
Available online at www.sciencedirect.com
www.elsevier.com/locate/cma

Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
A comparison of implicit solvers for the immersed boundary equations

Elijah P. Newren a, Aaron L. Fogelson a,b,*, Robert D. Guy c, Robert M. Kirby d,b

a Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
b Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA

c Department of Mathematics, University of California, Davis, CA 95616, USA
d School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Received 20 June 2007; received in revised form 26 November 2007; accepted 30 November 2007
Available online 15 December 2007
Abstract

Explicit time discretizations of the immersed boundary method are known to require small timesteps to maintain stability. A number
of implicit methods have been introduced to alleviate this restriction to allow for a more efficient method, but many of these methods still
have a stability restriction on the timestep. Furthermore, almost no comparisons have appeared in the literature of the relative compu-
tational costs of the implicit methods and the explicit method. A recent paper [E.P. Newren, A.L. Fogelson, R.D. Guy, R.M. Kirby,
Unconditionally stable discretizations of the immersed boundary equations, J. Comput. Phys. 222 (2007) 702–719.] addressed the con-
fusion over stability of immersed boundary discretizations. This paper identified the cause of instability in previous immersed boundary
discretizations as lack of conservation of energy and introduced a new semi-implicit discretization proven to be unconditionally stable,
i.e., it has bounded discrete energy. The current paper addresses the issue of the efficiency of the implicit solvers. Existing and new methods
to solve implicit immersed boundary equations are described. Systematic comparisons of computational cost are presented for a number
of these solution methods for our stable semi-implicit immersed boundary discretization and an explicit discretization for two distinct test
problems. These comparisons show that two of the implicit methods are at least competitive with the explicit method on one test problem
and outperform it on the other test problem in which the elastic stiffness of the boundary does not dictate the timescale of the fluid
motion.
� 2008 Elsevier B.V. All rights reserved.

AMS subject classification: 65M06; 65N22; 74F10; 76D05; 76M20

Keywords: Implicit solvers; Fluid–structure interaction; Immersed boundary method; Immersed interface method; Projection methods; Navier–Stokes
equations; Krylov methods
1. Introduction

The immersed boundary (IB) method was introduced by
Peskin in the early 1970s to solve the coupled equations of
motion of a viscous, incompressible fluid and one or more
massless, elastic surfaces or objects immersed in the fluid
0045-7825/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2007.11.030

* Corresponding author. Address: Department of Mathematics, Uni-
versity of Utah, Salt Lake City, UT 84112, USA. Tel.: +1 801 581 8150;
fax: +1 801 581 4148.

E-mail addresses: enewren@sandia.gov (E.P. Newren), fogelson@
math.utah.edu (A.L. Fogelson), guy@math.ucdavis.edu (R.D. Guy),
kirby@cs.utah.edu (R.M. Kirby).
[24]. Rather than generating a curve-fitting grid for both
exterior and interior regions of each surface at each time-
step and using these to determine the fluid motion, Peskin
instead employed a uniform Cartesian grid over the entire
domain and discretized the immersed boundaries by a set
of points that are not constrained to lie on the grid. The
key idea that permits this simplified discretization is the
replacement of each suspended object by a suitable contri-
bution to a force density term in the fluid dynamics equa-
tions in order to allow those equations to hold in the
entire domain with no internal boundary conditions.

The IB method was originally developed to model blood
flow in the heart and through heart valves [24,26,27], but

mailto:newren@math.utah.edu
mailto:fogelson@ math.utah.edu
mailto:fogelson@ math.utah.edu
mailto:guy@math.ucdavis.edu
mailto:kirby@cs.utah.edu


Fig. 1. Example immersed boundary curve, C, described by the function
Xðs; tÞ, immersed in a fluid-filled region X.

E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304 2291
has since been used in a wide variety of other applications,
particularly in biofluid dynamics problems where complex
geometries and immersed elastic membranes or structures
are present and make traditional computational
approaches difficult. Examples include platelet aggregation
in blood clotting [9,11], swimming of micro-organisms
[9,10], biofilm processes [8], mechanical properties of cells
[1], cochlear dynamics [3], and insect flight [18,19]. We refer
the reader to [25] for a more extensive list of applications.

The immersed interface (II) method was developed by
Leveque and Li to address the low order accuracy found
in the IB method when applied to problems with sharp
interfaces [16]. The II method differs from the IB method
in the spatial discretization method of the singular forces
appearing in the continuous equations of motion. While
we do not address the spatial discretizations involved in
the II method and instead focus on the IB method in this
paper, we do present some discussion of that method since
the two are closely related, in fact hybrids of the two exist,
such as [15].

Explicit timestepping with the IB and II methods leads
to a severe timestep restriction in order to maintain stabil-
ity [9,16,25,29]. This time step restriction is typically much
more stringent than one that would be imposed if explicit
differencing of the advective or diffusive terms [6] were
used. Much effort has been expended attempting to allevi-
ate this severe restriction, including the development of
various implicit and semi-implicit methods [4,9,16,17,
20,30,31].

The use of implicit methods for solving the IB equations
has met with very limited success. Until the recent results in
[22], no implicit IB methods were known to be uncondi-
tionally stable, and the observed instability even of some
of the fully implicit methods was not well understood.
There has also been an almost complete lack of computa-
tional comparisons of implicit methods with the explicit
method. In fact, despite the many papers introducing
implicit methods for solving the IB equations, very few of
them have done any concrete comparisons of the computa-
tional cost of their implicit methods to the explicit method;
two of these papers [22,30] have stated that their implicit
method was slower than the explicit method, while others
have simply overlooked comparing their implicit method
with the explicit method in terms of CPU time. The only
works of which we know to concretely compare computa-
tional cost were that of Stockie and Wetton [29], whose
main focus was an analysis of IB stability, and the work
of Mori and Peskin [20] found in this issue.

The issue of stability of implicit discretizations of the IB
equations was addressed in [22], where the authors showed
that previously suspected and asserted causes of numerical
instability for the IB method were not the actual sources of
instability and identified the cause of instability in previous
implicit IB discretizations as a lack of conservation of
energy of the numerical discretization. In [22], a new
semi-implicit discretization which was proven to be uncon-
ditionally stable in the sense that a natural discrete energy
was bounded. An intriguing consequence of that work is
that linear solvers can be used on stable IB equations. Prior
to the results of [22], it was commonly believed that only
fully implicit discretizations could produce an uncondition-
ally stable immersed boundary method. Fully implicit dis-
cretizations lead to systems of equations that are nonlinear
in the IB point locations, and this nonlinearity reduces the
range of applicable solvers.

In this paper, we seek to address the efficiency of implicit
solvers for the IB method. In particular, we look at meth-
ods that take advantage of the ability to use linear solvers
afforded to us by the new stable semi-implicit discretization
of [22]. Since many implicit solvers have already been intro-
duced in the literature, we begin by cataloguing these meth-
ods and discussing their effectiveness and applicability. We
also introduce several new methods that exploit the linear-
ity of our stable implicit equations, and then compare their
computational cost with that of an explicit method.

In Section 2, we review the immersed boundary equa-
tions of motion and their stable discretization. In Section
3, we catalog and discuss existing and new approaches to
solving implicit IB equations, and in Section 4, we present
detailed comparisons of the relative computational effi-
ciency of some of these implicit solvers and the explicit
method.

2. The immersed boundary method

In the IB method, an Eulerian description is used for the
fluid variables, and a Lagrangian description is used for
each object immersed in the fluid. The boundary is
assumed to be massless, so that all of the force generated
by distortions of the boundary is transmitted directly to
the fluid. An example setup in 2D with a single immersed
boundary curve is shown in Fig. 1. Lowercase letters are
used for Eulerian state variables, while uppercase letters
are used for Lagrangian variables. Thus, Xðs; tÞ is a vector



2292 E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
function giving the location of points on C as a function of
arclength (in some reference configuration), s, and time, t.
The boundary is modeled by a singular force, which is
incorporated into the forcing term, f, in the Navier–Stokes
equations. The Navier–Stokes equations are then solved to
determine the fluid velocity throughout the domain, X.
Since the immersed boundary is in contact with the sur-
rounding fluid, its velocity must be consistent with the
no-slip boundary condition. Thus the immersed boundary
moves at the local fluid velocity. This results in the follow-
ing set of equations:

Fðs; tÞ ¼ Af Xðs; tÞ; ð1Þ

fðx; tÞ ¼
Z

C
Fðs; tÞdðx� Xðs; tÞÞds; ð2Þ

qðut þ u � ruÞ ¼ �rp þ lDuþ f; ð3Þ
r � u ¼ 0; ð4Þ
oXðs; tÞ

ot
¼ uðXðs; tÞ; tÞ ¼

Z
X

uðx; tÞdðx� Xðs; tÞÞdx: ð5Þ

Eq. (1) is the constitutive law that specifies the force gener-
ated by the elastic object in terms of its current configura-
tion. The force generation operator, Af , is problem
dependent. Note that the terminology ‘‘force generation
operator” might be confusing to those not familiar with
the immersed boundary method, as the force used in the
fluid dynamics equations is not the one defined in Eq. (1)
but the one in Eq. (2). The latter is nonlinear (in X) as well
as singular because the line integral does not remove the
singularity of the multi-dimensional d-function. The
Lagrangian and Eulerian force and velocity are related
through Eqs. (2) and (5). Eqs. (3) and (4) are the incom-
pressible Navier–Stokes equations. In Eq. (3) we assume
that the density, q, and viscosity, l, are constant.

