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Abstract
We present a generic framework for compression of densely sampled 3D surfaces in order to satisfy the increasing
demand for storing large amounts of 3D content. We decompose a given surface into patches that are parame-
terized as elevation maps over planar domains and resampled on regular grids. The resulting shaped images are
encoded using a state-of-the-art wavelet image coder. We show that our method is not only applicable to mesh-
and point-based geometry, but also outperforms current surface encoders for both primitives.

Categories and Subject Descriptors (according to ACM CCS): I.4 [Coding and Information Theory]: Data com-
paction and compression

1. Introduction

Surface compression has become an important field of study
in graphics with the increasing demand on accessing 3D con-
tent. A surface encoder transforms an explicit surface repre-
sentation into a compact bit-stream, which is then decoded
at the receiver to generate a surface reconstruction. Since the
direct encoding of the standard representation of 3D surfaces
that are given by lists of (x,y,z)-coordinates and connectiv-
ity, leads to highly correlated data streams, more sophisti-
cated methods are needed to decorrelate the data. In particu-
lar, the requirements of a practical and versatile compression
scheme are:

Effectiveness - the encoder should produce bit-streams as
compact as possible.

Efficiency - encoding and decoding should be efficient;
especially the capability of fast decoding is required when
the data need to be accessed in real-time.

Simplicity - the algorithmic design of both, encoder as well
as decoder, should be simple and easy to implement on
common platforms.

We propose a compression scheme that is capable of pro-
cessing densely sampled surfaces. To approximate a given
surface, the encoder decomposes the model into a set of
patches, each of which is parameterized as an elevation map
over a planar domain and resampled on a regular grid. The
resulting representation consists of a set of images with arbi-
trary regions of support. The encoder compresses the shapes
by using a binary image coder and the elevation images
using a state-of-the-art shape-adaptive wavelet coder. The

original partition shaped planes

0.13 bpp, 56.9 dB 0.31 bpp, 68.0 dB 0.90 bpp, 78.1 dB

Figure 1: Point-surface compression of Igea; top row: orig-
inal model, partition, and the base planes for parameteriza-
tion; bottom row: reconstructed models at various bit-rates
in bits per point (bpp) and decoding fidelity in dB.

decoder extracts the binary images and reconstructs the ele-
vation images by wavelet synthesis, followed by performing
the deparameterization. Figure 1 shows the Igea model with
134k points with a partition of 7 patches and reconstructed
models. Figure 2 summarizes our compression pipeline.
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Figure 2: Overview of our compression pipeline; the original model is given either as a point-based model or as a mesh; the
encoder constructs a parameterization of the input model and processes the resulting shaped images with a shape-adaptive
image coder; the model is reconstructed by decoding the bit-stream and combining the elevation maps to a complete surface;
the output model can be reconstructed and rendered either as a point-based model or again as a mesh.

Our compression framework fulfills the mentioned re-
quirements as follows:

Effectiveness - in our system, we are able to profit from
well developed existing image compression methods. Our
method outperforms current approaches for compression
of point-sampled geometry and is competitive with state-
of-the-art mesh compression schemes, such as normal
mesh compression.

Efficiency - due to the simplicity of the parameterization
and efficient implementation of the wavelet synthesis, we
obtain the decoded model in short time. We can recon-
struct the Dragon model of about 460k points within less
than two seconds on a common PC platform.

Simplicity - all stages in our pipeline rely on simple algo-
rithms that can easily be implemented. In particular, we
use an elementary parameterization in order to represent
3D surface patches as 2D images. The mapping of a point
in parameter space into 3D space is performed by a single
matrix multiplication.

Moreover, our method has the following features: Firstly,
the capability to compress mesh- and point-based model us-
ing a unified framework, which allows selecting the appro-
priate primitive for each application. Secondly, the capa-
bility to produce approximations that rely on regular grids,
whose resolution can be adjusted by the user or by the en-
coder itself. This allows for choosing the appropriate sam-
pling density for a specific application. Thirdly, the capabil-
ity to reduce the problem of 3D geometry compression to
2D compression; consequently, we can utilize existing high-
performance methods from image coding.

In this work, we extend our method [OS04] in that we re-
port much improved results for point-sampled geometry and
extend our approach to mesh coding to demonstrate a surface
coder that is independent of the underlying primitive. Addi-
tionally, we incorporate the variational shape approximation
scheme [AG04], which improves the overall performance.
We start with reviewing previous work in mesh- and point-
based compression of 3D geometry in Section 2. In Section
3 and 4, we detail our pipeline. Results are presented in Sec-
tion 5, followed by conclusions in Section 6.

2. Related Work

2.1. Mesh Geometry Compression

3D model compression was studied since Deering [Dee95]
proposed to quantize all components of input mesh data to
a certain number of bits. In practice, most computer graph-
ics systems focus on polygon meshes, for which there are
three kinds of data to transmit: geometry, connectivity, and
attributes. Methods are needed to compress all three types of
data. However, research has focused mainly on the geometry
of the models, since it makes the largest part of the data. We
now give a very brief overview of mesh coding techniques,
for a more detailed review see [AG04].

In Taubin and Rossignac [TR98, Ros99] and Touma and
Gotsman [TG98], the connectivity of the mesh is encoded
separately. Vertex locations are predicted and the prediction
residuals are entropy coded or vector quantized [CM02].
Connectivity coding was greatly improved [KPRW05], and
out-of-core geometry coding for extremely large meshes was
developed [IG03]. Karni and Gotsman [KG00] transform the
geometry into a frequency domain by performing Laplacian
analysis, followed by quantization of spectral coefficients.
The reconstructed models contain less high-frequency com-
ponents but still guarantee a high visual quality. Sorkine
et al. [SCOT03] introduce an analog spectral quantization
scheme, but they rather focus on removing low-frequency
components that are not visible to the observer.

In some papers it was recognized that one could achieve
excellent coding results when well developed methods from
image wavelet coding are applied [KSS00, KG02, LCB03,
SRK02]. Since images are given in pixels on a regular grid,
the surface must be regularly resampled in order to apply im-
age coding algorithms to geometry compression. The coor-
dinate data at the semi-regular mesh is three-dimensional by
nature. Nonetheless, the construction of the multi-resolution
semi-regular mesh can be organized so that only normal
displacements are necessary to define the newly generated
vertices of the next finer level, yielding so-called normal
meshes [KG02]. In practice, however, the subdivision is al-
gorithmically complex and not all detail displacement vec-
tors can be expressed by a single scalar value.

c© The Eurographics Association and Blackwell Publishing 2008.



