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Abstract

The immersed boundary (IB) method is known to require small timesteps to maintain stability when solved with an
explicit or approximately implicit method. Many implicit methods have been proposed to try to mitigate this timestep
restriction, but none are known to be unconditionally stable, and the observed instability of even some of the fully implicit
methods is not well understood. In this paper, we prove that particular backward Euler and Crank–Nicolson-like discret-
izations of the nonlinear immersed boundary terms of the IB equations in conjunction with unsteady Stokes Flow can yield
unconditionally stable methods. We also show that the position at which the spreading and interpolation operators are
evaluated is not relevant to stability so as long as both operators are evaluated at the same location in time and space.
We further demonstrate through computational tests that approximate projection methods (which do not provide a dis-
cretely divergence-free velocity field) appear to have a stabilizing influence for these problems; and that the implicit meth-
ods of this paper, when used with the full Navier–Stokes equations, are no longer subject to such a strict timestep
restriction and can be run up to the CFL constraint of the advection terms.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The immersed boundary (IB) method was introduced by Peskin in the early 1970’s to solve the coupled
equations of motion of a viscous, incompressible fluid and one or more massless, elastic surfaces or objects
immersed in the fluid [20]. Rather than generating a surface-fitting grid for both exterior and interior regions
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of each surface at each timestep and using these to determine the fluid motion, Peskin instead employed a uni-
form Cartesian grid over the entire domain and discretized the immersed boundaries by a set of points that are
not constrained to lie on the grid. The key idea that permits this simplified discretization is the replacement of
each suspended object by a suitable contribution to a force density term in the fluid dynamics equations in
order to allow a single set of fluid dynamics equations to hold in the entire domain with no internal boundary
conditions.

The IB method was originally developed to model blood flow in the heart and through heart valves
[20,22,23], but has since been used in a wide variety of other applications, particularly in biofluid dynamics
problems where complex geometries and immersed elastic membranes or structures are present and make tra-
ditional computational approaches difficult. Examples include platelet aggregation in blood clotting [7,9],
swimming of organisms [7,8], biofilm processes [6], mechanical properties of cells [1], cochlear dynamics [3],
and insect flight [17,18].

The immersed interface method (IIM) was developed by Leveque and Li to address the lower order accu-
racy found in the IB method when applied to problems with sharp interfaces [14]. The IIM differs from the IB
method in the spatial discretization method used to handle the singular forces appearing in the continuous
equations of motion. While we do not address the spatial discretizations involved in the IIM and instead focus
on the IB method in this paper, we do present some discussion of that method since the two are closely related
(hybrids of the two even exist, such as [13]).

The immersed boundary and immersed interface methods suffer from a severe timestep restriction needed to
maintain stability, as has been well documented in the literature [7,14,21,26]. This time step restriction is typ-
ically much more stringent than the one that would be imposed from using explicit differencing of the advec-
tive or diffusive terms [5]. Much effort has been expended attempting to alleviate this severe restriction. For
example in some problems, the fluid viscosity has been artificially increased by a couple orders of magnitude
[24]. In others, authors filter out high frequency oscillations of the interface [14,29]. Much effort has been put
into developing implicit and semi-implicit methods [7,14,16,27].

Despite these efforts the severe timestep restriction has remained. The instability of these methods is
known not to be a problem related to the advection terms in the Navier–Stokes equations, and is known
to arise in the parameter regime corresponding to large boundary force and small viscosity [26], but there
is little understanding of why this parameter regime is problematic. Despite the effort put into implicit meth-
ods which couple the equations of motion for the fluid and immersed boundary, the lack of stability has
been puzzling. Conjectures as to causes of instability in these methods turn out to be misleading. It is a
common belief in the community that using time-lagged spreading and interpolation operators (i.e. time-
lagged discretizations of the delta functions in Eqs. (2) and (5) of Section 2) will cause instability, and that
therefore a fully-implicit scheme (i.e. one without time-lagged spreading and interpolation operators) is nec-
essary for unconditional stability [13,16,19,25]. It has also been conjectured that the lack of stability and
corresponding timestep restriction in fully-implicit schemes such as [16] is due to accumulation of error
in the incompressibility condition [26].

We will present some discretizations that we prove to be unconditionally stable in conjunction with
unsteady Stokes flow, and in so doing, show (i) that methods need not be fully-implicit in order to achieve
unconditional stability and (ii) that accumulation of error in the incompressibility condition is not the cause
of the observed instability of previous implicit methods. We cover the continuous equations of motion and
common choices for temporal discretizations in Sections 2 and 3, provide proofs of unconditional stability
of various discretization schemes in Section 4, show by computational tests how the schemes are affected
by the presence of an approximate projection and advection terms in Section 5, and discuss remaining out-
standing questions about these methods in Section 6.

2. Continuous equations of motion

In the IB method, an Eulerian description based on the Navier–Stokes equations is used for the fluid
dynamics, and a Lagrangian description is used for each object immersed in the fluid. The boundary is
assumed to be massless, so that all of the force generated by distortions of the boundary is transmitted directly
to the fluid. An example setup in 2D with a single immersed boundary curve is shown in Fig. 1. Lowercase
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Fig. 1. Example immersed boundary curve, C, described by the function X(s, t).
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letters are used for Eulerian state variables, while uppercase letters are used for Lagrangian variables. Thus,
X(s, t) is a vector function giving the location of points on C as a function of arclength (in some reference con-
figuration), s, and time, t. The boundary is modeled by a singular forcing term, which is incorporated into the
forcing term, f, in the Navier–Stokes equations. The Navier–Stokes equations are then solved to determine the
fluid velocity throughout the domain, X. Since the immersed boundary is in contact with the surrounding
fluid, its velocity must be consistent with the no-slip boundary condition. Thus the immersed boundary moves
at the local fluid velocity. This results in the following set of equations:
Fðs; tÞ ¼ AXðs; tÞ; ð1Þ