The constitutive law used for the force generation oper-
ator in this problem is the most common one in the IB
literature. We assume that the material behaves like a
fiber under elastic tension, so that the force it generates
(per unit s) is given by

Fðs; tÞ ¼ o

os
ðT ðs; tÞsðs; tÞÞ; ð6Þ

where T ðs; tÞ is the tension and sðs; tÞ is the tangent vector
to the boundary at the point Xðs; tÞ (see [27] for a deriva-
tion). The tangent vector is

sðs; tÞ ¼ oX

os
oX

os

����
����

�
: ð7Þ

If the reference configuration is assumed to represent an
unstressed configuration, then oX

os

�� ��� 1 represents the
strain. If we assume a Hooke’s law material so that the ten-
sion is proportional to the strain, then

T ðs; tÞ ¼ c
oX

os

����
����� 1

� �
: ð8Þ

If we instead assume that the boundary is linearly elastic
with zero resting length then the tension becomes
T ðs; tÞ ¼ c
oX

os

����
����

� �
: ð9Þ

In this latter case, Fðx; tÞ ¼ c o2X
os2 , and

Af ¼ c
o2

os2
: ð10Þ

This is the force generation operator we use in our tests.
In discretizing (1)–(5), time is divided into steps of size

Dt. We denote by unðxÞ our approximation to the actual
velocity vector uðx; nDtÞ at time nDt, and similarly denote
by XnðsÞ our approximation to Xðs; nDtÞ. We define Sm

and S�m through the formulas

SmðFÞ ¼
Z

C
Fðs; tÞdðx� XmðsÞÞds ð11Þ

and

S�mðuÞ ¼
Z

X
uðx; tÞdðx� XmðsÞÞdx; ð12Þ

and write the temporal discretization of (1)–(5) derived in
[22] as

q
unþ1 � un

Dt
þrpnþ1

2 ¼ �q½u � ru�nþ
1
2 þ l

2
Dðunþ1 þ unÞ

þ SnAf

1

2
ðXn þ Xnþ1Þ

� �
; ð13Þ

r � unþ1 ¼ 0; ð14Þ
Xnþ1 � Xn

Dt
¼ S�n

1

2
ðun þ unþ1Þ

� �
: ð15Þ

There are several choices for the discretization of
½u � ru�nþ

1
2; we use a simple first order upwind discretization

in this paper, which we specify later in this section.
Due to the time lagging of our S and S� operators, as

well as the first order upwind discretization of the advec-
tion terms, this method is only first order accurate. We
could make the temporal discretization formally second
order accurate by employing a two-step approach, as out-
lined in [22]. However, most current immersed boundary
implementations use a forward Euler discretization of the
S and S� terms, and we are aiming to provide a simple
method that other researchers could easily adopt to avoid
the ‘‘explosive” instabilities found with traditional explicit
discretizations of the immersed boundary terms. Our mix
of first and second order approximations also conserves
energy (with viscosity l ¼ 0) more accurately than a back-
ward Euler discretization [22].

An attractive feature of the traditional IB method is its
modularity, in particular, the freedom to use a standard
Navier–Stokes solver code to update the fluid velocities.
Such modularity is obtained by using a modified version
of Eq. (15) that has an explicit discretization of the
immersed boundary forces, such as one would get by
replacing Xnþ1 by Xn in Eq. (15). With such an explicit
discretization of the immersed boundary forces, the
Navier–Stokes solver can be provided the fluid force



E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304 2293
density f (representing the explicitly evaluated immersed
boundary terms) as an input and needs no other informa-
tion about the immersed boundaries or their properties.
In using implicit time-stepping, this nice feature may be
lost, depending on how the implicit equations are solved.
This issue is discussed further in Section 3.2.

The spatial discretization of these equations uses a cell-
centered Cartesian grid for the Eulerian variables, and one
or more discrete Lagrangian grids for the IB variables. The
expression uij denotes the value of the variable u at the ijth
gridpoint of the Eulerian grid. The expression Fk denotes
the value of the Lagrangian variable F at the kth gridpoint.
In particular, the location of the kth IB is XkðtÞ.

The interaction between these grids, governed by inte-
gration against a delta function in the continuous Eqs.
(2) and (5), is handled by introducing a regularized discrete
delta function whose support is comparable to the mesh
spacing. The discrete delta function is derived from the
requirement that a certain set of properties be satisfied;
these include, ensuring that the entire force is transmitted
to the grid, that the force density on the grid is a continu-
ous function of the IB point locations, and that the com-
munication between Eulerian and Lagrangian grids is
very localized. Additional conditions can be imposed as
well, yielding different delta functions; see [25] for a more
thorough treatment of the possibilities. We use the delta
function presented in [24],

dhðx; yÞ ¼ dhðxÞdhðyÞ; ð16Þ

dhðxÞ ¼
1

4h ð1þ cosðpx
2hÞÞ jxj 6 2h;

0 jxjP 2h;

�
ð17Þ

where h is the grid spacing for the Eulerian grid. This reg-
ularized delta function is shown in Fig. 2, and is used to de-
fine discrete analogs of S and S� through the equations

SmðFÞij ¼
X

k

FkðtÞdhðxij � Xm
k ÞDs; ð18Þ

and

S�mðuÞk ¼
X

ij

uijðtÞdhðxij � Xm
k Þh2: ð19Þ

We also introduce discrete analogs of r, r�, D, u � r, and
Af , denoted byrh,rh�, Dh, ðu � rhÞ, and Af , respectively. In
our computations, we use centered difference approxima-
tions for the gradient, divergence, and Laplacian operators,
Fig. 2. Discrete delta function.
and an upwind difference approximation for the advection
terms:

rh � u
� �

ij
¼ uiþ1;j � ui�1;j

2h
þ vi;jþ1 � vi;j�1

2h
; ð20Þ

rhp
� �

ij
¼

piþ1;j � pi�1;j

2h
;
pi;jþ1 � pi;j�1

2h

	 

; ð21Þ

Dh
widep

� �
ij
¼

piþ2;j � 2pi;j þ pi�2;j

4h2
þ

pi;jþ2 � 2pi;j þ pi;j�2

4h2
;

ð22Þ

Dh
tightp

	 

ij
¼

piþ1;j � 2pi;j þ pi�1;j

h2
þ

pi;jþ1 � 2pi;j þ pi;j�1

h2
;

ð23Þ

ðu � rhÞc
� �

ij
¼ Hð�uijÞuij

ciþ1;j � cij

h
þ HðuijÞuij

cij � ci�1;j

h

þ Hð�vijÞvij
ci;jþ1 � cij

h

þ HðvijÞvij
cij � ci;j�1

h
; ð24Þ

where Dh
tight is used for evaluation of the viscous terms,

Dh
wide ¼ rh � rh is used for Poisson solves in methods

employing projections, and HðxÞ is the Heaviside step func-
tion, HðxÞ ¼ 1 for x > 0, HðxÞ ¼ 0 for x 6 0.

The most straightforward discretization of Eq. (1) is to
write the force at an immersed boundary point as a differ-
ence in the tensions on either side of that point. Assuming a
single closed boundary with no external links, this can be
written as

Fk ¼
ðT kþ1=2ðtÞskþ1=2ðtÞÞ � ðT k�1=2ðtÞsk�1=2ðtÞÞ

Ds
ð25Þ

¼
c
Ds ðkXkþ1ðtÞ � XkðtÞk � ‘0Þ Xkþ1ðtÞ�XkðtÞ

kXkþ1ðtÞ�XkðtÞk

	 

Ds

�
c
Ds ðkXk�1ðtÞ � XkðtÞk � ‘0Þ Xk�1ðtÞ�XkðtÞ

kXk�1ðtÞ�XkðtÞk

	 

Ds

; ð26Þ

where ‘0 is the resting length of the ‘‘springs” connecting IB
points. The reason for calling the connection between IB
points a ‘‘spring” in the discrete set of equations is because
of the form of (26): c=Ds serves as a spring constant,
kXi � Xkk � ‘0 is the length by which the connection be-
tween IB points i and k has been stretched, and
ðXi � XkÞ=kXi � Xkk is a unit vector in the direction of the
connection, making this look just like a Hookean spring.