T. Ochotta, D. Saupe / Image-Based Surface Compression

2.2. Point-Based Methods

In 3D model acquisition [LPC∗00], range scanners generate
point clouds that can be rendered directly without triangula-
tion, i.e. using surface elements (surfels, [PZvBG00]), which
correspond to disks that locally approximate the surface for
hole-free point-based renderings. Rusinkiewicz et al. [RL00]
and Botsch et al. [BWK02] proposed real-time software ren-
derers that provide efficient encodings of the data based on
approximating the original points through centroids of occu-
pied octree cells. Nevertheless, these approaches rely on the
capability of rapid decoding to allow fast rendering that for-
bids employing enhanced and complex encoding strategies
in order to achieve a compression performance comparable
to that of mesh coders, e.g., [KSS00, KG02].

Some of the mesh compression strategies that are based
on quantization of vertex coordinates without using con-
nectivity are also suitable for compression of point sets,
e.g., [Dee95, PK05]. However, the best performing meth-
ods [KG02] rely on a complete resampling of the surface,
which requires an appropriate surface representation if the
input data is only a point set. A direct meshing of the input
point set is too difficult to construct or in most cases too ex-
pensive and thus motivates methods that achieve comparable
compression performance for point sets without meshing.

In [FCOAS03] a multi-resolution compression scheme for
point-sampled geometry was proposed that is based on an
embedded sequence of point sets, starting with a base point
set, which is encoded using a standard mesh compression
method. Point set refinement is performed using so called
moving least squares approximation over local coordinate
frames. Points are inserted combining estimated point posi-
tions and encoded ∆-values. Waschbüsch et al. [WGE∗04]
parameterize a given point-based model in a hierarchical
tree structure in order to recursively predict point positions
from corresponding tree nodes. The tree is processed by the
SPIHT encoder [SP96], yielding compact bit-streams. In ad-
dition, point positions, attributes, e.g., normal vectors, and
color can be compressed.

A joint compression and rendering framework was pro-
posed in DuoDecim by Krüger et al. [KSW05]. The point
coordinates were quantized and encoded relatively to each
other using a decomposition of the point set into runs.
The resulting bit-stream was decoded on graphics hardware,
which makes this method perfectly appropriate for real-time
applications and for processing of very dense data sets.

2.3. Patch-Based Parameterization

Surface parameterization is an active field in geometry pro-
cessing, for an overview see [FH05]. A parameterization of
a surface is a mapping of a parameter space (subset in R2) to
the 3D space. Lee et al. [LMH00] presented displaced subdi-
vision surfaces, where the original data set is approximated
by a smooth control mesh, which in turn is displaced by a

scalar valued map. Sander et al. [SWG∗03] proposed to rep-
resent a mesh by an atlas of charts that are designed to mini-
mize distortion. The detail coefficients are three-dimensional
and thereby, the parameterization is more complex, since it
does not merely displace points orthogonally to a plane.

Ivanov and Kuzmin [IK01] proposed spatial patches as
rendering primitive for meshes. The model is approximated
by an atlas of regularly sampled charts that correspond to
height fields, properly placed in 3D space. A similar rep-
resentation for point-based models has been proposed by
Pauly and Gross [PG01] for the purpose of spectral filtering.
Because their height fields are resampled to complete rect-
angular images, which results in heavy chart overlapping, a
blending technique is necessary when merging the processed
patches for surface reconstruction.

Focusing on efficient surface partitionings, Cohen-Steiner
et al. [CSAD04] proposed to cluster the surface and approx-
imate it through a set of polygonal shaped proxies, each of
which is equipped with a normal vector and a centroid, yield-
ing an arbitrarily shaped flat surface region. Considering var-
ious error metrics, they discussed a strategy to minimize a
global surface approximation error based on concepts from
vector quantization theory. As shown later, we utilize this
method to obtain height fields with possibly low distortions.

2.4. Shape-Adaptive Image Coding

Our compression method is based on approximating a given
geometric model by a number of encoded elevation maps
with arbitrary regions of support. Recently, wavelet-based
shape-adaptive image coding has been proposed, in which
wavelet coefficients corresponding to transparent image re-
gions are considered insignificant [LL00]. We utilize shape-
adaptive coding with binary set splitting [Fow04], which is
easy to implement and yields the best rate-distortion perfor-
mance in comparison to other approaches.

3. Compression Framework

We consider a given 3D geometric model as a finite point
set P ⊂ R3, e.g., points that were acquired by a 3D scanner.
Given P , we consider an associated surface S = S(P) that
provides a continuous approximation of the original surface.
When the input model is a mesh, S is given by the piece-
wise linear interpolation of the points in P . In cases where
the model is only a set of points, we define S to be the mov-
ing least squares (MLS) surface of P . The MLS surface is a
smooth surface depending on the input point setP that is de-
fined without piecewise parameterization. Computationally,
a point p ∈ S(P) is found by applying a projection operator
Ψ to an arbitrary point q ∈ R3, p = Ψ(q). To compute the
projection, a nonlinear equation must be solved by applying
an iteration procedure. A point p ∈ S projects onto itself.
Thus, the complete MLS surface is given by the set of fixed
points, S = {p | p = Ψ(p)}. For details see [ABCO∗03].
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Figure 3: Our parameterization corresponds to a mapping
of points in parameter space (base plane) to the surface;
three vectors e1,e2 and nD build an orthonormal basis for
each point over the plane, (u,v, f (u,v)); the orthogonal pro-
jection of the surface S onto the plane D provides a region Q
which defines the support of the regularly sampled map that
is constructed in our framework.

3.1. Error Measure

When compressing a surface given by a point set P , an
encoder produces a bit-stream that is converted back into
another point set P̂ at the decoder. In order to evaluate
the quality of the approximation we follow previous work
[KG02, LCB03] in the spirit of METRO [CRS98] and de-
fine a symmetric root-mean-square (rms) error and a peak-
signal-to-noise ratio (PSNR) based on surfaces S and Ŝ that
are given by P and P̂ respectively.

The (one-sided) L2-distance of Ŝ as an approximation of
S is given by

d(Ŝ,S) =
[

1
area(Ŝ)

Z
Ŝ

d(p,S)2d p
] 1

2

, (1)

where d(p,S) denotes the distance of the point p to the sur-
face S. The symmetric rms error is given by

Erms(Ŝ,S) = max
(
d(Ŝ,S),d(S, Ŝ)

)
. (2)

In practice d(Ŝ,S) is computed by sampling the surface
Ŝ and averaging squared distances. The actual distances
d(p,S) are estimated by applying the projection operator,
d(p,S) ≈ ||p−Ψ(p)||, or are computed explicitly when S
is defined by a mesh.