fðx; tÞ ¼
Z

C
Fðs; tÞdðx� Xðs; tÞÞ ds ð2Þ

ut þ u � ru ¼ �rp þ mDuþ f; ð3Þ
r � u ¼ 0; ð4Þ
dXðs; tÞ

dt
¼ uðXðs; tÞ; tÞ ¼

Z
X

uðx; tÞdðx� Xðs; tÞÞ dx: ð5Þ
The force generation operator, A, in Eq. (1) is problem dependent. A commonly used operator is c o2

os2 (where c
is an elastic tension parameter), which results from assuming the boundary is linearly elastic with zero resting
length. Note that the terminology ‘‘force generation operator’’ might be misleading to those not familiar with
the immersed boundary method, as the force used in the fluid dynamics equations is not the one defined in Eq.
(1) but the one in Eq. (2). The latter is nonlinear as well as singular due to the lower-dimensional line integral.
The Lagrangian and Eulerian variables in the problem are related through Eqs. (2) and (5). In Eq. (3) we have
assumed a constant density, q, of 1.0 g/cm3 and divided it through both sides.

3. Temporal discretization

In departure from most papers on the immersed boundary and immersed interface methods, we first dis-
cretize the continuous equations of motion in time, yielding a spatially continuous, temporally discrete system.
We do this because the choice of temporal discretization appears to be much more important to stability than
the spatial discretization – we will show stability for a wide class of spatial discretizations but only for two
types of temporal discretizations. We analyze unsteady Stokes flow because as mentioned above, the advection
terms of the Navier–Stokes equations are not the cause of instability in these methods. We will, however,
include the advection terms in some computational tests in Section 5.

There are various temporal discretizations possible. Most immersed boundary and immersed interface
implementations tend to be of the following form:
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unþ1 � un

Dt
þrpnþ1

2 ¼ m
2

Dðunþ1 þ unÞ þ f; ð6Þ

r � unþ1 ¼ 0; ð7Þ
Xnþ1 � Xn

Dt
¼ U; ð8Þ
where different discretization possibilities for f and U will be discussed below. Let us define Sm and S�m through
the formulas
SmðFÞ ¼
Z

C
Fðs; tÞdðx� Xmðs; tÞÞ ds; ð9Þ
and
S�mðuÞ ¼
Z

X
uðx; tÞdðx� Xmðs; tÞÞ dx: ð10Þ
The most common temporal discretizations of f and U are f ¼ SnAXn and U ¼ S�nunþ1. This results in an ex-
plicit system (more precisely, a mixed explicit–implicit system that is implicit in the handling of the viscous
terms and explicit in the handling of the immersed boundary terms). But this common explicit discretization
requires a small timestep for stability. In an effort to devise more stable schemes, various implicit methods
have been presented in the literature. Among these implicit methods, common discretization choices for f are

(1) Snþ1AXnþ1,

(2) 1
2
SnAXn þ 1

2
Snþ1AXnþ1,

(3) Snþ1
2
AXnþ1

2,

where Xnþ1
2 is approximated by 1

2
ðXn þ Xnþ1Þ, while common discretization choices for U are

(A) S�nþ1unþ1,

(B) 1
2
S�nun þ 1

2
S�nþ1unþ1,

(C) S�nþ1
2
ð1

2
ðun þ unþ1ÞÞ.

Some implicit methods also lag the spreading and interpolation operators in time, meaning that Sn and S�n are
used to replace occurrences of S and S� evaluated at other times in the above choices for f and U.

Where the discretization choices for f and U can be found in the literature, many variations are used. Mayo
and Peskin [16] use method 1A (i.e. take choice 1 for f and A for U from the lists above). Tu and Peskin [27]
use a modified version of 1A with time-lagged spreading and interpolation operators (i.e. Sn and S�n instead of
Snþ1 and S�nþ1) with steady Stokes flow. Roma et al. [25] and Lee and Leveque [13] both use method 2B, while
Griffith and Peskin [10] approximate 2B using an explicitly calculated Xn+1. Mori and Peskin [19] use method
3C with lagged spreading and interpolation operators though with the addition of boundary mass, Peskin [21]
and Lai and Peskin [12] approximate method 3C with an explicitly calculated Xn+1, and the first author of this
work experimented with method 3B. We will prove that both 1A and 3C are unconditionally stable and that
the stability is not affected by the location at which S and S� are evaluated, provided both are evaluated at the
same location.

4. Unconditionally stable schemes

In this section, we prove that 1A and 3C are unconditionally stable. First we consider the spatially contin-
uous case for method 3C and then extend the proof to the discrete case for both 3C and 1A. In each case, the
method we use is to define an appropriate energy for the system and show that it is a non-increasing, and
hence bounded, function in time.
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4.1. Crank–Nicolson for the spatially continuous problem

We begin with method 3C for the spatially continuous problem, showing that the energy of the system
E½u;X� ¼ hu; uiX þ h�AX;XiC ð11Þ
is non-increasing. Here the inner products are on L2(X) and L2(C), respectively. This energy represents the sum
of the kinetic energy of the fluid and the potential energy in the elasticity of the boundary. Note that A (the
force generation operator on the immersed boundary) must be negative-definite for this definition of energy to
make sense. We further require in the proof that A be self-adjoint and linear (conditions which are satisfied by
the common choice A ¼ c o2

os2). We also assume that divergence-free velocity fields are orthogonal to gradient
fields (which may put limitations on the boundary conditions but is satisfied for example by periodic boundary
conditions). We also make use of the fact that S and S� are adjoints, which can be seen from the following
calculation with F 2 L2(C) and w 2 L2(X)
hSðFðs; tÞÞ;wðx; tÞiX ¼
Z

X
SðFðs; tÞÞðx; tÞ � wðx; tÞ dx ¼

Z
X

Z
C

Fðs; tÞdðx� Xðs; tÞÞ ds � wðx; tÞ dx

¼
Z

C
Fðs; tÞ �

Z
X

wðx; tÞdðx� Xðs; tÞÞ dx ds ¼ hFðs; tÞ;S�ðwðx; tÞÞiC: ð12Þ
Recall that the IB method using 3C is
unþ1 � un