Noting the similarity in the two terms of (26), we can
instead write the force as a sum over the set Sk of IB points
connected to IB point k:

Fk ¼
X
i2Sk

c
Ds
ðkXiðtÞ � XkðtÞk � ‘0Þ

1

Ds
XiðtÞ � XkðtÞ
kXiðtÞ � XkðtÞk

:

ð27Þ
An additional advantage of writing in this manner is that it
also makes clear how to handle external links connecting
objects. The force F ¼ Af X has kth element given by Eq.
(27), and is a linear function of X if ‘0 ¼ 0.



2294 E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
Combining the temporal and spatial discretizations, the
discrete equations of motion are

q
unþ1 � un

Dt
þrhpnþ1

2 ¼ �q½ðu � rhÞu�nþ
1
2 þ l

2
Dhðunþ1 þ unÞ

þ SAf

1

2
ðXn þ Xnþ1Þ

� �
; ð28Þ

rh � unþ1 ¼ 0; ð29Þ

Xnþ1 � Xn

Dt
¼ S�

1

2
ðun þ unþ1Þ

� �
: ð30Þ

Provided that S and S� are evaluated at the same point in
time, this discretization was proved in [22] to be uncondi-
tionally stable if the advection term u � ru is not present,
and was demonstrated through computational tests to be
stable with the advection terms if the CFL constraint
kuk1Dt 6 h was satisfied.
3. Solver possibilities

There are three variables to determine in Eqs. (28)–(30):
unþ1, rhpnþ1

2, and Xnþ1. If Af is derived from a linear consti-
tutive law (or we lag its evaluation in time), and we lag the
evaluation of S and S� in time, then we obtain a linear,
semi-implicit system.

Most existing implicit methods for solving the immersed
boundary equations use fully implicit discretizations, due
to a common belief (before the results of [22]) that time-
lagged operators would contribute to the severe instability
observed in immersed boundary implementations. With the
use of fully implicit discretizations, a number of linear solv-
ers are not directly applicable. In this paper, we exploit the
ability to maintain an unconditionally bounded solution
with a linear, semi-implicit scheme to explore additional
solver possibilities not previously considered.

In this section, we highlight several possible methods for
solving the system of Eqs. (28)–(30) derived in Section 2.
We briefly compare methods in this section, noting results
from the literature and our experience, and perform a more
detailed computational comparison of the methods which
take advantage of the linearity of our semi-implicit discret-
ization in Section 4.
3.1. Direct application of linear solvers

Perhaps the most obvious strategy for solving our semi-
implicit discretization of Eqs. (28)–(30) is to apply linear
system solvers directly to the full system. If Af is derived
from a linear constitutive law (or we lag its evaluation in
time), and we lag the evaluation of S and S� in time, then
SAf

1
2
ðXn þ Xnþ1Þ

� �
¼ 1

2
SAfX

n þ 1
2
SAf X

nþ1. Making use of
this and assuming that the advection terms are handled
explicitly, we can write the equations in the form of a single
matrix equation:
ðqI � lDt
2

DhÞ Dtrh � Dt
2

SAf

rh� 0 0

� Dt
2

S� 0 I

0
BB@

1
CCA

unþ1

pnþ1
2

Xnþ1

0
B@

1
CA

¼
ðqI þ lDt

2
DhÞ 0 Dt

2
SAf

0 0 0

Dt
2

S� 0 I

0
BB@

1
CCA

un

pn�1=2

Xn

0
B@

1
CA

þ
�q½ðu � rhÞu�nþ

1
2

0

0

0
BB@

1
CCA: ð31Þ

Alternatively, this equation can be obtained (with an expli-
cit handling of the advection terms) by using 1

2
SnAf X

n þ
1
2
Snþ1AfX

nþ1 as the temporal discretization of SAfX and
using a similar discretization of S�u. However, this modi-
fied discretization results in a nonlinear system (because
Snþ1 and S�nþ1 depend on Xnþ1), and it does not conserve
energy and can lead to instabilities if the timestep is not
sufficiently small.

Given the assumptions above, Eq. (31) is a system to
which we can apply linear solvers. However, this system
poses a number of difficulties. The system is singular since
the gradient operator has a nontrivial nullspace. Direct
matrix factorization methods such as LU decomposition
would result in a huge amount of fill-in for an otherwise
very sparse system, and methods like GMRES may fail
to converge without a good preconditioner (and it is not
clear what would be a good preconditioner for this system).
These potential drawbacks make this strategy unpromis-
ing, and we are not aware of any work to explore these
options.

3.2. Newton-like methods

Before [22], it was commonly believed that fully-implicit
discretizations were necessary to overcome the severe sta-
bility restrictions found with explicit discretizations of the
immersed boundary method. Because of this, many imple-
mentations were based on fully implicit discretizations.
These discretizations require the use of spreading and inter-
polation operators, S and S�, that are not lagged in time,
and as a result, the equations are nonlinear in Xnþ1. Thus,
for such systems, a nonlinear solver is needed.

Leveque and Li [16] introduced a Newton-like method
that handles the nonlinearity in X and additionally pro-
vides for increased modularity by allowing Navier–Stokes
codes to be used unmodified as a subsolver. Their method
was based on rearranging Eq. (30) to obtain

gðXnþ1Þ ¼ Xnþ1 � Xn � Dt
2

S�ðun þ unþ1ðXnþ1ÞÞ ¼ 0; ð32Þ

where the notation unþ1ðXnþ1Þ is used to make it clear
that each evaluation of g involves solving the Navier–



E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304 2295
Stokes equations. This equation can then be solved with
Newton’s method or a quasi-Newton method. Tu and
Peskin also proposed a similar method [30], though it
was restricted to the case of steady Stokes flow and
written in a way that was tightly coupled to a specialized
Stokes flow solver.
3.2.1. Newton’s method

Solving Eq. (32) with Newton’s method involves choos-
ing an initial guess for the new immersed boundary point
positions, such as Xnþ1;0 ¼ Xn, and then iterating over the
steps

� Find J ¼g0ðXnþ1;mÞ via formula J ij¼ giðXnþ1;mþbejÞ�giðXnþ1;m�bejÞ
2b

� Solve Js ¼ �gðXnþ1;mÞ for s

� Set Xnþ1;mþ1 ¼ Xnþ1;m þ s.

In these steps, ej is the vector with ith component equal
to dKroenecker

ij , and b is some small parameter (e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�machine
p

).
Here, Xnþ1;m, s, and ej are vectors with 2NB components
and J is a 2N B � 2NB matrix.

Newton’s method has been used in both [22,30], and was
reported to be very computationally inefficient. The reason
for this observed inefficiency is that computing the Jaco-
bian at each iteration involves 4NB fluid solves. By using
one-sided differences to compute the Jacobian, this cost
could be cut in half, but it will still be orders of magnitude
slower than the explicit method.
3.2.2. Quasi-Newton methods

Solving Eq. (32) via a quasi-Newton method is very sim-
ilar to using Newton’s method. It requires having an initial
guess for the new immersed boundary point positions, such
as Xnþ1;0 ¼ Xn, as well as an initial guess for the Jacobian,
such as J nþ1;0 ¼ J n or J nþ1;0 ¼ I . The reason that J nþ1;0 ¼ I
may be a good choice is that

JðXÞ � g0ðXÞ ¼ I � Dt
2

S�unþ1
� �0ðXÞ; ð33Þ

so J ! I as Dt! 0 (for stiff problems, Dt may need to be
very small for I to be a good initial guess). Once the initial
guesses are selected, quasi-Newton methods proceed by
iterating over the steps

(1) Solve J nþ1;ms ¼ �gðXnþ1;mÞ for s.
(2) Set Xnþ1;mþ1 ¼ Xnþ1;m þ s.
(3) Set y ¼ gðXnþ1;mþ1Þ � gðXnþ1;mÞ.
(4) Use s and y to update J nþ1;m to J nþ1;mþ1.

There are many different ways to update the Jacobian in
the final step of each iteration, and these correspond to dif-
ferent quasi-Newton methods. The only quasi-Newton
method that has appeared in the IB or II literature is the
BFGS version. Defining H ¼ ðJ nþ1;mÞ�1, the BFGS update
[7] is
ðJ nþ1;mþ1Þ�1 ¼ H þ ðs� HyÞsT þ sðs� HyÞT

sTy

� ðs� HyÞTyssT

ðsTyÞ2
: ð34Þ

This method is inexpensive in comparison to the Newton
method as it only involves one fluid solve per iteration
(note that the computation of gðXnþ1;mþ1Þ in Step 3 of each
iteration can be reused in Steps 1 and 3 of the following
iteration). In fact, the most expensive part of this iteration
may be the dense 2NB � 2N B matrix multiply in Step 1
(BFGS stores approximations to J�1 rather than J), since
this step has a computational cost that grows quadratically
with the number of immersed boundary points NB. Fur-
ther, J becomes increasingly ill-conditioned both as N B

grows and as the immersed boundary points become closer
together [16] because of grid refinement. However, for
some problems NB may be small enough relative to the
number of Eulerian gridpoints, N, that this method may
be reasonable.