The PSNR is given by 20log10
dB

Erms(Ŝ,S)
, where dB is the

diagonal length of the bounding box of the surface S.

3.2. Parameterization

Given a subset S ⊆ S (a surface patch of S), the goal
of the parameterization is to find a mapping from a pla-
nar domain to 3D space, such that its graph approximates
the patch. Given patch S, we consider a reference plane
D = D(S) defined by a normal vector nD and a reference
point rD, D = {x ∈ R3|〈nD,x− rD〉= 0}, where 〈·, ·〉 de-
notes the scalar product. A mandatory condition for S to be

a height field is that the angles between the normal vectors
nS(p), p ∈ S and the plane normal nD do not exceed 90◦,

A(S) = inf
p∈S

(1− 1
2
‖nS(p)−nD‖2)≥ 0, (3)

which follows from the cosine theorem. The aperture A(S) is
the cosine of the aperture angle of the normal cone defined
by the normals on S. In practice we allow surface patches S
with a decreased aperture angle, A(S) ≥ ε, with ε = cosα,
0◦ < α < 90◦. For computation of nD, we use smallest en-
closing balls [Gär99], which can be utilized to compute the
normal cone, consisting of the normal vector nD and an aper-
ture angle φ. We set nD to the normalized output of the algo-
rithm in [Gär99], argminn∈R3 maxp∈S ‖nS(p)−n‖.

Given the plane D = D(S), we consider the orthogonal
projection of the surface patch S onto D, yielding Q ⊂ D,
which we refer to as the support Q of surface patch S over
plane D, see Figure 3. We now define a local coordinate sys-
tem with origin in rD and two span vectors e1 and e2 on
D that form an orthonormal system, providing (u,v)- (or
parameter-) coordinates for any point on D. We may choose
scaling factors l1, l2, such that l1e1, l2e2, and the reference
point rD define a bounding box of the support Q on the plane.
Additionally, we define Q̂ as the set of (u,v)-parameter co-
ordinates with corresponding points in Q.

The local coordinate system allows to express any point p
on the surface patch S in parameter coordinates (u,v), apply-
ing an elevation function f : Q̂→R. Any point (u,v, f (u,v))
with (u,v) ∈ Q̂ can be thought of as an elevated point over
the plane that corresponds to a point on the original surface
patch S, see Figure 3.

3.3. Partitioning

The goal of the partitioning procedure is to decompose the
surface S into a set of patches, such that each patch can be
parameterized as an elevation map. The patches are collected
in a partition R= {Si},∪iSi = S, Si∩S j = ∅, i 6= j.

We interpret the problem of finding such a partition as
a clustering problem, where each cluster has to fulfill con-
dition (3). In many clustering scenarios, the input data set
is grouped such that for a given number of clusters, a local
minimum of a certain global cost function is found [GG92].
In our setting, the cost function J for a given partition R
should capture the encoding cost. We integrate the squared
differences ||nS − nDi ||

2, taking over the normal vectors
nSi(x) belonging to all points x on each surface patch Si, and
where nD(S) again denotes the normal vector of the corre-
sponding reference plane D(S),

J (R) = ∑
S∈R

J(S), with (4)

J(S) =
Z

x∈S
‖nS(x)−nD(S)‖

2dx.

The motivation behind this definition is the expectation that
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large normal variations lead to height fields, which are rough
and, consequently require a higher encoding rate. For the
evaluation of J(S), we approximate the integral by a finite
sum of appropriately weighted contributions at uniformly
distributed sample points on the surface patch S.

In the following we describe and compare two partition-
ing methods that we utilize to appropriately cluster the input
surface into patches.

Split-Merge Clustering

In the first version, we adopt the split-merge approach from
our previous work [OS04]. In a nutshell, the complete sur-
face initially belongs to one cluster, which is recursively
split using principal component analysis until all clusters sat-
isfy the normal cone condition. We use some fixed thresh-
old α < 90◦ as indicated in Section 3.2. After the splitting
phase, adjacent clusters are merged as long as the the re-
sulting merged surfaces fulfill the normal cone condition. In
contrast to Equation (3), where the parameter α is chosen to
adjust the maximum cone aperture angle, we choose a re-
laxed threshold β during the merging process, β ≥ α. The
merging operations are implemented using a priority queue,
which sorts possible merging candidates after increasing er-
ror increments. For details, see [OS04].

The parameters α and β are used to adjust the properties of
the final partition. In general, a small α (e.g., α = 10◦) leads
to a partition with many small clusters after splitting. Apply-
ing a large angle β (e.g., β = 70◦) during merging leads to
a smaller number of clusters in the final partition. However,
the patches in this partition show irregular boundary shapes,
see Figure 4(b), which may lead to increased coding costs.
Increasing the parameter α reduces the number of clusters
in the initial partition and produces final partitions where the
patches have straight boundary curves, see Figure 4(d).

Generalized Lloyd’s Algorithm (GLA)

In [CSAD04] it was shown that excellent partitionings can
be obtained using methods from vector quantization. In par-
ticular they applied Lloyd’s algorithm [Llo82] to find a local
minimum of the cost function (4). We adopt their method
and briefly describe the procedure.

The search for the optimal partition is initiated by a num-
ber of randomly chosen seed triangles (or points) on the sur-
face that correspond to cluster centroids, each of which is
defined by a location on the surface and a normal vector
and coherently defines a plane (similar to the reference plane
from Section 3.2). The minimization of (4) is implemented
in two steps that are iteratively applied and work as follows.

Cluster Flooding. Given the set of triangles that represent
the cluster centroids, the goal is to assign all remaining tri-
angles of the model to clusters in order to build a surface par-
tition. This is achieved by employing a flooding technique,
in which triangles are subsequently assigned to the clusters,

(a) 11,584 patches (b) 11 patches

(c) 259 patches (d) 14 patches

Figure 4: Split-merge partitions: a large patch number after
splitting leads to irregular boundaries after merging, (a,b);
a smaller patch number after splitting straightens the bound-
ary shapes but slightly increases the final patch count, (c,d).

(a) 259 patches (b) 14 patches

Figure 5: Partitions obtained using the Generalized Lloyd’s
Algorithm for surfaces [CSAD04] for 259 patches (a) and 14
patches (b); in contrast to the split-merge, the patches do not
show straight boundary shapes.

using a priority queue. Specifically, for each centroid trian-
gle consider all (three) adjacent triangles and sort each of
them into a global priority queue according to the distance
of its normal vector to the normal vector of the centroid.
Then, remove the first triangle from the queue and assign
it to the respective cluster, and insert further (at most two)
adjacent triangles into the priority queue that have not yet
been visited. This procedure is repeated until the queue is
empty, meaning that all triangles were assigned to a cluster.