Dt
þrpnþ1

2 ¼ m
2
Dðunþ1 þ unÞ þ Snþ1

2
A 1

2
ðXn þ Xnþ1Þ

� �
; ð13Þ

r � unþ1 ¼ 0; ð14Þ
Xnþ1 � Xn

Dt
¼ S�nþ1

2

1

2
ðun þ unþ1Þ

� �
: ð15Þ
Multiplying through by Dt, taking the inner product of Eq. (13) with un+1 + un and the inner product of (15)
with �AðXnþ1 þ XnÞ yields
hunþ1 þ un; unþ1 � uniX ¼ �Dt unþ1 þ un;rpnþ1
2

D E
X
þ mDt

2
hunþ1 þ un;Dðunþ1 þ unÞiX

þ Dt
2

unþ1 þ un;Snþ1
2
AðXn þ Xnþ1Þ

D E
X
; ð16Þ

h�AðXnþ1 þ XnÞ;Xnþ1 � XniC ¼
Dt
2
�AðXnþ1 þ XnÞ;S�nþ1

2
ðun þ unþ1Þ

D E
C
: ð17Þ
Adding these two equations gives us
hunþ1 þ un; unþ1 � uniX þ h�AðXnþ1 þ XnÞ;Xnþ1 � XniC

¼ �Dt unþ1 þ un;rpnþ1
2

D E
X
þ mDt

2
hunþ1 þ un;Dðunþ1 þ unÞiX

þ Dt
2

unþ1 þ un;Snþ1
2
AðXn þ Xnþ1Þ

D E
X
þ Dt

2
�AðXn þ Xnþ1Þ;S�nþ1

2
ðunþ1 þ unÞ

D E
C
: ð18Þ
The last two terms on the right-hand-side cancel by the adjointness of Snþ1
2

and S�nþ1
2
, the first term on the right-

hand side is zero because un+1 and un are divergence-free while rpnþ1
2 is a gradient field, and the left-hand side

of the equation can be simplified using the linearity and self-adjointness of A. This leaves us with
hunþ1; unþ1iX � hun; uniX þ h�AXnþ1;Xnþ1iC � h�AXn;XniC ¼
mDt
2
hunþ1 þ un;Dðunþ1 þ unÞiX: ð19Þ
Using the negative definiteness of the Laplacian operator, the above equation implies
E½unþ1;Xnþ1� � E½un;Xn� 6 0: ð20Þ
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In other words, the energy of the system is bounded for all time, and thus the system remains stable. The key
to the proof is that the energy terms representing the work done by the fluid on the boundary and the work
done by the boundary on the fluid (the terms involving Snþ1

2
and S�nþ1

2
) exactly cancel. This is a property not

shared by any of the other methods, though in Section 4.3 we show that the remaining terms for 1A result in a
decrease of energy in addition to the energy loss from viscosity, and so scheme 1A is also stable.

It is useful to note that the proof is still valid even if Sn and S�n are used in place of Snþ1
2

and S�nþ1
2
; i.e. the

system need not be fully implicit in order to achieve unconditional stability. This is contrary to what the com-
munity expected (as pointed out in Section 1), and it can be exploited to simplify the set of implicit equations
that need to be solved, as we do in Section 5, without sacrificing stability.

4.2. Projection methods and discrete delta functions

We now show that the unconditional stability of method 3C extends to the usage of discrete delta functions
and (exact) discrete projection methods. We show computationally in Section 5 that an approximate projection
method appears to be sufficient for unconditional stability, but use an exact projection for purposes of the proof.
Let $h, $hÆ, and Dh be discrete analogs of $, $Æ, and D satisfying Dh = $h Æ $h (so that the projection is exact). Let
A be a discrete analog of A maintaining linearity, negative-definiteness, and self-adjointness. Let Snþ1

2
and S�nþ1

2

be discrete analogs of Snþ1
2

and S�nþ1
2

preserving adjointness. We assume boundary conditions for which

discretely divergence-free fields and discrete gradient fields are orthogonal and for which $h and Dh commute.
We employ a pressure-free projection method in the proof. Some other projection methods, such as pressure
update projection methods also work, but others might not; in particular, it appears that it was the projection
employed by Mayo and Peskin [16] that caused the instability they saw, as we will discuss in Section 4.3.

We note that many, if not most, existing IB implementations satisfy these conditions. For example, an
implementation with periodic boundary conditions, employing a (exact) projection method, using the force
generation operator A = cD+D�, and using any of the standard discrete delta functions [21] will satisfy all
of these conditions. All of these particular choices are quite common. Thus, as we will prove below, such
implementations could be made unconditionally stable by switching to discretization method 3C.

The adjointness condition on Snþ1
2

and S�nþ1
2

is
Snþ1
2
ðFÞ;w

D E
Xh

¼ F; S�nþ1
2
ðwÞ

D E
Ch

; ð21Þ
where F 2 ‘2(Ch), w 2 ‘2(Xh) and the ‘2 inner products are defined by
hv;wiXh
¼
X

ij

vij � wijDxDy ð22Þ
and
hY;ZiCh
¼
X

k

Yk � ZkDs: ð23Þ
The calculation to show this adjointness property for the standard tensor product discrete delta functions [21]
is nearly identical to (12) and so is omitted here. With these definitions and assumptions, using the pressure
update needed for second order accuracy [4], and utilizing method 3C, our discrete system becomes
u� � un

Dt
¼ m

2
Dhðu� þ unÞ þ 1

2
Snþ1

2
AðXn þ Xnþ1Þ; ð24Þ

Dh/ ¼ 1

Dt
rh � u�; ð25Þ

unþ1 ¼ u� � Dtrh/; ð26Þ

pnþ1
2 ¼ /� m

2
rh � u�; ð27Þ

Xnþ1 � Xn

Dt
¼ 1

2
S�nþ1

2
ðun þ unþ1Þ: ð28Þ
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We proceed analogously to the time-discrete spatially-continuous case, and show that the energy of the system
E½u;X� ¼ hu; uiXh
þ h�AX;XiCh