The quasi-Newton approach has only been used in II
implementations, possibly due to the fact that the represen-
tation of the boundary commonly used with the immersed
interface method allows use of fewer boundary points, so
that N B can be significantly smaller than in IB calculations.
This method was first used by Leveque and Li [16], and has
been adopted by others using the II method; see also
[14,15].

The BFGS method is designed for problems in which
the Jacobian is symmetric and positive definite, and it only
produces approximations to the Jacobian with those attri-
butes [7]. We tested a hybrid IB/II method similar to Lee
and Leveque’s [15] with a value of Dt near the stability limit
of the explicit method. We found that the skew-symmetric
part of the Jacobian was as large in norm as the symmetric
part, and that the Jacobian was in fact indefinite with at
least one eigenvalue having very large negative real part.
However, it should be noted that BFGS has been used suc-
cessfully on II problems. Still the observations above sug-
gest that further research into the choice of quasi-Newton
method for IB/II calculations may be beneficial. This is
not the focus of the current paper. Instead we concentrate
on methods which exploit the linearity of our stable semi-
implicit discretization.
3.3. Schur complement systems

Another strategy for solving the implicit IB equations
involves eliminating one or more of the unknown variables;
that is, it involves deriving Schur complement equations
for one or more of the unknowns.

In this section we will occasionally assume commutativ-
ity of Dh and P, where P ¼ ðI �rhðrh � rhÞ�1rh�Þ, the
operator that projects orthogonally in L2ðXhÞ onto the
space of discretely divergence-free vector fields. While this
assumption only holds for periodic boundary conditions,



2296 E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
the assumption is not necessary and is made only for con-
venience of derivation. The same methods can be derived
without assuming commutativity. In particular, rather than
starting with the discrete set of equations and applying a
number of operators to arrive at our method, we could
instead apply some of the corresponding continuous oper-
ators to the continuous set of equations (where the projec-
tion operator and Laplacian do commute), then discretize,
then apply any remaining discrete operators needed.

Recall that the system of equations that we want to
solve, Eqs. (28)–(30), are

q
unþ1 � un

Dt
¼ �rhpnþ1

2 � q½ðu � rhÞu�nþ
1
2

þ l
2

Dhðunþ1 þ unÞ þ 1

2
SAfðXn þ Xnþ1Þ; ð35Þ

rh � unþ1 ¼ 0; ð36Þ
Xnþ1 � Xn

Dt
¼ 1

2
S�ðun þ unþ1Þ: ð37Þ

There are multiple ways in which to eliminate one or more
of Xnþ1, unþ1, orrhpnþ1

2. We derive a number of these in this
section.

We begin by eliminating rhpnþ1
2 from Eqs. (35)–(37). We

do this by applying P to each term of Eq. (35). This elim-
inates rhpnþ1

2 as well as the need for the separate incom-
pressibility constraint equation and yields

q
unþ1 � un

Dt
¼ �qP½ðu � rhÞu�nþ

1
2

þ l
2

PDhðunþ1 þ unÞ

þ 1

2
PSAfðXn þ Xnþ1Þ; ð38Þ

Xnþ1 � Xn

Dt
¼ 1

2
S�ðun þ unþ1Þ: ð39Þ

Others who have used this particular Schur complement
idea [17,20,29] have applied the projection before discretiz-
ing spatially. When the equations are still spatially contin-
uous (or if we assume periodic boundary conditions), the
operators P and D in Eq. (38) commute. Further, since
unþ1 and un are already divergence free, we can use
unþ1 ¼ Pun and un ¼ Pun in Eq. (38) to eliminate P from
the viscous term. Doing the aforementioned and solving
for unþ1 in (38) and for Xnþ1 in (39), we obtain

unþ1 ¼ M I þ mDt
2

Dh

� �
un � DtMP½ðu � rhÞu�nþ

1
2

þ Dt
2q

MPSAfðXn þ Xnþ1Þ; ð40Þ

Xnþ1 ¼ Xn þ Dt
2

S�ðun þ unþ1Þ; ð41Þ

where M ¼ ðI � mDt
2

DhÞ�1.
From here we can eliminate either unþ1 or Xnþ1. Plugging

the value of unþ1 into Eq. (41) and collecting Xnþ1 terms to
the left hand side (again making use of linearity of Af and
time lagging in S and S�) gives
I �Dt2

4q
S�MPSAf

� �
Xnþ1 ¼ I þDt2

4q
S�MPSAf

� �
Xn

þDt
2

S� unþM I þ mDt
2

Dh

� �
un

�
�DtMP½ðu � rhÞu�nþ

1
2

�
:

ð42Þ

Eq. (42) is equivalent to (32) given our linearity and lagging
assumptions on Af , S, and S�; however, the solver sug-
gested by the form of the equations is different. Note that
everything on the right hand side of (42) can be calculated
explicitly. Similarly, when we substitute the value of Xnþ1

from (41) into Eq. (40) and collect unþ1 terms to the left
hand side, we obtain

I � Dt2

4q
MPSAf S

�
� �

unþ1

¼ M I þ mDt
2

Dh

� �
þ Dt2

4q
MPSAfS

�
� �

un

� DtMP½ðu � rhÞu�nþ
1
2 þ Dt

q
MPSAfX

n; ð43Þ

where again everything on the right hand side of (43) can
be calculated explicitly.

Eqs. (42) and (43) give us two possible avenues of
attack, which we will discuss later. We can come up with
others by beginning again with Eqs. (35)–(37). If we solve
Eq. (37) for Xnþ1, substitute it into Eq. (35) to eliminate
Xnþ1, and then collect terms which include unþ1 (again mak-
ing use of linearity of Af and time lagging in S and S�), we
obtain

I � mDt
2

Dh � Dt2

4q
SAfS

�
� �

unþ1

¼ I þ mDt
2

Dh þ Dt2

4q
SAfS

�
� �

un

� Dt
q
rhpnþ1

2 � Dt½ðu � rhÞu�nþ
1
2 þ Dt

q
SAfX

n; ð44Þ

rh � unþ1 ¼ 0: ð45Þ

Note that multiplying both sides of (44) by MP yields
Equation (43) (modulo one instance of commutativity of
P and Dh).

Eq. (44) has some interesting properties. Defining
ANS ¼ ðI � mDt

2
DhÞ, Aelastic ¼ � Dt2

4q SAfS
�, and AIB ¼ ANSþ

Aelastic, Eq. (44) simplifies to

AIBunþ1 ¼ ð2I � AIBÞun � Dt
q
rhpnþ1

2 � Dt½ðu � rhÞu�nþ
1
2

þ Dt
q

SAfX
n: ð46Þ

If we assume Af is self-adjoint and negative semi-definite
(which was an assumption used in the stability proof of
Newren et al. [22], and is true for our choice of Af ), then
the adjointness of S and S� imply that Aelastic is symmetric
and positive semi-definite. Combined with the fact that



E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304 2297
Dh is symmetric and negative semi-definite, we see that
AIB is symmetric and positive definite, with all of its
eigenvalues greater than or equal to 1. Additionally,
limDt!0AIB ¼ I .

We can proceed further from (45) and (46) by eliminat-
ing either pnþ1

2 or unþ1. By applying q
Dtr

h � A�1
IB to every term

of (46) and making use of (45), we obtain an equation for
pnþ1

2

rh � A�1
IBrhpnþ1

2

¼ rh � A�1
IB

q
Dt
ð2I � AIBÞun � q½ðu � rhÞu�nþ

1
2 þ SAfX

n
h i

:

ð47Þ
Alternatively, if we apply P to every term of (46) and sub-
stitute unþ1 ¼ Punþ1 (which is valid due to Eq. (45)) we
obtain
PAIBPunþ1 ¼ P ð2I �AIBÞun�Dt½ðu � rhÞu�nþ
1
2þDt

q
SAfX

n

� 

:

ð48Þ

Since P is self-adjoint, PAIBP is symmetric positive semi-
definite (positive definite on the subspace of divergence-free
vector fields). Although Eq. (48) is equivalent to (43) — it
can be obtained by applying PM�1 to (43) and utilizing the
facts that Punþ1 ¼ unþ1 and Pun ¼ un — ðI � Dt2

4q MPSAfS
�Þ

is not symmetric or positive definite. Thus, Eq. (48) may
be the preferred form for applying linear solvers.

Eqs. (42), (43), (46), (45), (47) and (48) each provide pos-
sibilities on which to base solvers. We refer to these meth-
ods as the DSX (‘‘Double Schur-complement X”),
nonsymmetric-DSU, projection-based, DSP, and DSU
methods, respectively. Each will be discussed in subsequent
sections.

