USING ENTROPY-BASED PARTICLE SYSTEMS AND
LOCAL FEATURES

Ipek Oguz1, Joshua Cates3, Thomas Fletcher3, Ross Whitaker3, Derek Cool4, Stephen Aylward5, Martin Styner1,2

Departments of 1Computer Science and 2Psychiatry, University of North Carolina, Chapel Hill, USA

3School of Computing, University of Utah, Salt Lake City UT, USA

4Robarts Research Institute, London, ON, Canada 5Kitware Inc., Clifton Park NY USA

ABSTRACT

This paper presents a new method of constructing compact statistical
point-based models of populations of human cortical surfaces with
functions of spatial locations driving the correspondence optimiza-
tion. The proposed method is to establish a tradeoff between an even
sampling of the surfaces (a low surface entropy) and the similarity
of corresponding points across the population (a low ensemble en-
tropy). The similarity metric, however, isn’t constrained to be just
spatial proximity, but can be any function of spatial location, thus
allowing the integration of local cortical geometry as well as DTI
connectivity maps and vasculature information from MRA images.
This method does not require a spherical parameterization or fine
tuning of parameters. Experimental results are also presented, show-
ing lower local variability for both sulcal depth and cortical thickness
measurements, compared to other commonly used methods such as
FreeSurfer.

Index Terms— Correspondence, Image Shape Analysis, Brain
Modeling, Statistics, Image Registration.

1. INTRODUCTION

Statistical modeling of anatomical objects is becoming increasingly
important in the segmentation, analysis and interpretation of medi-
cal datasets. Constructing such statistical models requires the ability
to compute local shape differences among similar objects. This in-
troduces the problem of finding corresponding points. Consistent
computation of corresponding points on 3D anatomical surfaces is a
difficult task, since manually choosing landmark points not only is
cumbersome, but also does not yield a satisfyingly dense correspon-
dence map. It should also be noted that no generic ”ground truth”
definition of dense correspondence exists across different anatomi-
cal surfaces. The choice of particular correspondence metric must,
therefore, be application-driven.

In this work, we are introducing a framework for finding cor-
responding points on populations of human cortical surfaces. The
correspondence computation on the cortex is an even more challeng-
ing problem due to the highly convoluted geometry of the brain and
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the high variability of folding patterns across subjects. Using mere
spatial locations of surface points produces a weak and inadequate
correspondence map. Our work allows the usage of more local infor-
mation, called ’features’ throughout this manuscript, for computing
correspondence. We demonstrate our technique using a sulcal depth
function as an additional feature; the framework also allows for more
complex features, such as connectivity maps computed from DTI
images, or vessel structure extracted from MRA images, to be used
for establishing correspondence. The particular choice of features
should be determined by the target applications.

We are using a particle based entropy minimizing system, as in-
troduced by Cates et al.[1]. We extend the particle framework to al-
low the local features to drive the correspondence optimization. We
also use a cortex flattening technique to overcome difficulties origi-
nating from the highly convoluted nature of the cortical surface. The
high level processing pipeline, therefore, consists of ’inflating’ the
cortical surfaces, computing correspondence on the inflated surface,
and ’deflating’ to obtain corresponding points on the original brain
surface. We evaluate our results based on how well they reduce local
variability on both sulcal depth and cortical thickness datasets.

2. PREVIOUS WORK

Various automated methods for establishing correspondence have
been suggested. One of the earliest such methods was proposed by
Kotcheff and Taylor in [2], where they tried minimizing information
content across an ensemble with a cost function

∑
k log(λk + α),

where λk are the eigenvalues of the covariance matrix and α is a
regularization term. Davies et al. [3, 4] propose that the simplest de-
scription of a population is the best; simplicity is measured in terms
of the length of the code to transmit the data as well as the model
parameters, hence the name of their method, Minimum Descrip-
tion Length (MDL). MDL implementations in 3D usually rely on
spherical parameterizations of the surfaces, which must be obtained
through a preprocessing step such as proposed in [5] that relaxes
a spherical parameterization onto the input mesh. In [6], Heimann
et al. present a gradient descent optimization method for the MDL
algorithm and explore using local curvature in addition to spatial lo-
cations in the MDL cost function.

Styner et al.[7] describe an empirical study that shows ensemble-
based statistics improve correspondences relative to pure geometric
regularization, and that MDL performance is virtually the same as
that of min-log |Σ + αI|. This last observation is consistent with
the well-known result from information theory: MDL is, in general,
equivalent to minimum entropy [8]. Cates et al. [1, 9] propose a
system exploring this property; this is the underlying technique for
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the methodology presented in this paper and will be discussed in
more detail in Sec. 3.2.