ð29Þ

is non-increasing. Taking the inner product of (24) with Dt(un+1 + un), taking the inner product of (26) with
un+1 + un and taking the inner product of (28) with �DtA(Xn+1 + Xn) yields
hunþ1 þ un; u� � uniXh
¼ mDt

2
hunþ1 þ un;Dhðu� þ unÞiXh

þ Dt
2

unþ1 þ un; Snþ1
2
AðXn þ Xnþ1Þ

D E
Xh

; ð30Þ

hunþ1 þ un; unþ1 � u�iXh
¼ �Dthunþ1 þ un;rh/iXh

; ð31Þ

h�AðXnþ1 þ XnÞ;Xnþ1 � XniCh
¼ Dt

2
�AðXnþ1 þ XnÞ; S�nþ1

2
ðun þ unþ1Þ

D E
Ch

: ð32Þ
Adding all three of these equations and noting the cancellation of the energy terms from the immersed bound-
ary due to Eq. (21) gives us
hunþ1 þ un; unþ1 � uniXh
þ h�AðXnþ1 þ XnÞ;Xnþ1 � XniCh

¼ �Dthunþ1 þ un;rh/iXh
þ mDt

2
hunþ1 þ un;Dhðu� þ unÞiXh

: ð33Þ
Now, we can employ (26) to eliminate u* from this equation. Simultaneously simplifying the left-hand side of
the equation using the assumption that A is linear and self-adjoint, we obtain
hunþ1; unþ1iXh
� hun; uniXh

þ h�AXnþ1;Xnþ1iCh
� h�AXn;XniCh

¼ �Dthunþ1 þ un;rh/iXh
þ mDt

2
hunþ1 þ un;Dhððunþ1 þ Dtrh/Þ þ unÞiXh

: ð34Þ
Making use of commutativity of $h and Dh and orthogonality of discretely divergence-free vector fields and
discrete gradient fields, we find
hunþ1; unþ1iXh
� hun; uniXh

þ h�AXnþ1;Xnþ1iCh
� h�AXn;XniCh

¼ mDt
2
hunþ1 þ un;Dhðunþ1 þ unÞiXh

: ð35Þ
Using the negative definiteness of the discrete Laplacian operator, the above equation implies
E½unþ1;Xnþ1� � E½un;Xn� 6 0; ð36Þ

showing that the energy of the system is non-increasing and thus implying that the system is stable.

Just as with the spatially continuous case, nothing in this proof required the system to be fully implicit to
achieve unconditional stability; the proof is still valid if Sn and S�n (or indeed spreading and interpolation oper-
ators evaluated at any location so long as they are adjoints) are used in place of Snþ1

2
and S�nþ1

2
. Again, this is a

fact we demonstrate in our computational experiments in Section 5.

4.3. Unconditional stability of backward Euler

We now demonstrate that temporal discretization 1A is unconditionally stable, and in fact, that it dissipates
more energy from the system than one would find from the effect of viscosity alone. The method and assump-
tions are the same as in Section 4.2, the only difference is that more work is required to show that extra non-
cancelling terms are in fact negative.

Papers that employ a backward Euler discretization of the immersed boundary terms invariably also use a
backward Euler discretization of the viscous terms. So, we modify our system for this case to use a backward
Euler discretization of the viscous terms instead of a Crank–Nicolson one. With that change, the relevant
equations for method 1A are
u� � un

Dt
¼ mDhu� þ Snþ1AXnþ1; ð37Þ

unþ1 ¼ u� � Dtrh/; ð38Þ
Xnþ1 � Xn

Dt
¼ S�nþ1unþ1: ð39Þ
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Taking the inner product of (37) with Dt(un+1 + un), taking the inner product of (38) with un+1 + un and taking
the inner product of (39) with �DtA(Xn+1 + Xn) yields
hunþ1 þ un; u� � uniXh
¼ Dthunþ1 þ un; mDhu� þ Snþ1AXnþ1iXh

; ð40Þ

hunþ1 þ un; unþ1 � u�iXh
¼ �Dthunþ1 þ un;rh/iXh

; ð41Þ

h�AðXnþ1 þ XnÞ;Xnþ1 � XniCh
¼ Dth�AðXnþ1 þ XnÞ; S�nþ1unþ1iCh

: ð42Þ

We can simplify (42) by making use of the assumption that A is linear and self-adjoint and by using Eq. (39) to
eliminate the appearance of Xn on the right-hand side. Making these simplifications and adding all three equa-
tions, we obtain
hunþ1; unþ1iXh
� hun; uniXh

þ h�AXnþ1;Xnþ1iCh
� h�AXn;XniCh

¼ Dthunþ1 þ un; mDhu� þ Snþ1AXnþ1 �rh/iXh
þ Dth�2AXnþ1 þ ADtS�nþ1unþ1; S�nþ1unþ1iCh

: ð43Þ

Making use of our definition of energy and using the identity un+1 + un = (un � un+1) + 2un+1, we obtain
E½unþ1;Xnþ1� � E½un;Xn� ¼ Dthun � unþ1; mDhu� þ Snþ1AXnþ1 �rh/iXh

þ Dth2unþ1; mDhu� þ Snþ1AXnþ1 �rh/iXh

þ Dth�2AXnþ1 þ ADtS�nþ1unþ1; S�nþ1unþ1iCh
: ð44Þ
We can use Eqs. (37) and (38) to eliminate the first occurrence of mDhu� þ Snþ1AXnþ1 �rh/ to replace it with
unþ1�un

Dt . Simultaneously using Eq. (38) to eliminate the second appearance of u* we obtain
E½unþ1;Xnþ1� � E½un;Xn� ¼ Dt un � unþ1;
unþ1 � un