Centroid Fitting. Once a partition is found, the cluster
proxy (plane) of each patch is refitted in the spirit of Lloyd
iterations [Llo82]. Specifically, given a cluster of triangles,
i.e. a surface patch S, the normal nD of the plane D(S) is
set to the average of the normal vectors of the triangles in
S, weighted according to the triangle areas. The plane refer-
ence point is formally set to the barycenter of S, although it
does not affect the approximation error (4).

c© The Eurographics Association and Blackwell Publishing 2008.
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Figure 6: A partition with unoptimized shape shows noisy
edges (left); triangle reassignemts based on boundary length
minimization reduces these artifacts (right).

The procedure of cluster flooding and centroid fitting is
repeated until convergence or after a given number of iter-
ations is exceeded. Results of this partitioning method are
shown in Figure 5. In contrast to the split-merge approach,
the GLA distributes the patches on the surface more evenly,
compare Figure 4(c) and Figure 5(a). We furthermore ob-
served that for most tested models, the GLA achieves a
smaller number of patches than the split-merge approach un-
der a given patch aperture constraint, Equation (3).

Boundary Shape Optimization

The overall compression performance depends on the struc-
ture of the elevation maps in two ways. Firstly, elevation
maps with large total variance in elevation values are dis-
advantageous for compression. This issue is addressed by
minimizing (4). Secondly, complex and irregular boundary
shapes produce higher coding costs for the binary masks
than shapes with more regular boundaries.

To complete the surface partitioning, we remove noise ar-
tifacts at patch boundaries by decreasing the total boundary
length. For any triangle with an edge along a patch boundary,
we compute the decrease in boundary length when reassign-
ing the triangle to the adjacent patch. In an iterative proce-
dure, we reassign triangles as long as there are candidates
that decrease the boundary length. Note that each reassign-
ment step may affect further reassignments of boundary tri-
angles in a local neighborhood. For efficient processing, we
maintain a priority queue that holds the candidates according
to their length decreases.

In addition to reassigning single triangles, we allow reas-
signments of connected triangle pairs, which improves the
boundary denoising. This method may also be extended to
triangle clusters of more than two triangles. Figure 6 shows
that the shape optimization adequately removes noise arti-
facts at the patch boundaries.

3.4. Resampling

After constructing the partition, we consider the projections
of the original points onto their respective patches, which
yields an arbitrary point distribution for each patch. In or-
der to apply the shape-adaptive wavelet coder, however, each
surface patch needs to be resampled on a regular grid.

Given patch S ∈ R, we define a sampling interval ∆S and
consider grid points in (u,v)-space,

GS = {q = (∆Si,∆S j)|(i, j) ∈ Z2,q ∈ Q̂}

that belong to the patch S. For each patch S, we compute
the sampling interval ∆

0
S such that the number of resampled

points, |GS|, is roughly equal to the number of original points
in the patch. In order to control the total number of resam-
pled points in the model, we set the sampling interval in each
patch S to ∆S = µ∆

0
S, where µ > 0 is a scaling parameter.

Consequently, a global parameter of µ = 1 adjusts each grid
such that the number of points in the resampled model is
roughly equal to the number of original points.

In the resampling procedure, we compute for each grid
point q ∈ GS a corresponding elevation value f (q). If the
original surface S is a mesh, this can be achieved by project-
ing the original triangles onto the patch plane and identify-
ing the triangle, which contains the grid point on the plane.
The elevation value can then directly be interpolated from
the elevation values of the triangle vertices. In cases where
S is a MLS surface, a more sophisticated method has to be
employed as follows.

Similar the work in [AA03], the elevation values f (q) are
computed iteratively with a Newton-like method using the
MLS projection operator Ψ (see Section 3). Figure 7 illus-
trates the procedure. For a given point q on the grid GS, we
consider the corresponding point p ∈ R3 on the plane and
the line r through p and orthogonal to the plane. To initialize
the iterative procedure, we project the nearest neighbor of p
in P onto r, yielding p1. Then, we project p1 onto the MLS
surface by applying Ψ and compute the tangential plane of
the surface at the projection. Then the intersection of this
tangential plane with the line r defines the new point p2,
which is used for the next MLS projection. This procedure
is iterated until convergence, yielding the point Ψ

′(p) on the
MLS surface and the desired functional value f (q) for the
grid point q. Applying this procedure to all grid points and
patches yields the complete resampled point model P̂ .

3.5. Encoding

The foremost goal of the encoding is to enable the decoder
to reconstruct the elevation data for each patch parameter-
ization from the encoder output. Thus, for each patch, we
encode side information, binary masks, and the scalar height
field values as follows.

Side information; consisting of the base plane rectangle
and its grid sampling resolution for each patch. The rect-
angle can be encoded using eight quantized floating point
numbers defining the coordinates of the origin and two vec-
tors corresponding to the sides of the base plane rectangle.

Binary masks; defining the support of the height field
on each base plane rectangle. There are many methods for
bitmap encoding. In our implementation we have used an

c© The Eurographics Association and Blackwell Publishing 2008.
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Figure 7: Overview of the MLS-based resampling technique for point-based input models; the original point that is closest to
grid point p is projected onto the line through p and normal of the base plane, yielding p1 (left); the tangential plane of the
surface at the projection Ψ(p1) is intersected with the line, providing p2 (middle); the procedure is iterated until convergence,
yielding the projected point Ψ

′(p) over the point p (right).

adaptive context-based arithmetic coder [LR81] for the bi-
nary masks of the height field supports.

Elevation maps; consist of the scalar height field values.
Our height fields are regularly sampled but have irregularly
shaped supports. Thus, they can be regarded as grey scale
images with irregular boundaries. In image compression, ef-
ficient methods for shape-adaptive image coding were de-
veloped [LL00]. The most successful methods are wavelet-
based using bitplane coding with embedded tree-structured
significance mapping as in the image coder SPIHT [SP96].
Fowler proposed such a coder, called BISK [Fow04], that
showed superior performance and has been made available
as part of QccPack library [Fow00]. We used this coder in
our implementation for image-based surface compression.

