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Abstract—The purpose of this paper is to present a ray-tracing isosurface rendering algorithm for spectral/hp (high-order finite)

element methods in which the visualization error is both quantified and minimized. Determination of the ray-isosurface intersection is

accomplished by classic polynomial root-finding applied to a polynomial approximation obtained by projecting the finite element

solution over element-partitioned segments along the ray. Combining the smoothness properties of spectral/hp elements with classic

orthogonal polynomial approximation theory, we devise an adaptive scheme which allows the polynomial approximation along a ray-

segment to be arbitrarily close to the true solution. The resulting images converge toward a pixel-exact image at a rate far faster than

sampling the spectral/hp element solution and applying classic low-order visualization techniques such as marching cubes.

Index Terms—Spectral/hp elements, high-order finite elements, ray-tracing, isosurface rendering, fluid flow visualization, error budget.
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1 INTRODUCTION

THE use of simulation science [1] as a means of scientific
inquiry is increasing at a tremendous rate. The process

of mathematically modeling physical phenomena, experi-
mentally estimating important key modeling parameters,
numerically approximating the solution of the mathema-
tical model, and computationally solving the resulting
algorithm has inundated the scientific and engineering
worlds, allowing for rapid advances in our modern under-
standing and utilization of the world around us.

Quantification and, ideally, elimination of error is a
critical component of the scientific process; it allows
scientists to judiciously evaluate which component of the
simulation science process (e.g., modeling, numerical
approximation, parameter estimation) requires refinement
in light of comparison with the real phenomenon of interest.
Over the last 40 years, tremendous effort has been exerted
in the pursuit of numerical methods which are both flexible
and accurate, hence providing sufficient fidelity to be
employed in the numerical solution of a large number of
models and sufficient quantification of accuracy to allow
researchers to focus their attention on model refinement
and uncertainty quantification. High-order finite element
methods (a variant of which is the spectral/hp element
methods) using either the continuous Galerkin or discon-
tinuous Galerkin formulation have reached a level of
sophistication such that they are now commonly applied
to a diverse set of real-life engineering problems in
computational solid mechanics, fluid mechanics, acoustics,
and electromagnetics (e.g., [2], [3], [4], [5]).

Unfortunately, there has been little emphasis onproviding
visualization algorithms and the corresponding software
solutions tailored to high-order methods; in particular,
almost no research has been done to develop visualization

methods based on the a priori knowledge that the data was
produced by a high-order finite element simulation (notable
exceptions are Coppola et al. [6] with respect to particle
tracking, Wiley et al. [7], [8], [9] with respect to ray-casting of
curved-quadratic elements, and Brasher and Haimes [10]
with respect to cut-planes). Current visualization methods
are typically basedon lower-order representations of thedata
(lower in the sense of what is customarily used in high-order
numerical simulations)—for instance, using linear interpola-
tion for determining the values of data in areas not at grid
locations. Accurate low-order approximations of high-order
data require far more degrees of freedom than the original
data set and may introduce data artifacts due to mismatches
in the approximation properties of the low-order representa-
tion and the original high-order discretization.

In this paper, we seek to develop a ray-tracing isosurface
rendering algorithm which exploits the properties of
spectral/hp element data [11], and for which the visualiza-
tion error is both quantified and minimized. This is
accomplished by reducing the determination of the ray-
isosurface intersection of spectral/hp element data to classic
polynomial root-finding applied to a polynomial approx-
imation obtained by projecting the finite element solution
over element-partitioned segments along the ray. Combin-
ing the smoothness properties of spectral/hp finite elements
with classic orthogonal polynomial approximation theory,
we devise an adaptive scheme which allows the polynomial
approximation along a ray-segment to be arbitrary close to
the true solution. The methodology presented herein has
broader application than merely spectral/hp elements; this
methodology can be adapted to any volumetric function
which meets the smoothness properties of the spectral/hp
element discretizations exploited in this work.

1.1 Objectives

The purpose of this paper is to present a spectral/hp
element ray-tracing methodology for isosurface rendering
which allows for quantification and minimization of
visualization error. The target visualizations are those
which are pixel-exact [12]—that is, images which contain
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minimized visualization approximation errors and, hence,
provide images useful for understanding and minimizing
errors in the overall simulation science process.