3.3.1. Fixed point methods

Krylov subspace solvers are always superior to fixed
point methods for linear problems, so using fixed point
methods does not make sense for linear equations such
as ours. However, fully implicit discretizations of the IB
equations are nonlinear and fixed point methods have
played a prominent role in the IB literature. In particular,
the fixed point scheme of Mayo and Peskin [17] was
proven to be unconditionally convergent and is the only
nonlinear IB equation solver we know of to have such a
quality. Other than Mayo and Peskin’s fixed point scheme
and the work of Mori and Peskin [20] (which we have
not yet tested), all other iterative schemes for nonlinear
IB equations we know of have either previously
been reported in the literature to have occasional conver-
gence issues or we have found them to have occasional
convergence issues in our own testing. Because of the
important role fixed point methods have played in implicit
immersed boundary methods, we discuss them briefly in
this section.
Eq. (42) is of the form

I � Dt2

4q
S�MPSAf

� �
Xnþ1 ¼ Zn; ð49Þ

where Zn represents known quantities. We can rewrite this
as a fixed point problem

Xnþ1 ¼ Dt2

4q
S�MPSAf X

nþ1 þ Zn: ð50Þ

Various iterative methods could be used to try to solve this
fixed point problem, among the simplest being

Xnþ1;mþ1 ¼ Dt2

4q
S�MPSAfX

nþ1;m þ Zn ð51Þ

or equivalently,

Xnþ1;mþ1 � Xnþ1;m ¼ Zn � I � Dt2

4q
S�MPSAf

� �
Xnþ1;m: ð52Þ

Modifying the left hand side slightly we get a system of the
form

ðI � kAfÞðXnþ1;mþ1 � Xnþ1;mÞ

¼ Zn � I � Dt2

4q
S�MPSAf

� �
Xnþ1;m; ð53Þ

which solves the same fixed point equation but may con-
verge faster. Here k is an approximation to Dt2

4q S�MPS.
A method of this form was first introduced by Mayo and

Peskin [17]. They used different temporal and spatial
discretizations than we have employed, but the form
remains the same. In their work, they make k a diagonal
matrix:

k ¼ Dt2

4q
S�S1; ð54Þ

where 1ðsÞ is a function that takes the value 1 for every s,
that is, 1ðsÞ is 1 at each IB point. (Technically, they lump
Dt2=4q in with Af rather than k, but the product is equiva-
lent either way.) They report no computational timings
other than ‘‘[it] often converged slowly”. They also ex-
plored Aitken extrapolation to try to accelerate conver-
gence of the fixed point iterates, and later tried a Krylov
solver directly on (49). Unfortunately, these other methods
were not explored in detail, and the comparisons they pro-
vide among these methods were only cursory, but they did
state that the Krylov solver method was the fastest when it
converged. As such, we focus our effort on Krylov methods
for solving (49). See Section 3.3.3 for more details on those
methods.

The fixed point method of Mayo and Peskin was also
used by Stockie and Wetton [29] in their analysis of
explicit and implicit IB solvers. It also motivated a very
similar fixed point method used by Roma et al. [28]. It
should be noted that although Mayo and Peskin proved
that their fixed point method would unconditionally



2298 E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
converge to the solution of their nonlinear discrete system,
their discretization itself was reported to be unstable
[17,22,29].
3.3.2. Projection methods

Eqs. 46 and 45,

AIBunþ1 ¼ ð2I � AIBÞun � Dt
q
rhpnþ1

2 � Dt½ðu � rhÞu�nþ
1
2

þ Dt
q

SAfX
n;

rh � unþ1 ¼ 0; ð55Þ

where AIB ¼ ANSþAelastic ¼ ðI � mDt
2

DhÞ þ ð� Dt2

4q SAfS
�Þ, look

similar to the discretized Navier–Stokes equations,

ANSunþ1 ¼ ð2I � ANSÞun � Dt
q
rhpnþ1

2 � Dt½ðu � rhÞu�nþ
1
2;

rh � unþ1 ¼ 0:

ð56Þ

Assuming the advection terms are calculated explicitly,
both are of the form

Auþ Dt
q
rhp ¼ r;

rh � u ¼ 0;

ð57Þ

where r denotes known quantities from the previous time-
step. Putting both sets of equations in such a similar form is
made possible by our use of a semi-implicit discretization
where the evaluation of the spreading and interpolation
operators is lagged in time (and due to Af being linear); it
would not be possible for a stable fully implicit IB
discretization.

Since projection methods are a common method used to
solve the incompressible Navier–Stokes equations, and the
IB equations can be posed in the nearly identical form (55),
it seems natural to apply projection methods to the IB
equations as well. This method has not been considered
previously in the literature, likely due to the common belief
(prior to the results of [22]) that fully implicit discretiza-
tions of the IB equations were necessary for unconditional
stability.

A projection method approach to solving (57) was
explored in depth in [21], and was found to be ineffective.
There are four qualities of the Navier–Stokes equations
that combine to make projection methods effective for their
solution:

� A is relatively small, Oð1Þ, in norm,
� a good initial guess to the pressure is readily available,
� A is a small, OðDtÞ perturbation of the identity, and
� A ‘‘almost” commutes with rh.

All four properties become important due to the fact
that a projection method is an operator splitting method
with an associated splitting error. The first and third qual-
ities are related, and ensure that the splitting error is smal-
ler in magnitude than the solution. The second property is
what enables incremental projection schemes to achieve an
even lower splitting error than non-incremental (or ‘‘pres-
sure-free”) projection schemes. The fourth property results
in the splitting error for ‘‘standard” projection schemes
predominantly affecting the pressure gradient, with very lit-
tle error occurring in the velocity field. The fourth property
also allows modified projection schemes to be devised that
remove most (or in some cases all) of the remaining split-
ting error. See [13] for more details about the classification
of projection methods and analysis of their errors in the
case of the Navier–Stokes equations.

All four qualities break down when considering the
immersed boundary equations with ‘‘thin” interfaces (i.e.,
for all cases not using the ‘‘thick” boundary approach of
Griffith and Peskin [12]; three of the four break down when
using ‘‘thick” boundaries). The appearance of delta func-
tions in the IB equations results in discontinuities in the
pressure when using ‘‘thin” interfaces. While these discon-
tinuities are ‘‘smoothed out” by the use of discrete delta
functions, using lagged pressures for initial guesses still
results in large errors near the interface. Also, Aelastic is typ-
ically two or more orders of magnitude larger than ANS in
norm, making AIB large in norm (and thus far from a per-
turbation of the identity). Finally, while ANS ‘‘commutes”

with rh other than possibly at the boundary, Aelastic (the
dominant part of AIB) does not.

More details about the use of projection methods to
solve the IB equations can be found in [21]. In that work,
many different projection methods were studied: standard
(incremental) pressure-correction projection methods, a
natural extension of the rotational (and incremental) pres-
sure-correction method (ı.e. the standard pressure-correc-
tion method with the pressure update identified by Brown
et al. [5]) to the IB equations, a new projection method
based on an improved pressure update formula designed
to reduce the splitting error, the generalizations of Perot
[23], the different projection choices of Almgren et al. [2],
and velocity-correction projection methods. That work
investigated many aspects of projection methods: splitting
errors, spectral radii of iterative versions, and their connec-
tion to fixed-point schemes, and concluded that the split-
ting error of these methods for the immersed boundary
equations is too large for them to be feasible solution
techniques.

3.3.3. Krylov solvers

The double Schur complement equations, (42), (43),
(47), and (48) are all in the standard form Ax ¼ b to which
we can apply Krylov subspace methods. Once any of those
four equations is solved, its solution can be used to solve
for the other variables, typically also with a Krylov
method. For example, if (47) is solved for rhpnþ1

2, then
the solution can be substituted into (44) and the resulting
equation solved for unþ1. Then, unþ1 can be substituted into
(30) and Xnþ1 determined from the resulting equation.



E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304 2299
The DSX (‘‘Double Schur-complement X”) equation,
Eq. (42) or, equivalently (49) is

I � Dt2

4q
S�MPSAf

� �
Xnþ1

¼ I þ Dt2

4q
S�MPSAf

� �
Xn

þ Dt
2

S� un þM I þ mDt
2

Dh

� ��
un�DtMP½ðu � rhÞu�nþ

1
2



:

ð58Þ
This was solved by Mayo and Peskin in [17] with a conju-
gate gradient squared solver, using I � kAf as a precondi-
tioner. As with their fixed point scheme (see Section
3.3.1), k was defined as

k ¼ Dt2

4q
S�S1: ð59Þ

Unfortunately, only cursory results were given. Mori and
Peskin [20] also used a double Schur complement X equa-
tion as the basis for a solver, using GMRES as their Krylov
method. They also tried Biconjugate Gradient Stabilized,
Conjugate Gradient Squared, and TFQMR iterations,
but found GMRES to be the most efficient. They note that
a preconditioner is essential for efficiency for their problem,
and present one similar to the Mayo and Peskin precondi-
tioner but which also accounts for the fact that they have
thick immersed boundaries and additional boundary mass.

