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Introduction

Many researchers use homogeneous, isotropic concen-
tric sphere models when simulating the electric po-
tentials from neuronal activity in the brain as mea-
sured by electroencephalography (EEG), and the re-
sulting external magnetic fields as measured by magne-
toencephalography (MEG). The corresponding source
model usually assumes that neurons act as current elec-
tric dipoles [2] such that the EEG and MEG forward
problems can be reduced to closed form analytic solu-
tions. With more realistic, inhomogeneous, anisotropic,
non-spherical head models, however, a closed form so-
lution is not as easily computed and approximations,
such as finite element methods, must be used.

The simplest numeric finite element method employs
linear basis functions to approximate the physical equa-
tions governing the electric and magnetic fields [2,4, 7]
and uses a constant electric gradient within an element.
In contrast, a closer approximation of the physical equa-
tions and a non-constant electric gradient within an
element [1,3,9] may be made by using a higher or-
der finite element method. As an initial part of un-
derstanding the accuracy and computational effects of
using higher order basis functions, we used both lin-
ear and quadratic finite element methods to calculate
the electric and magnetic fields detected by EEG and
MEG, respectively, and compared the results.

Method

For a current dipole within a conductive region, G, of
the brain with conductivity ¢ and homogeneous mag-
netic permeability po the quasistatic approximations of
Maxwell’s equations, Poisson’s equation, and the Biot-
Savart law can be used to determine the electric field,
E, and the magnetic field, B, as follows:
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where ¢ is the electric potential, I is the electric cur-
rent, 7' is the coordinate of the dipole, r is the point of
detection, and @ is the dipole moment.

If the conductor enclosing a dipole is a homogeneous
sphere, the electric potential [10] can be calculated from
an analytic closed form equation as follows:

¢(r) = Q/4mo-[(r—r")/ry+ (r —|r[>r'/R?)/R’r);
+1/R3rpi[r + (r|r'||r|/ R?cosb
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where 7, = (|r|? + |r'|*> — 2|r||r|cos8)/2, rpi = (1 +
(|r||r'|/R?)? = 2|r'||r|cos8/R?)}/2, @ is the angle be-
tween r and 7', and R is the radius of the sphere.
Further, according to Sarvas [8], the magnetic field out-
side of a homogeneous sphere enclosing a dipole can be
calculated as follows:

B(r) = po/ArF*(FQ x ' —Q x ' -rVF) (5)

where F' = |a|(|7||a| +|r|?—=7'-7),a =r—7',and VF =
(laf*/Ir|+a-r/lal+2]al +2[r)r = (la| +2|r|+a-r/|a|)r".
In our simulations, the finite element method was used
to calculate electric and magnetic fields in discrete, nu-
meric models of both spheres and realistic heads. The
SCIRun and BioPSE problem solving environments [5]
were used to drive the forward EEG and MEG simula-
tions.

Results

Several tests were used to compare the accuracy of the
linear versus the quadratic finite element methods. Us-
ing a sphere, we calculated the electric potentials and
magnetic field by our numeric model and compared it
to the analytic electric potential (4) and magnetic field
(5) equations, respectively. The sphere tests were per-
formed on five different unit decimeter spheres contain-
ing the following number of elements: 41,093, 112,547,
222,928, 347,647, and 459,784. A dipole was placed in
the sphere at (0.8,0.5,0) with moment (1,-0.5,0).

For each sphere, electric fields were numerically calcu-
lated using both linear and, separately, quadratic finite
element methods and compared to the analytic solu-
tion. The relative root-mean-square (RMS) percentage
error for the electric numeric solution compared to an-
alytic electric potential values is shown in Figure 1 for
both the linear and quadratic models. Also for each
sphere, the magnetic fields were numerically calculated



using both the linear and, separately, the quadratic fi-
nite element methods and compared to the analytic so-
lution. The relative RMS percentage error for the mag-
netic numeric solution compared to analytic values is
shown in Figure 2 for both the linear and quadratic
models. The wall-clock runtimes for the above electric
and magnetic numeric calculations for both the linear
and quadratic methods appear in Table 1.
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Figure 1: Error of electric potential calculations versus
number of elements in spherical mesh (crosses indicate
linear solution and stars indicate quadratic solution).
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Figure 2: Error of magnetic field calculations versus
number of elements in spherical mesh (crosses indicate
linear solution and stars indicate quadratic solution).

The next comparison performed was the accuracy of the
linear versus quadratic methods for various distances
between the dipole and detectors. Using the unit sphere
containing 222,928 elements, the dipole was placed at
positions 0.03, 0.13, 0.31, 0.48, and 0.83 decimeters
from the electrode and magnetic detector positions.
Figure 3 illustrates the relative RMS percentage er-
ror differences between the linearly and quadratically
calculated electric potentials at the different dipole po-
sitions in the unit sphere. Figure 3 also contains the
relative RMS percentage error differences between the
linearly and quadratically calculated magnetic values
at the different dipole positions in the unit sphere.