In a nutshell, the BISK coder operates as follows. The
input consists of a rectangular height field with the binary
mask defining the support of the height field as side infor-
mation. The height field is wavelet transformed using the
4-scale shape-adaptive 9/7 biorthogonal filter [LL00]. For
the “opaque” coefficients, an embedded bitplane code is
produced applying the paradigm of significance and refine-
ment passes, which is common to most wavelet-based im-
age coders. Initially, all coefficients are taken as insignifi-
cant. In a significance pass, coefficients with a magnitude
greater than a threshold corresponding to the current bit-
plane are identified, marked as significant, and the sign of
each of these coefficients is coded. In the refinement pass,
for a bitplane, one additional bit for each previously marked
significant coefficient is coded. In significance passes, entire
sets of coefficients are tested jointly, and significant sets are
recursively subdivided. In the BISK coder, this subdivision
is a binary one, yielding a kd-tree subdivision of each co-
efficient band, and thus, it adapts to the shape of the image
(resp. height field). For details see [Fow04].

3.6. Bit Allocation

Given a set of resampled patches, approximating the original
surface, the shape-adaptive wavelet coder yields an embed-
ded bit-stream for each individual patch. Consequently, for

each patch the output bit-stream may be truncated providing
a certain reconstruction quality at the decoder.

The straightforward bit allocation strategy is to distribute
the bits among the patches evenly. Specifically, each resam-
pled patch P̂S, S ∈R receives a total number of

|P̂S|
|P̂|

B bits, (5)

where B is the total bit budget given by the user and |P̂S| and
|P̂| denote the number of resampled points in patch S and the
complete reconstructed model P̂ , respectively. This alloca-
tion approach is straightforward, and has the advantage that
the complete bit-stream can easily be designed as an embed-
ded stream by interleaving the individual patch streams.

A more sophisticated bit allocation method is given by
rate-distortion optimization, which optimally distributes the
bits among the patches such that the overall reconstruction
quality is optimal. We achieve this by employing standard
discrete Lagrangian optimization [Eve63].

For each resampled patch P̂S, S ∈ R, let
(

R(i)
S ,D(i)

S

)
,

i = 1,2, . . . denote the (finitely many) rate-distortion points
achievable by truncating the coder output at different posi-
tions numbered by i = 1,2, . . .. The rates R(i)

S include bits
for the base plane parameters, for the binary masks, and
the truncated wavelet coefficient bit-stream. The distortion
is given by the one-sided L2 distance between the recon-
structed surface patch the full original model, see Equation
(1). The truncation index i = i(S) for patch S is given by

i(S) = arg min
i=1,2,...

(
R(i)

S +λ ·D(i)
S

)
,

where λ ≥ 0 is the Lagrangian parameter. This yields a so-
lution with total rate ∑i R(i(S))

S with minimal total square dis-

tortion ∑i D(i(S))
S [Eve63]. In order to meet a prescribed total

rate constraint, we vary the Lagrange parameter λ, using the
bisection method.

The evaluation of the distortion D( j)
S for all j and S ∈ R

is computationally expensive. We therefore propose to ap-
proximate the surface distortions by an image-based error
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measure. Specifically, we redefine

D( j)
S = ∑

q∈GS

[
fS(q)− f̂ ( j)

S (q)
]2

, (6)

where fS(q) is the elevation value of the original patch S
at position (m,n), and f̂ ( j)

S (q) denotes the corresponding re-
constructed elevation value at bit-stream truncation index j.
Equation (6) can easily be evaluated at any truncation index
of the bit-stream and guarantees fast rate-distortion analysis.

While the bit allocation computes the number of bits that
is assigned to each patch, we also utilize the method in order
to compute the optimal resampling density. This is achieved
by including the rate-distortion curves for prescribed grid
resolutions and selecting the resolution of the identified rate-
distortion point on the curve for each patch.

4. Postprocessing for Meshes

Our unified framework allows processing of mesh- and
point-based geometry. For mesh input models, however, we
consider an optimization scheme to improve the approxima-
tion quality, and a gap closing method, which provides hole-
free reconstructed meshes.

4.1. Linear Least-Squares Fitting

If the input model is a mesh, the elevation values of re-
sampled points are directly read off from the original sur-
face S. Together with the canonical meshing of the resam-
pled points, this yields an interpolation of points on S. In
[HDD∗93] the resulting average squared interpolation er-
ror was reduced by adjusting the resampled points appropri-
ately, thereby turning the interpolation into an approxima-
tion. We also apply this linear optimization technique, ad-
justing the elevation values of the resampled points.

The optimization corresponds to the minimization of a
quadratic term ‖Ax− b‖2 over x. The vector x holds the el-
evation values of the patch vertices that have to be adjusted.
The vector b holds the true elevation values f (pi) of a larger
number of sample points pi that are regularly distributed
over the patch plane. The matrix A holds in each line i the
barycentric coordinates of sample point pi with respect to
the triangle that contains pi. Thus, Ax contains the elevation
values of the sample points pi from the interpolation, and
‖Ax− b‖2 is the sum of the squared errors of all of these
interpolated elevations. For an accurate approximation, the
number of sample points has to be chosen sufficiently large
(e.g., dimb = 5dimx).

Least-squares optimization results are listed in Table 1.
The numbers show the surface errors Erms for various patch
resolutions µ. The numbers in brackets are surface errors that
correspond to the approximation errors before applying the
least squares optimization. We observe a consistent improve-
ment in approximation error for all resampling densities.

1/µ = 0.6 1/µ = 1.0 1/µ = 1.4

Venus 1.97 (2.35) 0.86 (1.12) 0.56 (0.70)
Rabbit 1.15 (1.37) 0.53 (0.63) 0.32 (0.37)
Sphere 1.80 (2.27) 0.72 (0.98) 0.53 (0.66)

Table 1: Approximation errors Erms obtained with the least-
squares fitting method for Venus, Rabbit, and Sphere at var-
ious resolutions µ; the numbers in brackets correspond to
approximation errors without applying the fitting method.

4.2. Topological Reconstruction

If the model has to be reconstructed as a mesh, the regular
structure of the elevation maps can be utilized to construct
a mesh for each patch. We implement a canonical meshing
by connecting four adjacent points in each patch by two tri-
angles. However, the resulting mesh suffers from patch gaps
due to the missing connectivity between the patches.

In the literature, there are several methods for repairing
meshes with gaps that are comparable to ours. Borodin et
al. [BNK02] proposed a gap-closing scheme, which itera-
tively projects vertices on the gap boundaries towards the
opposing boundary and creates a triangle for each projec-
tion. In the algorithm of Sander et al. [SWG∗03], a mesh is
zippered by projecting boundary vertices onto cut paths that
correspond to gap defining curves. In consecutive projec-
tion and unification operations, opposing boundary curves
are projected to each other without inserting new triangles.

Both methods produce watertight high-quality models,
while they rely on moving vertices on the boundaries of
the patches. For the application of compression, however,
we prefer to keep vertices fixed on their reconstructed posi-
tions, since they have been computed and transmitted under
rate and distortion aspects. Hence, we propose a gap triangu-
lation method, which is entirely based on triangle insertion
operations under the constraint that vertices are fixed.