Dt

� �
Xh

þ Dth2unþ1; mDhunþ1iXh

þ Dth2unþ1; mDtDhrh/�rh/iXh
þ Dth2unþ1; Snþ1AXnþ1iXh

þ Dth�2AXnþ1; S�nþ1unþ1iCh
� Dt2h�AS�nþ1unþ1; S�nþ1unþ1iCh

: ð45Þ
The fourth and fifth terms on the right-hand side cancel by the adjoint property of Snþ1 and S�nþ1. The third
term vanishes due to the commutativity of Dh and $h and due to the orthogonality of discretely divergence-free
vector fields and discrete gradients. Hence we are left with
E½unþ1;Xnþ1� � E½un;Xn� ¼ �hunþ1 � un; unþ1 � uniXh
þ 2mDthunþ1;Dhunþ1iXh

� Dt2h�AS�nþ1unþ1; S�nþ1unþ1iCh
: ð46Þ
The second term on the right-hand side is non-positive by the negative definiteness of the Dh operator and rep-
resents the dissipation of energy due to viscosity. From this computation, we see that method 1A is uncondi-
tionally stable, and that it dissipates more energy than one would get just from the effect of viscosity. As with
method 3C, the proof did not rely on the time level at which S and S* are evaluated, other than requiring them
to be evaluated at the same time level so that they are indeed adjoints.

We note that Mayo and Peskin [16] also used a backward Euler discretization of both the viscous and
immersed boundary terms, but reported a lack of stability in their method that was also confirmed by Stockie
and Wetton [26]. However, they did not solve the system of equations (37)–(39). The salient difference between
method 1A and their method is that they moved the forcing terms from the momentum equation into the pro-
jection step to obtain a system of equations of the form
u� � un

Dt
¼ mDhu�; ð47Þ

Dh/ ¼ 1

Dt
rh � u� þ rh � ðSAXnþ1Þ; ð48Þ

unþ1 ¼ u� � Dtrh/þ DtðSAXnþ1Þ; ð49Þ
Xnþ1 � Xn

Dt
¼ S�unþ1: ð50Þ
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This modification was important to Mayo and Peskin’s proof of convergence of the iterative method they used
to solve their implicit equations. We believe that this change was the cause of the instability they observed.
There were also other minor differences between Mayo and Peskin’s method and method 1A, notably the
inclusion of advection terms and the use of ADI splitting for the advection and viscous terms. Stockie and
Wetton, however, observed the same instability while only considering Stokes equations and without employ-
ing an ADI splitting.

5. Computational results

In this section, we demonstrate the unconditional stability of our discretization computationally and indi-
cate how stability is affected by some modifications not covered in the proofs of the preceding section. Since
approximate projections are an increasingly commonly used method in the community that provides a velocity
field that is not quite discretely divergence-free, it is the first modification that we test. We use an approximate
projection that has an O(h2) error in the divergence-free condition for the velocity. The other modification that
we test is the addition of advection terms from the Navier–Stokes equations.

The test problem we use is one typically seen in the literature, in which the immersed boundary is a closed
loop initially in the shape of an ellipse [13,14,16,25–27]. We choose an ellipse initially aligned in the coordinate
directions with horizontal semi-axis a = 0.28125 cm and vertical semi-axis b = 0.75a cm. The fluid is initially
at rest in a periodic domain, X, with X = [0,1] · [0,1]. For this test problem, the boundary should perform
damped oscillations around a circular equilibrium state with the same area as that of the original ellipse.
The configuration of the boundary at different times can be seen in Fig. 2.

We employ a cell centered grid with uniform grid spacing h = 1/64 cm in both x and y, and discrete gra-
dient, divergence, and Laplacian operators given by the formulas
ðrh � uÞij ¼
uiþ1;j � ui�1;j

2h
þ vi;jþ1 � vi;j�1

2h
; ð51Þ

ðrhpÞij ¼
piþ1;j � pi�1;j

2h
;
pi;jþ1 � pi;j�1

2h

� �
; ð52Þ

ðDh
widepÞij ¼

piþ2;j � 2pi;j þ pi�2;j

4h2
þ

pi;jþ2 � 2pi;j þ pi;j�2

4h2
; ð53Þ

ðDh
tightpÞij ¼

piþ1;j � 2pi;j þ pi�1;j

h2
þ

pi;jþ1 � 2pi;j þ pi;j�1

h2
; ð54Þ
where Dh ¼ Dh
wide will be used for our Poisson solve in all tests other than those from Section 5.2, and

Dh ¼ Dh
tight will be used for the viscous terms as well as the Poisson solve in Section 5.2. We define A as c o2

os2

and choose NB, the number of immersed boundary points, to approximately satisfy N B ¼ 2LB

h , where LB is
the arclength of the immersed boundary. In all tests, except where otherwise noted, we use (spatially discrete)
method 3C with lagged spreading and interpolation operators. We also use the common four point delta
function
dhðx; yÞ ¼ dhðxÞdhðyÞ; ð55Þ

dhðxÞ ¼
1
4h 1þ cosðpx

2hÞ
� 	

; jxj 6 2h;

0; jxjP 2h:



ð56Þ
The immersed boundary update equation,
Xnþ1 � Xn

Dt
¼ 1

2
S�nðun þ unþ1Þ; ð57Þ
can be re-written as
gðXÞ ¼ X� Xn � Dt
2

S�nðun þ unþ1Þ ¼ 0 ð58Þ
so that we can write the implicit system that we must solve as g(Xn+1) = 0 (note that un+1 depends on Xn+1

too). To solve this implicit system of equations, we use an approximate Newton solver (by employing finite
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Fig. 2. Computed immersed boundary positions at successive times; the solid line is the initial shape, and the dashed-dotted and dashed
lines show the configuration of the boundary later in the simulation.
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difference approximations to obtain the Jacobian g 0, which requires O(NB) fluid solves per implicit iteration
to compute and is thus extremely slow). We discuss the use of the approximate Newton solver further in
Section 6.