The FreeSurfer system [10, 11, 12, 13, 14, 15] provides an en-
tire framework for the segmentation, surface reconstruction, topol-
ogy correction, inflation and spherical parameterization of the cor-
tex. The correspondence across population of the cortical surfaces is
established through a semi-rigid alignment of the folding patterns on
each cortex to an average cortex shape, using the spherical parame-
terizations. The folding pattern is quantized by the local sulcal depth
values. Note that this is essentially a two-step correspondence com-
putation, in that it first optimizes the spatial correspondence (while
computing the spherical parameterization) and then optimizes the
sulcal depth correspondence. This method also is different from ours
in that it focuses on a pair-wise correspondence (subject to average),
whereas our method emphasizes a group-wise approach.

3. METHODOLOGY

In this work, we are presenting a cortical correspondence sys-
tem that incorporates various functions of spatial coordinates. We
choose to use a particle based entropy minimizing system, as intro-
duced by Cates et al [1, 9], for the correspondence computation in a
population-based manner. We extend the methodology presented in
[1, 9] to allow the use of local functions for cortical correspondence.
This is critical in obtaining an application-specific correspondence,
since various local measures such as sulcal depth, cortical thick-
ness, or DTI measurements can be used depending on the particular
clinical context. Furthermore, given the highly folded and curved
nature of the cortex surface, distances measured in 3D space be-
tween points does not reflect the actual distance along the cortical
sheet (e.g. in the case of two points lying on different banks of a
sulcus); it therefore makes little sense to use spatial proximity as a
standalone measure of correspondence strength.

The main idea for the entropy based correspondence method is
to construct a point-based sampling of the shape ensemble that si-
multaneously maximizes both the geometric accuracy and the sta-
tistical simplicity of the model. Surface point samples, which also
define the shape-to-shape correspondences, are modeled as sets of
dynamic particles that are constrained to lie on a set of implicit sur-
faces. Sample positions are optimized by gradient descent on an en-
ergy function that balances the negative entropy of the distribution
on each shape with the positive entropy of the ensemble of shapes.
Local measurements on the cortical surface, as will be discussed in
Sec. 3.2.3, are incorporated into this ensemble entropy to provide a
general correspondence definition.

One of the main challenges of using the particle based entropy
minimizing technique on the cortical surface is that it assumes the
particles to be existing on local tangent planes, which presents a
problem for the cortex given the highly convoluted surface geome-
try. We overcome this difficulty by first ‘inflating’ the cortex surface.
This way, we obtain a less convoluted, blob-like surface, for the par-
ticles to interact on. However, we need a one-to-one correspondence
between the original cortex surface and the inflated surface, since the
data to be used for correspondence, such as the sulcal depth, lives on
the original cortex surface. A set of automated tools distributed as
part of the FreeSurfer [10, 11, 12, 13, 14, 15] package are used to
preprocess the data as described in Sec. 3.1.

In order to evaluate the quality of our results, we analyze the lo-
cal variability of both the features that are being used for the corre-
spondence computation (sulcal depth in this case), and, more impor-
tantly, of a different local measurement, namely, cortical thickness.

Fig. 1. The sulcal depth pictured as a color map on the white matter surface
and its inflation surface. The green and red regions correspond to highly
negative and highly positive values of sulcal depth, respectively.

3.1. Surface Inflation, Sulcal Depth Computation, and Other
Preprocessing Steps

In this work, we use FreeSurfer for the cortical surface recon-
struction as well as surface inflation. The inflation algorithm
of FreeSurfer [12] provides a surface representation that is much
smoother than the original convoluted cortical surface while min-
imizing metric distortions. This is achieved via the optimization
of an energy functional consisting of the weighted sum of a spring
force that works towards ’inflating’ the surface and a metric preser-
vation term that ensures that as little metric distortion as possible is
introduced in the process. The inflation process is such that points
that lie in convex regions move inwards while points in concave
regions move outwards over time. Therefore, the average convex-
ity/concavity of the surface over a region, also referred to as sulcal
depth, can be computed as the integral of the normal movement
of a point during inflation. Specifically, the sulcal depth C(x0

k) at
position xk is defined as:

C(x0
k) =

∫
vk

t • n(k)dt

where n(k) is the unit normal vector at position xk, and vk
t is the

direction in which the vertex xk moves at time step t, which is equiv-
alent to the partial derivative of the energy functional driving the in-
flation. It should be noted that C captures the high level foldings of
the cortical surface, but is relatively insensitive to the smaller folds;
this property makes C an attractive correspondence metric, since it is
relatively stable across individuals. Fig. 1 shows the sulcal depth as
a color map on both the original white matter surface and the inflated
surface.