In this paragraph we continue to extend the description
of our gap closing method in [OH06]. We initially construct
the canonical mesh of the set of reconstructed points P̂i of
each individual patch i, yielding surfaces Ŝi, i = 0,1, . . . , |R|.
Then we consider the boundary ∂Ŝi, which is the set of points
on edges that share only one triangle in the triangulation of
Ŝi and also the boundary vertices that are incident to these
edges. Our goal is to connect vertices on the border of each
patch with edges on another patch. This provides new tri-
angles that connect the patches. Similar to [BNK02], we
consider projections of boundary vertices v ∈ ∂Ŝi onto ∂Ŝ j.
Specifically, for each Ŝi and vertex v ∈ ∂Ŝi we compute

p j(v) := arg min
p∈∂Ŝ j

‖p− v‖. (7)

Since p j(v) is a point on the boundary ∂Ŝ j, this point will
either be on a boundary edge or a boundary vertex. In the
first case we consider the pair v1, v2 ∈ ∂Ŝ j of incident ver-
tices to this edge. In the second case we choose one incident
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Figure 8: Triangle insertion in our gap filling method; up-
per left: projection of border vertex v onto an opposing edge
(v1,v2); lower right: triangles are inserted as long as they
do not intersect with an existing part of the surface.

edge to the vertex p j(v) and also consider the pair of inci-
dent vertices v1 and v2. We now form and insert a new trian-
gle between the three vertices v, v1 and v2, see Figure 8. In a
consecutive step we update the border information for edges
and vertices that have been affected by this insertion step.

• The edge (v1,v2) becomes an inner edge since it is inci-
dent to two triangles.

• We have two new border edges, namely (v,v1) and (v,v2),
if there is no previously inserted triangle with an edge
(v,v1) or (v,v2), respectively.

• The vertex v is no longer a border vertex, but an inner ver-
tex, once all edges incident to v have become inner edges.

When inserting a new triangle (v,v1,v2), we furthermore
check for intersections with triangles incident to v, v1 and
v2 to avoid overlapping triangles. This is mandatory, since in
(7) there is no topological condition that prevents the triangle
(v,v1,v2) to intersect with an existing part of the surface.

It should be noted that we also allow projections of border
vertices v ∈ ∂Ŝi onto the same patch boundary ∂Ŝi, as long as
the edge that contains the projected point pi(v) is not inci-
dent to v. In our implementation, we additionally extend the
formulation in Equation (7) to projections onto more than
one nearby edge, which increases the number of candidates
for each border edge and improves the overall performance,
e.g., triangles with a large obtuse angle are not inserted.

Figure 9 shows the reconstructed Rabbit mesh without
and with applying our gap filling method. We obtain robust
and fast gap closing. To process the Rabbit model of 69,420
vertices and 133,129 faces, our algorithm needs less than 3
seconds for inserting 6,852 faces on a 2.8GHz PC platform.

5. Results and Discussion

We present results for the models Venus, Igea, Rabbit,
Balljoint, which are available at the Cyberware repository
[Cyb], and Dragon, David, XYZRGB Dragon, and Lucy,
which were taken from the Stanford 3D Scanning Reposi-
tory [Sta, LPC∗00]. The model of the Shakyamuni statue is
available at the Konstanz 3D Model Repository [KN].

Figure 9: Results that are obtained with our gap filling
method; Rabbit without and with gap filling (left); and cor-
responding closeup views (upper and lower right).

5.1. Partitioning

Table 2 lists the number of patches and the approximation er-
ror for the split-merge approach (Section 3.3) and the GLA
clustering (Section 3.3). The partitions were obtained re-
stricting the maximum aperture of each patch to 80◦. Com-
paring the two partitioning methods, we observe that the
GLA [CSAD04] outperforms the split-merge method. We
obtain partitions with less patches that at the same time show
a smaller approximation error, Equation (4).

In the following, we present results for point- and mesh-
based models using the GLA partitioning, where we applied
the aperture threshold of β = 80◦. For some large mod-
els, however, we applied an extremely relaxed threshold,
i.e. β = 89◦ in order to reduce the total number of patches,
which leads to better compression results at low bit-rates.

5.2. Point Model Compression

Table 3 lists detailed coding results for point models. For
each model, the bit-stream consists of, firstly, a header,
which holds side information and plane mapping parameters
for each patch (the respective amount of bits is denoted by
r0); secondly, the coding costs of the binary images which

model # points split-merge GLA [CSAD04]
# patches error # patches error

Igea 134,345 14 0.42 7 0.32
Balljoint 137,062 26 0.41 12 0.29
Dragon 437,645 367 0.56 150 0.22
Shakyamuni 996,956 262 0.51 133 0.23
David 3,614,096 878 0.51 692 0.09

Table 2: Comparison between the split-merge partitioning
and the GLA clustering, (Section 3.3); the patch aperture
angles are bound to 80◦; the GLA method outperforms the
split-merge approach by providing partitions with a smaller
number of patches at a smaller approximation error, (4).
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reconstructed mask bits total rate Erms PSNR Td
points [%] [bpp] [10−4dB] [dB] [sec]

Igea, 134,345 points, 7 patches, r0 = 1,218
87,526 17.0 0.50 2.35 72.6 0.3
136,638 7.5 1.51 0.76 84.4 0.3
197,012 4.7 3.01 0.44 87.1 0.5

Balljoint, 137,062 points, 12 patches, r0 = 1,893
49,422 15.0 0.51 2.52 72.0 0.2
137,558 9.0 1.51 0.73 82.7 0.3
269,581 6.7 3.01 0.43 87.3 0.4

Dragon, 437,645 points, 150 patches, r0 = 20,253
154,189 58.4 0.29 13.3 57.5 0.8
431,633 21.5 1.55 1.03 79.7 1.2
848,723 16.6 3.05 0.62 84.2 1.7

Shakyamuni, 996,956 points, 133 patches, r0 = 18,224
268,089 24.3 0.22 2.50 72.0 1.6
947,262 12.6 1.02 0.32 89.9 2.2

1,366,866 7.9 2.02 0.14 97.1 2.8

David, 3,614,096 points, 692 patches, r0 = 93,693
562,419 33.0 0.18 1.30 77.7 4.6

1,270,573 24.9 0.38 0.45 86.9 8.2
3,544,249 18.0 0.98 0.21 93.6 12

Lucy, 14,020,068 points, 621 patches, r0 = 84,243
5,184,445 63.3 0.09 2.89 70.8 23
9,225,736 26.9 0.31 0.19 94.4 34
14,422,702 10.7 1.01 0.07 103 58

Table 3: Detailed compression results for various point
models; the bit-stream consists of header bits (denoted by
r0), bits for the binary images (masks), shown as percentage
of the entire code length, and bits for wavelet coefficients;
the last column shows the decoding and reconstruction time.

define the elevation map supports; and thirdly, the bits for
the wavelet coefficients, which constitute the largest part of
the stream. The bit-rate is the total amount of bits divided by
the number of input points. The error Erms is the surface-to-
surface distance of the original model and the reconstruction,
see Section 3.1. We follow Equation (2) and sample both sur-
faces with a number of points that are projected onto the op-
posite surface. All errors in this work are expressed in units
of 10−4dB, where dB is the diagonal length of the bounding
box of the original model.