5.1. Computational verification of the method

5.1.1. Refinement study

We begin with a simple convergence study to verify that the implicit discretization results in a consistent
method. We expect only first order accuracy for two reasons: the immersed boundary method has been shown
to exhibit first order accuracy on problems with a sharp interface, and our lagging of the spreading and inter-
polation operators makes the discretization formally first order. The immersed boundary method has three
numerical parameters affecting the accuracy – the Eulerian mesh width, h, the average Lagrangian mesh width,
Ds, and the timestep, Dt. The values of these numerical parameters that we use in our refinement study are
given in Table 1. However, since we always choose NB so that Ds is approximately h/2, we report the size
Table 2
Results of a refinement study showing first order convergence of method 3C

q E1(q) E2(q) E3(q) Rate

u 1.06e � 03 4.17e � 04 1.76e � 04 2.4485
X 5.25e � 04 2.96e � 04 1.58e � 04 1.8239

The convergence rate is defined as sqrt(E1/E3). Ei(q) measures the error in variable q at level i, defined by iqi � coarsen(qi+1)i2. Here, qi is
the value of variable q at time t = 0.2 s computed with the numerical parameters for level i from Table 1. The coarsen operator is simple
averaging of nearest values for Eulerian quantities, and injection from identical gridpoints for Lagrangian quantities.

Table 1
Parameters used in numerical refinement study

Level # h NB Dt

1 1/16 50 0.05
2 1/32 100 0.025
3 1/64 200 0.0125
4 1/128 400 0.00625
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of NB instead. For our convergence problem, we set c = 1 (cm4/s2; note that c includes a factor of 1/q where
q = 1.0 g/cm3 is the density), and m = 0.01 cm2/s.

The results of the refinement study are displayed in Table 2. Because an analytic solution is not available,
we estimate the convergence rate by comparing the differences of the numerical solutions between successive
grid levels. We use the ‘2 norms induced by the inner products in Eqs. (22) and (23).

5.1.2. Comparison to explicit method

For sufficiently small timesteps, the explicit and implicit methods produce nearly identical results, as
expected. For larger timesteps, the energy measure defined by Eq. (29) gives us a useful way to compare
the two methods. In Fig. 3, we show the energy of the system as a function of time for four different simula-
tions. All four use m = 0.01 and c = 1, but differ on timestep size and whether the explicit or implicit method is
used. When Dt = 6 · 10�3, both the explicit and the implicit method give nearly identical results until t = 0.2 at
which point the explicit method becomes unstable. When Dt = 6 · 10�2, the implicit method gives results
nearly identical to the implicit method with the smaller timestep, but the explicit method goes unstable
immediately.

5.1.3. Parameter testing on the inviscid problem

Since the parameter regime corresponding to large elastic tension and small viscosity is where the tradi-
tional immersed boundary method has been observed to suffer from stability problems unless a small timestep
is used, we sought to test that parameter regime with our implicit method. We set the viscosity to 0 (to provide
a more stringent test of the stability of our method) and explored with a wide range of timesteps and stiff-
nesses. We ran with each combination of Dt = 10�2, 1, 102, 105, 1010, and c = 1, 102, 105, 1010, representing
20 different tests. Comparing with the explicit method, the explicit method went unstable during the simula-
tion for Dt = 6.0 · 10�3 when c = 1 and m is increased to 0.01; also, it went unstable for Dt = 4.5 · 10�8 when
m = 0.01, c = 1010. In fact, if we increased Dt further to 4.5 · 100 and 6.4 · 10�6 for these pairs of m and c,
respectively, we saw the energy increase by more than a factor of 104 and saw points on the boundary move
more than a few dozen times the length of the computational domain within the very first timestep with the
explicit method.

Note that inviscid simulations are a particularly good check for the method since, as can be seen from the
energy proof of Section 4.2, the energy defined by Eq. (29) should remain constant. We ran all our simulations
until time t P 0.5 s, and verified that for all 20 combinations of these parameters, the solution to the implicit
system remained stable throughout the simulation and that the energy of the system was indeed constant.
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Fig. 3. Energy of the system for four different simulations with m = 0.01. �: implicit method, Dt = 6 · 10�3; ,: implicit method,
Dt = 6 · 10�2; ·: explicit method, Dt = 6 · 10�3; –�–: explicit method, Dt = 6 · 10�2.
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Fig. 4. Energy of the system during the course of an inviscid simulation with the implicit method, showing perfect energy conservation.
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Fig. 4 shows the energy of the system for the set of parameters c = 102, Dt = 10�2. Computing with large time-
steps (e.g. Dt = 1010) may not yield particularly accurate results (because errors of O(Dt) obviously need not be
small), but it does illustrate the stability of the method – the boundary configuration was still elliptical at the
end of the simulation, points on the immersed boundary moved much less than the length of the computa-
tional domain, and there was no change in energy during the simulation.

5.1.4. Comparison to method 1A

The only reason for the stability proof of method 1A given in Section 4.3 was to assist the investigation of
why the Mayo and Peskin scheme failed to be unconditionally stable. However, implementing method 1A with
lagged spreading and interpolation operators requires only a minor change to the code and provides an addi-
tional test of the analytical results. We present three simulations, all with Dt = 10�2 and c = 1. The three sim-
ulations were method 3C with no viscosity, method 1A with no viscosity, and method 3C with m = 0.01. The
results are plotted in Fig. 5. Since method 1A is run with no viscosity, the solution to the continuous equations
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Fig. 5. Energy of the system with c = 1. —: method 1A with no viscosity; ––: method 3C with no viscosity, Æ– Æ: method 3C with m = 0.01.
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will have constant energy, but we showed in Section 4.3 that method 1A will have energy dissipation other
than from viscosity. From the figure we see indeed that this is the case, and that method 1A loses slightly more
energy than method 3C loses with a viscosity of 0.01.