Finally, the linear and quadratic numeric finite ele-

Table 1: Runtimes (in seconds) of linear wversus
quadratic, electric and magnetic calulations.
Num Elements FElectric Magnetic
Linear | Quad | Linear | Quad
41093 3 35 14 58
112547 6 127 42 192
222928 15 220 93 362
347647 22 351 151 572
459784 30 467 210 760
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Figure 3: Difference between calculated linear and
quadratic error of electric potentials (crosses) and mag-
netic values (stars) versus distance between dipole and
detectors.

ment methods for EEG and MEG forward simulations
were performed on a realistic head model consisting
of 396,285 elements and 64 detectors placed over the
head. This model was constructed from a volume
MRI scan and consisted of six conductivity values [6].
A tangentially-oriented dipole was placed in the right
parietal lobe. The relative RMS percentage difference
between the linearly and quadratically calculated elec-
tric potentials at the electrodes was 2.78%. The rel-
ative RMS percentage difference between the linearly
and quadratically calculated values at the magnetic de-
tectors was 15.75%. Figure 4 permits a visual compar-
ison between the accuracy of the linear and quadratic
finite element methods in calculating the electric po-
tentials on the brain cortex.

Discussion

The tests performed with the spherical models and
the comparison of the results with those obtained us-
ing the analytic solutions show that our model using
the quadratic finite element method works accurately.
Further, Figures 1 and 2 demonstrate that for all five
spheres, the quadratic method consistently results in
less error than does the linear method. The difference in
errors between the electric potentials calculated by the
linear and quadratic methods, however, decreases as the
number of elements progresses from 41,093 to 459,784
elements. This decrease results from the 1/r? compo-
nent of the dipole’s physical equations; these equations
can be better represented by a quadratic finite element



Figure 4: FElectric potential on brain cortex calculated
using the linear finite element method (in the upper
panel) and the quadratic finite element method (in the
lower panel).

model than a linear model when elements are very large,
but as elements become smaller the linear basis func-
tions can more accurately approximate the quadratic
equations. The difference between linear and quadratic
methods of calculating magnetic values also decreases
with increasing number of elements, but in a more lin-
ear fasion.

Figure 3 shows that the error in electric potentials cal-
culated by the linear method relative to the quadratic
method increases greatly as the detector positions ap-
proaches the dipole, reflecting the 1/r? fall-off of the
dipole’s field strength with distance and the higher gra-
dient of the electric field lines near the dipole than at
farther distances. The magnetic field due to the dipole’s
volume currents, which is modeled by the integral por-
tion of Equation 3, is derived from the electric poten-
tials throughout the conductive medium, whereas the
remainder of the equation models the magnetic field
due to the dipole’s primary current [4]. The magnetic
field due to volume currents increasingly dominates the
magnetic field due to the primary current as the dis-
tance between the dipole and detectors increases; since
the magnetic values due to volume currents are derived
from electric potentials which are better approximated
by the quadratic than the linear method, the error in
the magnetic values calculated by the linear method in-
creases greatly compared to the values calculated by the
quadratic method as the magnetic field detector moves
away from the dipole.

The advantages of the increased accuracy of the
quadratic method, as demonstrated in spherical mod-
els, becomes even more useful in the realistic head
model. Figure 4 shows that the quadratic element
method calculates the electric potential to a more fo-
cussed region than does the linear element method;
the quadratic method can determine dipole positions
within a particular element, whereas the linear method
cannot.

The error in the electric potentials and magnetic val-
ues calculated by the quadratic element method is al-
ways less than those calculated by the linear element

method. The improvement of the electric potential is
especially important as the distance between the dipole
and the measured points decreases; on a realistic head
model, the quadratic element method more precisely
defines the area of electrical potential. In contrast, the
improved quadratic method calculations of magnetic
values is increasingly important for detectors remote
from the dipole as often is the case in measured MEG.
But the quadratic method takes considerably more time
than does the linear method for the same RMS accu-
racy. In calculating the electric and magnetic fields in
a realistic head model, the quadratic element method
would seem to be best applied to EEG electrodes near
the dipole and MEG detectors remote from the dipole.
But for EEG electrodes farther away from the dipole
and MEG detectors near the dipole, the linear element
method could be used as the advantages of the reduced
run-time may dominate the minimized error at these
distances. This balance between accuracy and compu-
tation time may be improved by the use of a model
employing an adaptive finite element method.
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