Once surface construction and inflation is completed, the result-
ing surfaces are sorted into an octree structure, which provides a fast
lookup table for locating the particles in the correspondence opti-
mization. This lookup table is used in the computation of barycentric
coordinates on both the original and inflated surfaces, which allows
the particles to be efficiently and accurately pulled back and forth
between the original white matter surface and the inflated surface.

3.2. Particle Method

3.2.1. Entropy-Based Surface Sampling

In this work, as presented in [9], we sample a surface S ⊂ �d us-
ing a discrete set of N points that are considered random variables
Z = (X1, X2, . . . , XN ) drawn from a probability density function
(PDF), p(X). We denote a realization of this PDF with lower case,
and thus we have z = (x1, x2, . . . , xN ), where z ∈ SN . The prob-
ability of a realization x is p(X = x), which we denote simply as
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p(x). The amount of information contained in such a random sam-
pling is, in the limit, the differential entropy of the PDF, which is
H[X] = − ∫

S
p(x) log p(x)dx = −E{log p(X)}, where E{·} is

the expectation. The optimization problem is given by:

ẑ = arg min
z

E(z) s.t. x1, . . . , xN ∈ S. (1)

Cates et al. describe in [9] a method for estimating the prob-
ability distributions and for minimizing the cost function C, which
is an approximation of the (negative) entropy E. The main idea is
that the surface points (which are called particles) must move away
from each other, and there is a set of particles moving under a re-
pulsive force and constrained to lie on the surface. The motion of
each particle is away from all of the other particles, but the forces
are weighted by a Gaussian function of inter-particle distance. Inter-
actions are therefore local for sufficiently small σ.

The preceding minimization produces a uniform sampling of a
surface. For some applications, a strategy that samples adaptively in
response to higher order shape information is more effective. Cates
et al. [9] also provides a detailed description of how to modify the
probability estimations to obtain such an adaptive sampling scheme.

Note that this particle formulation computes Euclidean distance
between particles, rather than the geodesic distance on the surface.
Thus, a sufficiently dense sampling is assumed, so that nearby par-
ticles lie in the tangent planes of the zero sets of a scalar function
F which provides the implicit cortical surface. This is an impor-
tant consideration; in cases where this assumption is not valid, such
as highly convoluted surfaces, the distribution of particles may be
affected by neighbors that are outside of the true manifold neighbor-
hood. The cortex is a prime example of such a highly convoluted
surface. In this work, we overcome this problem by inflating the
cortical surface prior to optimizing correspondence. The particles
therefore live in the tangent planes of the inflated surface; they are
only pulled back to the original cortical surface for correspondence
evaluation purposes.

3.2.2. Ensemble Entropy of Correspondence Positions

An ensemble E is a collection of M surfaces, each with their own
set of particles, i.e. E = z1, . . . , zM . The ordering of the particles
on each shape implies a correspondence among shapes, and thus we
have a matrix of particle positions P = xk

j , with particle positions

along the rows and shapes across the columns. We model zk ∈ �Nd

as an instance of a random variable Z, and propose to minimize the
combined ensemble and shape cost function

Q = H(Z) −
∑

k

H(P k), (2)

which favors a compact ensemble representation balanced against
a uniform distribution of particles on each surface. The different
entropies are commensurate so there is no need for ad-hoc weighting
of the two function terms.

For this discussion we assume that the complexity of each shape
is greater than the number of examples, and so we would normally
choose N > M . Given the low number of examples relative to
the dimensionality of the space, we must impose some conditions in
order to perform the density estimation. For this work we assume a
normal distribution and model p(Z) parametrically using a Gaussian
with covariance Σ. The entropy is then given by

H(Z) ≈ 1

2
log |Σ| =

1

2

Nd∑
j=1

log λj , (3)

where λ1, ..., λNd are the eigenvalues of Σ.
In practice, Σ will not have full rank, in which case the entropy

is not finite. We must therefore regularize the problem with the ad-
dition of a diagonal matrix αI to introduce a lower bound on the
eigenvalues. We estimate the covariance from the data, letting Y de-
note the matrix of points minus the sample mean for the ensemble,
which gives Σ = (1/(M − 1))Y Y T . Because N > M , we per-
form the computations on the dual space (dimension M ), knowing
that the determinant is the same up to a constant factor of α. Thus,
we have the cost function G associated with the ensemble entropy:

log |Σ| ≈ G(P ) = log

∣∣∣∣ 1

M − 1
Y T Y,

∣∣∣∣ and−∂G

∂P
= Y (Y T Y +αI)−1.