5.2. Unconditional stability with an approximate projection

Calculations with a pressure-free approximate projection version of method 3C were run for the same val-
ues of Dt, c as in Section 5.1.3 and with m = 0 or 0.01. In all cases, the solution to the implicit system remained
stable throughout the simulation and the energy of the system, as defined by Eq. (29), did not increase. As with
the exact-projection calculation, the boundary configuration was elliptical at the end of each simulation. The
simulations with m = 0 are particularly interesting. For such simulations, the energy remains constant using an
exact projection, so this allowed us to more clearly determine the effect of the approximate projection. In all
cases, we found that the energy was non-increasing, meaning that the approximate projection appears to have
a neutral or stabilizing effect.

The approximate projection, ~P, has the interesting property that when iterated it will converge to an exact
projection, P; i.e. ~Pm ! P as m!1 [2]. This means that performing additional (approximate) projections per
fluid solve must eventually reduce the additional energy dissipation due to using approximate projections.
Fig. 6 shows this effect. This simulation was run with c = 1, m = 0, Dt = 10�2, and run until t = 0.1. Since
approximate projections do not exactly enforce the incompressibility constraint, it is also interesting to note
how approximate projections affect the volume conservation of the enclosed membrane. The IB method is well
known to exhibit volume loss for closed pressurized membranes [5,14,21,24], even when using an exact pro-
jection. Fig. 6 demonstrates how approximate projections also have the effect of increasing the amount of vol-
ume loss. For comparison, an exact projection has a volume loss of 3.12% (almost exactly where the dashed
line ends up in Fig. 6) and an energy loss of 5.55 · 10�14%. (The energy loss is not exactly 0 with the exact
projection because the implicit equations are only solved to a certain tolerance and because of the presence
of round-off errors.)

5.3. Stability for the full Navier–Stokes equations

We solved this problem again including the advection terms from the Navier–Stokes equations. We used a
first order upwind discretization of the advection terms in convective form
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Fig. 6. Energy (—) and volume (- -) loss by time t = 0.1 in an inviscid simulation as a function of the number of approximate projections
performed. Computations performed with c = 1 and Dt = 10�2.
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HðxÞ ¼
1; x > 0;

0; otherwise;



ð59Þ

ðu � ruÞnij ¼
Hðun

ijÞun
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We ran the simulation with m = 0 and at the CFL constraint Dt ¼ h
kuk1

for each of c = 1, 102, 105, 1010. Since

the fluid is initially at rest, we (somewhat arbitrarily) set Dt for the first timestep to be about one-fifth the
length of time needed for one oscillation. In each case, we ran until two full oscillations of the boundary
had occurred and verified that the energy of the system was decreasing in all cases. Fig. 7 plots the energy
as a function of time for the simulation where c = 1010.

5.4. Volume loss and stability

Even though the velocity field on the Eulerian grid will be discretely divergence-free when an exact projec-
tion is used, this does not guarantee that the interpolated velocity field (in which the immersed boundary
moves) is continuously divergence-free. Our implicit method does not fix this problem, revealing an interesting
and unexpected view of the relationship of the incompressibility constraint and stability. When running our
implicit method with a timestep sufficiently small that the explicit scheme is stable, we observed that the expli-
cit method and our implicit method exhibit nearly identical volume loss. Since the total volume loss by the end
of the simulation is an increasing function of the size of the timestep, and because the implicit method is gen-
erally used with a larger timestep than the explicit method, use of the implicit method will generally result in a
greater volume loss. Stockie and Wetton [26] observed similar volume loss for the Mayo and Peskin scheme
and concluded that it was this accumulation of error in the incompressibility condition that caused the stabil-
ity limitation on the timestep for that scheme. While a reasonable hypothesis, our implicit scheme shows sim-
ilarly increasing volume loss despite being unconditionally stable. In fact, partly based on correlation of
energy and volume loss observed in Section 5.2, we conjecture the opposite – that the loss of volume in the
IB method actually aids stability. A loss of volume results in a smaller elastic force due to the shortened dis-
tance between points, making the resulting grid forces smaller and thus making the system less likely to over-
correct for any previous errors.
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Fig. 7. Energy of the system with advection terms when c = 1010.
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6. Discussion

In [21], Peskin provides an overview of the current state of the IB method. In his outline of active research
directions and outstanding problems, the first issue addressed is the ‘‘severe restriction on the time-step dura-
tion’’ to which existing implementations are subject. Pointers to research that has been ongoing in this area for
over a decade are provided, and Peskin states that ‘‘it would be a huge improvement if this [restriction] could
be overcome’’. The analysis of this paper demonstrates that unconditionally stable IB methods are possible
and identifies specific features of the method required to achieve unconditional stability. This paper therefore
solves the stability problem posed by Peskin – with some caveats. For example, our results do not apply to all
extensions of the IB method, and other outstanding problems of the IB method still exist. The results of this
paper raise several interesting questions as well. Can such a method be made efficient? Can it be made more
accurate? Can the volume loss be mitigated or removed? Does the stability carry over to common extensions
and modifications of the standard IB method? Is there anything that can be done to improve existing explicit
codes without switching to an implicit solver? We discuss these questions in this section with potential solu-
tions suggested by results from this paper.

6.1. Efficiency

Perhaps the most prominent question is whether the method can be made efficient. Indeed, this question
seems to be outstanding in the community for the various implicit methods that have been proposed and used,
as evidenced by the fact that Stockie and Wetton [26] is the only paper we are aware of that has concretely
compared computational costs of explicit and implicit methods. In some sense, we have returned to where
Tu and Peskin [27] left off. There are similarities between Tu and Peskin’s paper and ours that many will have
noticed: they presented a method that appeared to be unconditionally stable, they solved their implicit system
of equations using Newton’s method and which was therefore far less efficient than an explicit method – and
they then presented a challenge to come up with a more efficient version. There are some important differences:
our method applies to more than just steady Stokes flow, we have proven that some methods actually are
unconditionally stable, we have discovered why the paper written to meet the challenge from Tu and Peskin
(namely Mayo and Peskin [16]) failed to remain stable, and we have demonstrated that aspects of the problem
that the community suspected to be causing the instability of previous implicit methods (namely, volume loss
and lagging of spreading and interpolation operators) were not the actual source of instability.