Comparing the results in Table 3, we remark two ma-
jor observations. Firstly, the number of required patches is
widely independent from the sampling density in the model,
e.g., the Shakyamuni model with 996,956 points is twice as
big as the Dragon model with 437,645 points, but needs only
133 patches, while the Dragon model takes 150 patches. This
is obvious, since the patch layout reflects the complexity of
the geometry rather than the sampling density. Secondly, the
sampling density dominates the ratio between bit-rate and
reconstruction quality, e.g., we observe a bit rate of about
0.4 bpp for the David model at a reconstruction fidelity of
87 dB, while at the same time, Igea takes a significantly
higher rate of about 3 bpp at a lower reconstruction quality
of 84.4 dB. Hence, our method aggressively removes redun-

Figure 10: Point-based compression of Lucy; global view:
reconstruction at 0.47 bpp, which corresponds to a file size
of 804 kByte; the close-up views on the left show reconstruc-
tions at 0.09 bpp (Erms = 2.89), 0.15 bpp (Erms = 0.62), and
0.47 bpp (Erms = 0.14) (from top to bottom); the head on the
bottom right corresponds to the original model.

dancies when the model has a very dense sampling relative
to the surface complexity, e.g., as it is the case for David.

Figure 10 shows the compressed Lucy statue at 0.47 bpp
at the global view. The close-up views show reconstructions
at 0.09 bpp, 0.15 bpp, and again 0.47 bpp. A close-up view
of the original is shown at the bottom right. For Lucy we
obtain visually pleasant results already at very low bit-rates,
e.g., around a half bit per point (compare the two close-up
views at the bottom). This indicates that the original shows
a high point density compared to the geometric complexity
and our coder removes redundancies adequately.

Figure 11 shows the compression performance for the
Stanford Dragon point model. The top row shows the par-
tition with 150 patches (left) and rate distortion curves us-
ing the error measure Equation (2). The two curves are ob-
tained using the split-merge partitioning and the GLA clus-
tering. The right curves compare our results to previous
coders [FCOAS03] and [WGE∗04], using the error measure
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Figure 11: Point-based compression of Dragon; top row: partition, performance curves for split-merge and GLA partitioning,
and comparison of our method to [FCOAS03] and [WGE∗04]; bottom row: decoded models at various bit-rates with decoding
errors d(S, Ŝ), and visualizations of the distances of the original surface to the MLS surface of the reconstructed point set.

in [FCOAS03]. A significant performance improvement can
be observed. The bottom row in Figure 11 shows close-up
views of the decoded Dragon at various bit-rates. The im-
ages below visualize the distance of the original to the re-
constructed surface, where blue corresponds to a distance of
zero and red correspond to distances greater or equal to 0.1
percent of the bounding box diagonal of the original model.

Figure 12 shows compression of David (3,614,098
points). The rate distortion curves indicate an excellent ap-
proximation quality at already 0.5 bits per point, which con-
firms that our method adequately removes redundancies for
large models as for Lucy in Figure 10. Artifacts become vis-
ible in the global view only when reducing the bit-rate dras-
tically, e.g., down to 0.11 bpp.

The close-up views in Figure 12 show that the rendering
of the reconstruction is more blurry than that of the original.
This is explained by the fact that our method degrades the
sampling of the original model (which may be adaptive to
surface features). This drawback can be overcome by consid-
ering the sampling density during the patch layout construc-
tion, e.g., the patches are forced to show similar sampling
densities. Although, an improvement in visual quality would
be expected, the total number of patches will increase, which
may worsen the rate-distortion performance due to increased
costs for side information and binary images.

5.3. Mesh Geometry Compression

In the following, we present results for mesh models.
To evaluate the surface error, Equation (2), we adopt the
METRO tool [CRS98]. The rates are given in bits per ver-
tex (bpv).

Figure 13 shows results for the Shakyamuni mesh. The
close-up views show the partition and reconstructions at var-
ious bit-rates. We observe that the reconstruction at 1 bpp is
already close to the original model (Erms = 0.3 ·10−4dB) and
provides good visual quality. The corresponding L∞ error is
E∞ = max(supp∈S d(p, Ŝ),supp∈Ŝ d(p,S)) = 4 · 10−4dB,
which is still within a tolerance of, e.g., 0.5% of the bound-
ing box diagonal length. The top right curve shows the rate-
distortion performance, while the bottom curve shows the re-
construction error at 1 bpp for a varying number of patches.
We found that the error is proportional to the number of
patches down to a certain optimal number. This behavior is
explained by the fact that a large number of patches leads to
increased costs for side information, e.g., base plane parame-
ters and binary images, which in turn reduces the bit budget
for the wavelet coefficients and leads to larger errors. Fur-
ther reduction of the patch number leads to elevation map
artifacts, which worsens the distortion. We found that this
behavior is typical. In general, there is an optimal number of
patches for which the rate-distortion curve is the lowest.
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Figure 12: Point-based compression of David; top: partition and two reconstructions; bottom: rate-distortion graphs without
and with applying the optimal bit allocation scheme and close-up views of the original and a reconstruction.

Figures 14 and 15 show compression results for the com-
monly used meshes Rabbit and Venus. The curves compare
the performance of our coder to the state-of-the-art meth-
ods [KSS00] and [KG02]. Basically, the method in [KG02]
provides a better rate-distortion performance at very low bit-
rates. Nevertheless, our method provides results that are sim-
ilar or slightly better than in [KG02] at bit-rates of 1 bpp and
above. At these rates, the errors are sufficiently small, mean-
ing that the reconstructions are close to the original model
and are suitable for a practical application.

Table 4 lists all tested meshes and gives detailed coding
results, including the amount of side bits r0 and bits for the
binary images, compare Table 3.