The nonsymmetric-DSU equation, Eq. (43), is

I � Dt2

4q
MPSAfS

�
� �

unþ1

¼ M I þ mDt
2

Dh

� �
þ Dt2

4q
MPSAf S

�
� �

un

� DtMP½ðu � rhÞu�nþ
1
2 þ Dt

q
MPSAfX

n: ð60Þ

This equation was also derived in Mori and Peskin [20].
They could not find a simple way to form an efficient pre-
conditioner for this equation, and so focused on the double
Schur complement X equation.

The DSP equation, Eq. (47), is

rh � A�1
IBrhpnþ1

2

¼ rh � A�1
IB

q
Dt
ð2I � AIBÞun � q½ðu � rhÞu�nþ

1
2 þ SAfX

n
h i

:

ð61Þ
We are not aware of anyone having used this equation. It
has some interesting properties, however. Since AIB ! I
as Dt! 0, this equation looks like a generalized Poisson
equation. Because AIB is symmetric and positive definite,
A�1

IB is as well. Because rh and rh� are adjoints (at least
for uniform Cartesian grids and standard spatial discretiza-
tions), rh � A�1

IBrh is symmetric and positive definite
(excluding the subspace of constants). Hence, (61) is an
equation to which conjugate gradient could be applied,
though it would require an inner solver for every applica-
tion of A�1

IB , which may make it expensive.
The (symmetric) DSU equation, Eq. (48), is

PAIBPunþ1 ¼P ð2I �AIBÞun�Dt½ðu �rhÞu�nþ
1
2þDt

q
SAfX

n

� 

:

ð62Þ

This equation also has not appeared in the literature, but it
too has some interesting properties. Because P is self-adjoint,
PAIBP is symmetric and positive definite on the subspace of
divergence-free vector fields. Thus, conjugate gradient could
be applied to this equation as well. Further, PA IBP need not
be applied for every matrix vector product in the conjugate
gradient calculations; applying PAIB would be sufficient.
This follows from the facts that the subspace of diver-
gence-free vector fields is closed under addition and scalar
multiplication, and that the CG algorithm only performs
additions, subtractions, multiplication by scalars, and appli-
cations of PAIB on the vectors it is given.

4. Comparison of implicit methods

In this section we compare the computational perfor-
mance of the double Schur complement implicit methods
from Section 3.3 with the explicit method and with each
other. The implicit methods are based on the DSX
equation,

I �Dt2

4q
S�MPSAf

� �
Xnþ1

¼ I þDt2

4q
S�MPSAf

� �
XnþDt

2
S� unþM I þ mDt

2
Dh

� ��
un

�DtMP½ðu � rhÞu�nþ
1
2

�
; ð63Þ

the DSP equation,

rh � A�1
IBrhpnþ1

2

¼ rh � A�1
IB

q
Dt
ð2I � AIBÞun � q½ðu � rhÞu�nþ

1
2 þ SAfX

n
	 


;

ð64Þ

and the (symmetric) DSU equation,

PAIBPunþ1 ¼P ð2I �AIBÞun�Dt½ðu �rhÞu�nþ
1
2þDt

q
SAfX

n

� �
:

ð65Þ

Note that although these implicit methods allow a larger
timestep to be taken (while remaining stable) than the ex-
plicit method, the resulting linear system that needs to be
solved may be very poorly conditioned. It may well be
the case that the implicit methods require more iterations
to solve at a given timestep than the number of timesteps
that would be required by the explicit method to stably
compute up to the same simulation time. Since each impli-
cit iteration is roughly equal in work to the cost of carrying
out a single timestep with the explicit method, this means
that implicit methods may actually be more computation-
ally expensive than the explicit methods. We have seen



2300 E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
some implicit methods exhibiting such behavior, as have
Mori and Peskin (Y. Mori, personal communication, July
18, 2006).
4.1. Test problems

We ran each of the implicit methods (and the explicit
method) on two different test problems, for a range of
numerical and problem parameters. The two test problems
are described in this section.
4.1.1. Ellipse problem

The first test problem is a standard one from the IB lit-
erature, in which the immersed boundary is a closed loop
initially in the shape of an ellipse [15–17,28–30]. We choose
an ellipse initially aligned in the coordinate directions with
horizontal semi-axis a ¼ 0:28125 and vertical semi-axis
b ¼ 0:75a. The fluid is initially at rest in a periodic domain,
X, with X ¼ ½0; 1� � ½0; 1�. The force law used is given by
Eq. (27), with ‘0 ¼ 0 (i.e., zero resting length ‘‘springs”).
For this test problem, the boundary should perform
damped oscillations around a circular equilibrium state
with the same area as that of the original ellipse. The con-
figuration of the boundary at different times is shown in
Fig. 3.
4.1.2. Wing problem

The second test problem we consider is a simplified
model of a moving wing adapted from Miller and Peskin
[18]. The wing is represented by a finite-length string of
IB points. The desired or target motion of the wing is set
by specifying, as functions of time, the horizontal location
xðtÞ of the center of the wing and the angle of attack aðtÞ
relative to the x-axis:

xðtÞ ¼ A0

2
cosð2pxtÞ ð66Þ
0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Computed immersed boundary positions at successive times; the
solid line is the initial shape, and the dashed-dotted and dashed lines show
the configuration of the boundary later in the simulation.
and

aðtÞ ¼ a0 þ b sinð2pxt þ /Þ: ð67Þ
Here, A0 is the stroke amplitude, / is the phase rotation,
and b is the change in angle of attack during stroke rever-
sal. The wing flaps back and forth along a horizontal plane
with a frequency of x. In this case, A0=c was set to 2.8
(where c is the chord length of the wing), / was set to 0,
a0 was set to p=2, and b was set to p=4. This provided a
symmetric stroke with a minimum angle of attack of 45	.
The value 7:5m=pcA0 was used for x. These equations deter-
mine the motion of a set of target points, one such point for
each IB point that makes up the wing, plus two target
points at the end of the wing to keep it from compressing
(we modelled the wing with zero resting-length springs).
Each of the actual IB points is linked to the corresponding
target point by an elastic spring, and because of the forces
generated by these springs at the IB points, the IB points
approximately track the desired motion. A schematic view
of the wing motion is shown in Fig. 4.

In contrast to Miller and Peskin, we do not include any
bending forces in our calculation and we use zero resting
length ‘‘springs”. More concretely, we use Eq. (27), with
‘0 ¼ 0, for the computation of forces at the non-target IB
points. Each non-target IB point has exactly three links:
one to a target point, and two to the neighboring points
within the wing (the endpoints of the wing have an addi-
tional target point on the side instead of two neighboring
IB points). At target points, we use Fk ¼ 0. (Thus, the only
differences between target points and normal IB points in
our simulations are that we zero out the immersed bound-
ary force on the target points and the target points move at
the externally specified velocity rather than the fluid
velocity).

The existence of target points that are unaffected by fluid
motion makes our stability proof in [22] inapplicable to this
problem. (In fact, the target point motion can be chosen in
such a way that the continuous system becomes unstable,
since energy is being added to the system through moving
target points which have springs attached to them). There-
fore, we cannot necessarily expect unconditional stability
of our discretization and in particular our time lagging of
spreading and interpolation operators may be problematic.
However, it may be enlightening to test our methods on
this problem since it is another common type of IB prob-
lem with very different dynamics than the ellipse problem.
Fig. 4. Schematic showing rotation and translation of target motion of the
wing during one half period. The second half period’s motion is the mirror
image of this.



Table 1
Ratio of computation times of the DSU and DSX methods to the time of
the explicit method for the same parameters, with the ellipse problem

h c ¼ 1 c ¼ 100

DSU DSX DSU DSX

2�5 1.80 2.53 2.19 3.73
2�6 1.40 1.70 1.67 2.47
2�7 0.95 1.03 1.26 2.14
2�8 0.77 0.55 1.22 1.70
2�9 0.63 0.35 0.96 1.24

E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304 2301
4.2. Results

In this section, we show computational timings for both
the ellipse and wing problems to compare the efficiency of
the explicit, DSU, DSX, and DSP methods. In all cases, we
use q ¼ 1, m ¼ 0:01, and keep the number of Lagrangian
grid points proportional to 1=h whenever refining the grid.
We use a relative tolerance of 10�5 as the stopping criterion
for the Krylov subspace iterations.
Both the DSU and DSX methods were run with a timestep corresponding
to CFL number 1, and the explicit method was run with the ‘‘optimal”
time step.
4.2.1. Ellipse problem

Fig. 5 shows the CPU times required by the explicit,
DSU, DSX, and DSP methods for the ellipse problem as
a function of the spatial stepsize, h. Two values of elastic
stiffness, c ¼ 1 and c ¼ 100, are compared. The timestep
for the explicit method was chosen near its stability limit
for each value of c. The timesteps for the implicit DSU,
DSX, and DSP methods were chosen so that the CFL
number was 1. The DSU and DSX methods appear
roughly comparable to the explicit method for this test
problem, but the DSP method took 15–25 times as long
as the explicit method. In Table 1, the CPU times relative
to the explicit method for the DSU and DSX methods
are reported. Times for the DSP method are not reported
because it was not competitive.