The ability to time lag spreading and interpolation operators and still have a stable method appears par-
ticularly useful in coming up with an efficient scheme. Not lagging those operators results in a set of highly
nonlinear equations for the implicit system, which is difficult to solve unless the timestep is small. Lagging
the spreading and interpolation operators results in a linear system of equations which opens up a wealth
of possibilities and makes a large set of existing linear solvers applicable to the problem.

The authors very recently became aware that Mori and Peskin have created a fully implicit method (includ-
ing the advection terms from the Navier–Stokes equations and a new way of handling additional boundary
mass) and a corresponding implicit system solver that is competitive with the explicit method, particularly
when the elastic tension is high. Mori and Peskin have also proven their particular method to be uncondition-
ally stable (Y. Mori, personal communication, July 18, 2006).

6.2. Accuracy

By lagging the spreading and interpolation operators, we have a method that is only first order accurate in
time. Since the immersed boundary method is only first order accurate for sharp interface problems, and it is
to such problems that the method is typically applied, we did not address this issue in this paper. However, the
immersed boundary method is beginning to be applied to problems with a thick interface [10,19] where the IB
method can achieve higher order accuracy. Also, the immersed interface method can be used in problems with
a sharp interface and get second order accuracy.

One possibility for obtaining a second order accurate scheme comes from realizing that our proof for sta-
bility did not rely at all on where S and S* were evaluated – so long as they were evaluated at the same loca-
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tion. This means that we can employ a two step method, where Xnþ1
2 is computed in the first step to at least first

order accuracy, and then the value of Xnþ1
2 is used as the location of the spreading and interpolation operators

in a second step to solve for Xn+1 and un+1. See Lai and Peskin [12] for an example of a very similar explicit
two step approach used to obtain formal second order accuracy.

6.3. Volume conservation

Another important issue in some applications concerns the volume loss that occurs with the immersed
boundary method. As discussed in Section (5.4), the implicit method will generally exhibit greater volume loss
than the explicit method due to the use of a larger timestep. One solution is to use the immersed interface
method [14,15] or a hybrid IB/II method [13] – though the stability results of this paper might not hold with
the different spatial discretizations used for the ‘‘spreading’’ and interpolation operators in such methods.
Another would be to use the modified stencils of Peskin and Printz [24], which satisfy the necessary conditions
in the proofs in this paper. Peskin and Printz reported substantially improved volume conservation, but at the
cost of wider stencils and more computationally expensive interpolation and spreading.

6.4. Extensions

There are many extensions to the IB method as well as variations on how the fluid equations are solved.
One extension that has been mentioned many times already is the immersed interface method and hybrid
immersed boundary/immersed interface methods. These methods modify the finite difference stencils of the
fluid solver near the immersed boundary instead of utilizing discrete delta functions to spread the force from
the Lagrangian to the Eulerian grid. They also typically use a different interpolation scheme, such as bilinear
interpolation. For these methods, the necessary adjoint property of the ‘‘spreading’’ and interpolation oper-
ators does not hold. Whether the stability results of this paper can be extended for such schemes, or whether
those schemes can be modified to be made unconditionally stable, is unknown. Similarly, it is unknown how
the stability is affected by more complicated discretizations such as the double projection method proposed by
Almgren et al. [2], an L0-stable discretization of the viscous terms from Twizell et al. [28], or some methods of
incorporating boundary mass in the IB method [11,30].

6.5. Explicit method stability

Finally, we make one point that might be of use to those with existing explicit codes with nonzero vis-
cosity. Computing the energy of the system can provide a way to monitor the stability of the method and
possibly even predict the onset of instability and prevent it. We found that when the explicit method went
unstable, the energy at first only slightly increased. This slight increase was followed by a dramatic acceler-
ation of energy increase in ensuing timesteps with the simulation becoming unstable within only a few time-
steps. This suggests that such codes could be modified to monitor the energy, and when the energy at the
end of any timestep is greater than the energy at the beginning of the timestep, repeat the timestep with a
smaller value of Dt.

7. Conclusions

We have shown that both a backward Euler and a Crank–Nicolson-like discretization of the nonlinear
immersed boundary terms of the IB equations can yield unconditionally stable methods in conjunction with
unsteady Stokes flow. While this might seem unsurprising, there are some subtleties about how the discretiza-
tion is chosen in order to achieve unconditional stability. In particular, we showed that a backward Euler dis-
cretization of the immersed boundary terms is unconditionally stable when the force is included in the
momentum equation, while previous authors who included the force in the projection noted an instability.
We also discussed the subtleties in how different Crank–Nicholson discretizations of the immersed boundary
terms can be obtained, and proved that one particular way of selecting a backward Euler and Crank–Nich-
olson-like discretization of the full system resulted in unconditionally stable methods.
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We also proved (contrary to ‘‘common knowledge’’) that the time discretization need not be fully implicit in
order to maintain unconditional stability. That is, the evaluation of force spreading and interpolation oper-
ators can be explicit. Because the scheme need not be fully implicit, we have shown that there exists a (con-
sistent) linear numerical scheme approximating the (nonlinear) IB equations which is unconditionally stable.

Another unexpected result was that the error in the incompressibility constraint exhibited by existing imple-
mentations apparently does not adversely affect the stability of the computations. We proved that for imple-
mentations employing an exact projection and satisfying the necessary conditions from Section 4.2, the
method will be unconditionally stable – despite the fact that such methods suffer volume change due to the
interpolated velocity field on the Lagrangian grid not being divergence-free. We further demonstrated compu-
tationally that a common method (namely, approximate projections) which will result in the divergence-free
constraint being satisfied only approximately on both the Eulerian and Lagrangian grids still appears to be
unconditionally stable.

Finally, we demonstrated computationally that the advection terms from the Navier–Stokes equations
present no additional difficulty beyond the stability (CFL) constraint of advection alone.
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