Comparison to Multi-Chart Geometry Images. Our
method is similar to the approach proposed by Sander
et al. [SWG∗03], however, their parameterization is more
complex than ours, since the detail coefficients are three-
dimensional. Their work does not focus on compression,
hence, we compare our method to theirs in terms of pa-
rameterization quality. To make an appropriate comparison,
we reconstruct our model with three times as many vertices

as in [SWG∗03], since our detail coefficients are only one-
dimensional. We reconstruct the Dragon model at 158,009
vertices and a reconstruction quality of 80.6 dB, which is
comparable to the result in [SWG∗03], where the Dragon
model is reconstructed at 79.4 dB (with 52,059 vertices,
leading to 156,177 detail coefficients).

Computational Costs. Table 5 shows timings for the indi-
vidual steps in the pipeline for various models. For point
models, we observe high computational costs for the resam-
pling procedure, which is due to the fact that a number of
MLS projections have to be applied to construct the ele-
vation value for each sample point. The resampling is fast
for meshes, since the elevation values can be read off di-
rectly from the original mesh. Moreover, there is a signifi-
cant amount of run time needed for the rate-distortion op-
timization, since it includes many encoding and decoding
steps to sample the rate-distortion curve for each patch.

The last column of Table 3 and Table 4 show timings that
are required for decoding and reconstruction. For meshes,
the gap closing has to be applied after decoding, which re-
sults in slower reconstructions than for points.
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at 0.2 bpp and 1 bpp (middle); reconstruction errors for various bit-rates (top right); reconstruction errors for varying number
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Figure 14: Mesh compression as in Figure 13 for Rabbit (left); the close-up views show that boundary artifacts become visible
at very low bit-rates (middle); the compression performance compared to the coders PGC [KSS00] and NMC [KG02] (right).
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Figure 15: Mesh compression as in Figure 14 for Venus with 50,002 vertices.
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reconstructed mask bits total rate Erms PSNR Td
vertices [%] [bpv] [10−4dB] [dB] [sec]

Venus, 50,002 vertices, 8 patches, r0 = 1,353
18,392 28.9 0.32 9.06 60.9 1.3s
51,519 12.8 1.27 1.91 74.4 2.7s
132,437 8.8 2.96 0.85 81.4 3.2s

Rabbit, 67,039 vertices, 6 patches, r0 = 1,083
24,587 18.2 0.42 2.70 71.3 1.5s
68,572 12.3 1.02 1.01 79.9 2.8s
134,832 7.3 2.49 0.46 86.8 3.4s

Balljoint, 137,062 vertices, 11 patches, r0 = 1,758
50,344 15.4 0.51 2.01 73.9 2.6s
140,619 13.4 1.01 1.01 79.9 3.8s
202,110 8.2 2.01 0.55 85.2 5.2s

Dragon, 437,645 vertices, 162 patches, r0 = 22,143
175,003 31.1 0.35 3.86 68.3 8s
288,677 17.6 0.95 0.91 80.8 12s
452,047 10.7 2.05 0.46 86.8 15s

Shakyamuni, 996,956 vertices, 161 patches, r0 = 22,008
308,527 34.4 0.22 2.35 72.6 10s
369,113 20.9 0.52 0.74 82.6 14s

1,481,024 14.4 1.27 0.26 91.7 28s

XYZRGB Dragon, 3.6M vertices, 534 patches, r0 = 72,363
1,370,951 43.1 0.22 1.56 76.1 57
3,295,725 27.5 0.52 0.49 86.2 82
7,304,838 9.2 2.52 0.11 99.2 120

Table 4: Compression results for meshes, compare Table 3.

Boundary Artifacts. The weakness of our framework is
the occurrence of discontinuities near the patch boundaries.
These become visible especially at very low bit rates, where
the reconstruction error becomes large, Figure 16(a). Al-
though the patch discontinuities do not worsen the compres-
sion performance with respect to the geometric error, they
may lead to unpleasant visual results. To fix this problem,
we propose to apply a smoothing filter to blend the patch
boundaries in a post-processing step after decoding. Specif-
ically, we identify all points on the patch boundaries and set
their positions to the respective Gaussian smoothed version,
which is obtained by computing the weighted average of
point positions in a local neighborhood around each bound-
ary point. Results of this procedure are shown in Figure
16. We observe that the discontinuities are widely removed
while the geometric approximation quality is preserved.

6. Conclusions

We presented a framework for 3D surface compression. Our
coder applies an elementary parameterization to decompose
the surface into a number of regularly sampled height fields,
which are encoded using state-of-the-art shape-adaptive im-
age wavelet coding, thus, mapping the problem of 3D geom-
etry coding to 2D image coding.

Our method is applicable to mesh- and point-based geom-
etry, since our pipeline relies only on an appropriate surface
representation of the 3D model. We obtained an improved
rate-distortion performance in comparison with state-of-the-

model Tclu Tpar T (p)
res / T (m)

res Topt Tenc

Venus 0.6s 0.03s 5.6s / 1.1s 14s 0.1s
Rabbit 1.1s 0.08s 12s / 1.5s 26s 0.1s
Balljoint 2.6s 0.1s 34s / 2.4s 43s 0.3s
Dragon 12s 0.3s 2.7m / 10s 2.2m 0.9s
Shakyamuni 34s 0.6s 6.2m / 23s 8.6m 1.6s

Table 5: Timings for the following steps in the pipeline:
GLA clustering (Tclu), parameterization (Tpar), resampling

(T (p)
res for the point-based model and T (m)

res for the mesh), rate-
distortion optimization (Topt ), and encoding (Tenc).

art point-based surface compression. If the reconstructed
model is a mesh, our coder still achieves results that are com-
parable to those of the best mesh compression algorithms,
e.g., normal mesh compression. However, in contrast to this
method, our framework is based on an elementary parame-
terization, leading to simple implementations.

The limitation of our method is the occurrence of patch ar-
tifacts, which is common with region-based coding schemes,
such as JPEG for images. Moreover, the resampling proce-
dure widely destroys the (perhaps adaptive) sampling of the
original model. Finally, our approach is not suitable for en-
coding diffuse and irregular objects, e.g., plant models. It
rather aims at densely sampled surface-like 3D objects, i.e.
models that were acquired by a laser range scanner.

In future work we may compare our method to previous
coders with respect to error measures that model human vi-
sual perception more appropriately than the L2 metric does.
We may also embed our system in a out-of-core framework,
in that we apply out-of-core partitioning as in [IG03], and
perform the resampling step and the RD-optimization on
each individual patch (in-core).
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Figure 16: Compressing models at very low bit-rates leads
to visible artifacts near the patch boundaries, Erms = 3.91
(left); applying a smoothing filter in these areas improves
the visual quality, Erms = 3.86 (right).
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