The ‘‘near stability limit” timestep for the explicit
method is used when comparing against the implicit meth-
ods. This timestep is found by an (expensive) search which
involves repeating the simulation with many different val-
ues of Dt until a timestep is found which results in a stable
simulation and is within 1% of the magnitude of a timestep
that results in an unstable simulation. This search needs to
be repeated whenever any parameters in the system (e.g., h,
c, initial IB configuration) change. The time required to
find such a timestep is not reported, instead only the
CPU time the simulation took with the resulting ‘‘optimal”
timestep is shown.

From Fig. 5 and Table 1, we see that the DSU and DSX
methods with the timestep computed from the CFL condi-
tion (at CFL number 1) are a bit slower than the explicit
method with an optimal timestep when h is coarse. How-
10
–2

10
0

10
2

10
4

Space step (h)

C
P

U
 ti

m
e 

(s
ec

on
ds

)

2–5 2–6 2–7 2–8 2–9

Explicit
DSU
DSX
DSP

a b

Fig. 5. CPU time for the explicit, DSU, DSX, and DSP methods on the ellips
ever, both methods rapidly improve relative to the explicit
method as h becomes finer, so that both are competitive
with the optimal-timestep explicit method. We see that
for all methods, the CPU time for c ¼ 100 was roughly
ten times that for c ¼ 1, although the increase in the stiff-
ness decreased the relative effectiveness of the implicit
methods for this problem.

There are two things to note here. First is that an opti-
mal timestep for the explicit method is not generally avail-
able in practice; instead practitioners guess a timestep at
which they believe the simulation will remain stable, and
use that timestep. If the guess is incorrect, then the simula-
tion must be restarted with a smaller timestep. Therefore,
the explicit method in practice is likely to be an order of
magnitude slower than the explicit method shown here,
which increases the advantage of the implicit methods. Sec-
ond, the CFL constraint is not significantly larger than the
explicit timestep limit for this particular problem, because
larger c results in faster fluid velocities. In the wing prob-
lem considered next, the value of the stiffness c has little
affect on the fluid velocity and so the CFL constraint does
not become more restrictive as c is increased. As we see
below, the relative effectiveness of the methods is very dif-
ferent in this case.
4.2.2. Wing problem

Fig. 6 shows the CPU times required by the explicit,
DSU, and DSX methods for the wing problem as a func-
10
–2

10
0

10
2

10
4

Space step (h)

C
P

U
 ti

m
e 

(s
ec

on
ds

)

2–5 2–6 2–7 2–8 2–9

Explicit
DSU
DSX
DSP

e problem as a function of spatial stepsize when (a) c ¼ 1 and (b) c ¼ 100.



10
0

10
2

10
4

10
6

Space step (h)

C
P

U
 ti

m
e 

(s
ec

on
ds

)

2–5 2–6 2–7

Explicit
DSU
DSX

10
0

10
2

10
4

10
6

Space step (h)

C
P

U
 ti

m
e 

(s
ec

on
ds

)

2–5 2–6 2–7

Explicit
DSU
DSX

a b

Fig. 6. CPU time for the explicit, DSU, and DSX methods on the wing problem as a function of spatial stepsize when (a) c ¼ 104 and (b) c ¼ 106.

Table 2
Ratio of computation times of the DSU and DSX methods to the time of
the explicit method for the same parameters, with the wing problem

h c ¼ 104 c ¼ 106

DSU DSX DSU DSX

2�5 0.2047 0.3693 0.0064 0.1310
2�6 0.2915 0.3923 0.0054 0.1361
2�7 0.3405 0.8689 0.3662 0.6265

Both the DSU and DSX methods were run with a timestep with CFL
number less than 1, and the explicit method was run with the ‘‘optimal”
time step.

2302 E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
tion of the spatial stepsize, h, for elastic stiffnesses c ¼ 104

and c ¼ 106. All methods used a ‘‘near stability limit” time-
step, found via an expensive search outlined below. The
timings for the DSP method are again omitted, because
we found they were again significantly slower than the
DSU and DSX methods and did not want to wait for them
to complete on fine grids for this problem.

The ‘‘near stability limit” timestep was found by a
method very similar to the one used for the explicit solve
of the ellipse problem in Section 4.2.1. It involved repeating
the simulation with many different values of Dt until one
was found that was within 1% of the magnitude of a ‘‘bad”

timestep. A ‘‘bad” timestep was one for which (a) the sim-
ulation went unstable (IB points exited the domain during
the simulation), (b) any IB point was further than h from its
target point at the end of any timestep, or (c) Dt > h=4 (a
value chosen to ensure Dt remained under the CFL con-
straint). The latter two constraints were added primarily
for the semi-implicit methods; they did not significantly
restrict the explicit timestep beyond the restriction needed
to satisfy the first constraint. The second constraint was
added due to the fact that the semi-implicit methods did
not exhibit the explosive instabilities of the explicit method,
thus instability or inaccuracy at one timestep would only
sometimes result in the simulation ‘‘blowing up”. Also,
there were some cases where the semi-implicit methods
could take a timestep up to and even beyond CFL 1 while
satisfying the first two constraints, so the third condition
was added.

Table 2 shows the CPU time that the DSU and DSX
methods took relative to the explicit method for the wing
problem described in Section 4.1.2. For these problems,
we note that the results are consistently better than the
explicit method. In a few cases, we were able to compute
up to Dt ¼ h=4, but in other cases the constraint that the
IB points remained near the target points required the
use of a timestep that was much closer to the explicit time-
step; potentially even within an order of magnitude of it.
(Note that the implicit method is more costly per timestep
due to requiring multiple iterations to converge to a solu-
tion, so a timestep that is 10 times larger will not give an
implicit method that is 10 times faster). The ability to
sometimes compute up to Dt ¼ h=4 (our artificially
imposed limit to avoid ever going over CFL 1) suggests
that an implicit discretization that has better stability prop-
erties for the wing problem (see Section 4.1.2) could signif-
icantly outperform the explicit method. This is in contrast
to the ellipse problem where our method was proven to be
unconditionally stable yet only achieved modest gains over
the explicit method. We attribute this to the difference in
behavior of the two problems: an increase in c for the
ellipse problem will result in greater velocities, whereas a
change of c for the wing problem increases the stiffness of
the wing but should have little effect on the velocity.
4.3. Conclusions

We have reviewed implicit methods which previously
were introduced for solving the IB equations, have intro-
duced several new methods for our stable semi-implicit dis-
cretization of the IB equations [22], and have compared the
computational cost of solvers which take advantage of the
linearity of our method to the cost of the explicit method.

For two different test problems, we compared the per-
formance of three implicit methods and an explicit method.
The implicit methods are based on Krylov methods applied
to different arrangements of the equations. One test prob-
lem involves the motion of an initially-elliptical interface
under tension. This is a standard test problem in the IB



E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304 2303
literature. The second test problem involves the motion of
a rigid ‘wing’ as it tracks the prescribed motion of a set of
target points. In the ellipse case, larger stiffness causes lar-
ger velocity while in the wing case larger stiffness just
causes the object to be more rigid without affecting the
timescale of the fluid motion. Compared to the explicit
method, the efficiency of the implicit methods was very dif-
ferent for the two problems.

For the ellipse problem, we found that two of the impli-
cit methods (DSX and DSU) were competitive with the
explicit method using an optimally-tuned timestep.
Depending on parameters these implicit methods were
between two times slower and two times faster than the
explicit method. The third implicit method (DSP) was an
order of magnitude or more slower than the (optimal)
explicit method. For the ellipse problem, the relative effec-
tiveness of the implicit methods did not improve as the stiff-
ness increased because as the stiffness increased the
timescale of the physical problem became correspondingly
smaller. In addition, the explicit discretization of the advec-
tion terms in the Navier–Stokes equations constrained the
timestep by a CFL condition. For large stiffnesses, the CFL
constraint was not substantially less strict than the explicit
IB method’s stability constraint.