(4)
We now see that α is a regularization on the inverse of Y T Y to ac-
count for the possibility of a diminishing determinant. The negative
gradient −∂G/∂P gives a vector of updates for the entire system,
which is recomputed once per system update. This term is added to
the shape-based updates described in the previous section to give the
update of each particle:

xk
j ← γ

[
−∂G/∂xk

j + ∂Ek/∂xk
j

]
. (5)

3.2.3. Ensemble Entropy of Functions of Correspondence Positions

In the case of computing entropy of vector-valued functions of the
correspondence positions P , we now consider the more general case
where P̃ = f(xk

j ), where f : �d → �q . Ỹ becomes a matrix of
the function values at the particle points minus the means of those
functions at the points, and we compute the general cost function
simply as

G̃(P̃ ) = log

∣∣∣∣ 1

M − 1
Ỹ T Ỹ ,

∣∣∣∣ . (6)

Let Q = (Ỹ T Ỹ +αI)−1 By the chain rule, the partial derivative

of G̃ with respect to each shape k becomes

− ∂G̃

∂P̃ k
= JT

k Qk, (7)

where Jk is the Jacobian of the functional data for shape k.
Note that each Jk is in the form of a block diagonal matrix with
(qxN)x(qxN) blocks, with diagonal blocks the qxd submatrices of
the function gradients at particle j.

4. RESULTS

We evaluate our method on two different datasets, based on how well
the resulting correspondence maps reduce variability of sulcal depth
and cortical thickness measurements. Our population consists of 10
cortical surfaces from healthy patients reconstructed via FreeSurfer
from T1 images; 1 had to be removed due to failure of succesful sur-
face reconstruction with FreeSurfer, caused by extreme noise in the
MRI scan (therefore, the final study used M = 9 subjects). All re-
constructions showed some degree of error in the temporal lobe; no
manual interventions were made. Due to time constraints, refined,
manually corrected surfaces will be used only in our future evalua-
tions.

For both the sulcal depth and cortical thickness measurements,
we compute the local sample variance of the measurement before
and after correspondence optimization; the desirable result is a low-
ering of variability across corresponding points. We compare vari-
ances based on our method’s correspondence maps to initial data
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Fig. 2. Mean sample variances of sulcal depth and cortical thickness mea-
surements across the cortical surface, given different correspondence maps.

Fig. 3. Comparison of the distribution of variance across the cortical sur-
faces for our method (left) and FreeSurfer (right). The coloring of the parti-
cles is linearly growing from values of (green=0) to (red=1). It can be seen
that the particle system has a localized high variance near the temporal lobe
(conceivably due to reconstruction noise), but has low variance elsewhere;
FreeSurfer has relatively high variance across the entire cortical surface.

and standard entropy-based particle system (location only) results,
as well as FreeSurfer results. Mean sample variances for both the
cortical thickness and sulcal depth measurements are summarized in
Fig. 2.

For sulcal depth measurements, our method reduces variance al-
most 75-fold over initial data, and almost 25-fold over FreeSurfer re-
sults. For cortical thickness, our method has considerable improve-
ment over initial data, and has a slightly higher average variance than
FreeSurfer does. An inspection of the distribution of this mean vari-
ance over the surface, as shown in Fig. 3, reveals that FreeSurfer has
a higher variance across the entire surface, whereas our method has
only a localized high variance around the temporal lobe (which is, as
noted above, not perfectly reconstructed due to input image noise),
and performs much better in other areas of the cortical surface.

It should be noted that both our method and FreeSurfer use the
sulcal depth information as part of the correspondence optimization
process; therefore, the sulcal depth evaluation is biased. Also note
that the higher degree of remaining variability in cortical thickness
can be largely attributed to inter-subject variability, as cortical thick-
ness patterns tends to vary largely among individuals.

5. CONCLUSIONS

Our method provides a novel way of computing correspondence
across datasets of human cortical surfaces using functions of spatial
locations in an entropy minimizing particle framework. We show
that our method provides correspondence maps that result in tighter
distributions of sulcal depth and cortical thickness compared to other
commonly used methods such as FreeSurfer. The cortical thickness
measurements show some locally high variances near the temporal
lobe, where the FreeSurfer reconstruction was less than perfect.

This framework provides exciting new directions of research.
Integration of fiber connectivity and vasculature information, ex-

tracted from DTI and MRA scans respectively, will lead to a better
understanding of cortical correspondence, and will provide further
flexibility in the definition of correspondence, depending on the spe-
cific target application. Our next steps involve experimenting the
integration of probabilistic connectivity maps that reflect the fiber
structures between the cortical surface and various regions of inter-
est, such as the corpus callosum and the internal capsule.
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