The relative effectiveness of the implicit methods is
underestimated in this test problem because the optimal
timestep of the explicit method to which we are comparing
is not generally available in practice. Recall that the opti-
mal timestep for the explicit method was found by running
it many times with different timesteps to find one just under
the stability limit. In practical computations with the expli-
cit method, it is common for users to simply manually
restart simulations with a smaller timestep when a simula-
tion goes unstable. This, of course, can significantly
increase the real-world cost of using the explicit method,
though this additional cost is not measured or reported
in practice. Further, both the DSU and DSX implicit meth-
ods were run without any preconditioning. It may be pos-
sible to accelerate these methods with the use of an
appropriate preconditioner. Mori and Peskin have claimed
some success with preconditioning for a similar test prob-
lem using a method like our DSX method [20].

For the wing problem, the semi-implicit methods consis-
tently outperformed the explicit method. The timing results
on the wing problem reflect the fact that our stability
results for the semi-implicit discretization do not hold for
this problem. However, there were cases in which we were
able to compute up to CFL 1 and finish simulations much
faster than with the explicit method, suggesting that an
implicit discretization with better stability properties for
the wing problem would be able to dramatically outper-
form the explicit method. This is in contrast to the ellipse
problem where our proven unconditionally stable methods
were only able to get modest improvements in computa-
tional time relative to the explicit method. This difference
is due to the nature of the two different problems; in con-
trast to the ellipse problem, in the wing problem the time-
scale of fluid and wing motion are not affected by changes
in the wing stiffness. Previous studies on implicit IB meth-
ods have focussed almost exclusively on the ellipse prob-
lem. As our results have demonstrated, it is important to
look at test problems with a range of characteristics in
order to fully assess the effectiveness of the methods.

In this paper, we have considered solution methods for
stable linear implicit schemes for the immersed boundary
method equations. Two types of nonlinearities were con-
sidered and are handled effectively by these linear schemes.
The nonlinear advection term is discretized explicitly in
time. The nonlinear position dependence of the immersed
boundary force spreading and velocity interpolation oper-
ators are ‘lagged’ by evaluating them only at the beginning
of each timestep. We have not yet addressed a third type of
nonlinearity, namely, nonlinear constitutive laws for the
mechanical behavior of the immersed boundaries (see
Eqs. (26) and (27)). A reasonable strategy for handling this
type of nonlinearity would be to use an iterative solver
which in each iteration would require solving linearized
equations similar to those addressed in this paper. This
problem remains for future work.
Acknowledgements

The work of E.P.N. was supported in part by the
Department of Energy Computational Science Graduate
Fellowship Program of the Office of Science and National
Nuclear Security Administration in the Department of En-
ergy under contract DE-FG02-97ER25308, and in part by
NSF Grants DMS-0139926 and DMS-EMSW21-0354259.
The work of A.L.F. and R.D.G. was supported in part by
NSF Grant DMS-0139926. The work of R.M.K. was sup-
ported in part by NSF Career Award CCF0347791.

The authors thank Grady Wright, Samuel Isaacson, and
Laura Miller for helpful discussions while writing this
paper.
References

[1] G. Agresar, J.J. Linderman, G. Tryggvason, K.G. Powell, An
adaptive, Cartesian, front-tracking method for the motion, deforma-
tion and adhesion of circulating cells, J. Comput. Phys. 143 (1998)
346–380.

[2] A.S. Almgren, J.B. Bell, W.Y. Crutchfield, Approximate projection
methods: Part I. Inviscid analysis, SIAM J. Sci. Comput. 22 (2000)
1139–1159.

[3] R.P. Beyer, A computational model of the cochlea using the
immersed boundary method, J. Comput. Phys. 98 (1992) 145–162.

[4] D. Boffi, L. Gastaldi, L. Heltai, Stability results and algorithmic
strategies for the finite element approach to the immersed boundary
method, in: Proceeding of the Sixth European Conference on
Numerical Mathematics and Advanced Applications, Springer-Ver-
lag, 2005, pp. 557–566.

[5] D.L. Brown, R. Cortez, M. Minion, Accurate projection methods for
the incompressible Navier–Stokes equations, J. Comput. Phys. 168
(2001) 464–499.

[6] R. Cortez, M. Minion, The blob projection method for Immersed
Boundary problems, J. Comput. Phys. 161 (2000) 428–453.



2304 E.P. Newren et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2290–2304
[7] J. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice Hall, 1996.

[8] R. Dillon, L. Fauci, A. Fogelson, D. Gaver, Modeling biofilm
processes using the Immersed Boundary method, J. Comput. Phys.
129 (1996) 85–108.

[9] L.J. Fauci, A.L. Fogelson, Truncated newton methods and the
modeling of complex immersed elastic structures, Commun. Pure
Appl. Math. 66 (1993) 787–818.

[10] L.J. Fauci, C.S. Peskin, A computational model of aquatic animal
locomotion, J. Comput. Phys. 77 (1988) 85–108.

[11] A.L. Fogelson, ;A mathematical model and numerical method for
studying platelet adhesion and aggregation during blood clotting, J.
Comput. Phys. 1 (1984) 111–134.

[12] B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed
boundary method: higher order convergence rates for sufficiently
smooth problems, J. Comput. Phys. 208 (2005) 75–105.

[13] J.L. Guermond, P. Minev, J. Shen, An overview of projection
methods for incompressible flows, Comput. Methods Appl. Mech.
Engrg. 195 (2006) 6011–6045.

[14] D.-V. Le, B.C. Khoo, J. Peraire, An immersed interface method for
the incompressible Navier–Stokes equations, in: Presented at the
SMA Symposium, Singapore, 2004.

[15] L. Lee, R. Leveque, An Immersed Interface method for incompress-
ible Navier–Stokes equations, SIAM J. Sci. Comput. 25 (2003) 832–
856.

[16] R.J. Leveque, Z. Li, Immersed interface methods for Stokes flow with
elastic boundaries or surface tension, SIAM J. Sci. Comput. 18 (1997)
709–735.

[17] A.A. Mayo, C.S. Peskin, An implicit numerical method for fluid
dynamics problems with immersed elastic boundaries, Contemp.
Math. 141 (1993) 261–277.

[18] L.A. Miller, C.S. Peskin, When vortices stick: an aerodynamic
transition in tiny insect flight, J. Exp. Biol. 207 (2004) 3073–3088.

[19] L.A. Miller, C.S. Peskin, A computational fluid dynamics of’clap and
fling’ in the smallest insects, J. Exp. Biol. 208 (2005) 195–212.
[20] Y. Mori, C.S. Peskin, Implicit second order immersed boundary
methods with boundary mass, Comput. Methods Appl. Mech.
Engrg., to appear.

[21] E. Newren, Enhancing the Immersed Boundary Method: Stability,
Volume Conservation, and Implicit Solvers, PhD Thesis, University
of Utah, 2007.

[22] E.P. Newren, A.L. Fogelson, R.D. Guy, R.M. Kirby, Uncondition-
ally stable discretizations of the immersed boundary equations, J.
Comput. Phys. 222 (2007) 702–719.

[23] J.B. Perot, An analysis of the fractional step method, J. Comput.
Phys. 108 (1993) 51–58.

[24] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput.
Phys. 25 (1977) 220–252.

[25] C.S. Peskin, The immersed boundary method, Acta Numer. (2002) 1–
39.

[26] C.S. Peskin, D.M. McQueen, Modeling prosthetic heart valves for
numerical analysis of blood flow in the heart, J. Comput. Phys. 37
(1980) 113–132.

[27] C.S. Peskin, D.M. McQueen, A three-dimensional computational
method for blood flow in the heart: I. immersed elastic fibers in a
viscous incompressible fluid, J. Comput. Phys. 81 (1989) 372–405.

[28] A.M. Roma, C.S. Peskin, M.J. Berger, An adaptive version of the
immersed boundary method, J. Comput. Phys. 153 (1999) 509–
534.

[29] J.M. Stockie, B.R. Wetton, Analysis of stiffness in the immersed
boundary method and implications for time-stepping schemes, J.
Comput. Phys. 154 (1999) 41–64.

[30] C. Tu, C.S. Peskin, Stability and instability in the computation of
flows with moving immersed boundaries: a comparison of three
methods, SIAM J. Sci. Stat. Comput. 13 (1992) 1361–1376.

[31] X. Wang, An iterative matrix-free method in implicit immersed
boundary/continuum methods, Comput. Struct. 85 (2007) 739–
748.


	A comparison of implicit solvers for the immersed boundary equations
	Introduction
	The immersed boundary method
	Solver possibilities
	Direct application of linear solvers
	Newton-like methods
	Newton ' s method
	Quasi-Newton methods

	Schur complement systems
	Fixed point methods
	Projection methods
	Krylov solvers


	Comparison of implicit methods
	Test problems
	Ellipse problem
	Wing problem

	Results
	Ellipse problem
	Wing problem

	Conclusions

	Acknowledgements
	References