After presenting a ray-tracing methodology with its
theoretical underpinnings, we will present an empirical
study of the error introduced by approximations made
during the visualization process. The resulting images
converge toward a pixel-exact image at a rate far faster than
sampling the high-order finite element solution and
applying classic low-order visualization techniques such
as marching cubes [13].

Using four spectral/hp element data sets (two simple
examples and two fluid flow simulations examples as
representatives of “real-world” computations), we will
demonstrate how tolerance parameters within the metho-
dology allow the user to move toward a pixel-exact image in
a tractable manner. In addition, to help the reader to
appreciate the merit of exploiting the mathematical struc-
ture of spectral/hp elements, we provide comparisons of
images generated with our methodology to images obtained
by visualization techniques designed for low-order data.

1.2 Outline

The paper is organized as follows: In Section 2, we provide
a brief summary of relevant previous work. In Section 3, we
provide an overview of spectral/hp (high-order finite)
elements with focus on those items of immediate relevance
to this work. In Section 4, we present our ray-tracing
isosurface extraction methodology with emphasis on the
mathematical fundamentals. In Section 5, we present four
numerical examples visualized using our methodology. In
Section 6, we present an empirical study of the visualization
“error budget” (places at which error can be introduced into
the visualization process) associated with our methodology.
We conclude in Section 7 with a summary of our findings,
conclusions, and future work.

2 PREVIOUS WORK

Common isosurface visualization techniques, such as
Marching Cubes [13], WISE [14], [15], and the optimal
isosurface extraction algorithm in [16] approximate the
isosurface by generating a piecewise linear polygonal mesh.
While the details vary by algorithm, the goal of each is to
find a planar polygon through each cell which closely
approximates the actual isosurface. The resulting mesh will
provide a reasonably accurate representation of the surface
contingent upon the surface being relatively smooth inside
each element. If the volume contains areas of high
variability, then it is likely that the mesh generated in those
areas will be inaccurate.

One complication with the polygonal mesh approach is
how the number of polygons necessary to represent the
surface increases as the data set is subsampled and as its size
increases. It is not uncommon for isosurfaces to contain
hundreds of millions of polygons. While it is possible to
display such volumes at interactive frame rates (as shown by
Cigoni et al. [17] andYoonet al. [18]), this is onlypossible once
the mesh is generated. As will be discussed in Section 6, the
amount of timeneeded togenerate thismeshbecomesamajor
bottleneck in the system, making ray-tracing an attractive
alternative. Parker et al. [19] used this approach to generate
interactive isosurfaces of large data sets.

While the work in [19] uses trilinear interpolation in each
cell, other work has been done using the higher order

information present in the element. For instance, ray-tracing
has been shown to be effective in rendering spline surfaces
[20]. In [21], isosurfaces are approximated with second-
order splines. Williams et al. [22] and Wiley et al. [7], [8], [9]
find accurate isosurfaces for second-order tetrahedra.

3 SPECTRAL/hp ELEMENT EXPANSIONS

The purpose of this section is to provide a high-level
overview of the key features of spectral/hp elements (the
a priori knowledge mentioned in the introduction) used in
this work. We refer the interested reader to the following
reference works for a more in depth discussion of finite
elements and, in particular, spectral/hp (high-order finite)
elements [23], [24], [11], [25]. We will be drawing upon
these texts for the discussion now presented. For the
purposes of this paper, the terms spectral/hp elements
and high-order finite elements will be used interchange-
ably. To solidify our discussion, we rely upon the variant of
spectral/hp elements discussed in [11] for all spectral/hp
element theoretical and implementation details.

One important property of finite element solution
methods is the declaration of the space of admissible
solutions. Quite often, the first step in the finite element
methodology is to define, for the domain � over which the
partial differential equation(s) of interest are being solved, a
tessellation T ð�Þ of �. Four basic element types often used
in the construction of the tessellation T ð�Þ are the
hexahedron, tetrahedron, prism, and pyramid, as presented
in Fig. 1.

The result of a finite element simulation is a function
uð~xxÞ : T ð�Þ ! IR about which certain properties are known.
For instance, in the case of a continuous Galerkin spectral/
hp element simulation, we know that the solution is, in
general, a C0 function with C1 discontinuities only occur-
ring on the element boundaries. In the interior of each
element, the solution is Cp with p � 1 (denoting higher
levels of smoothness depending on the order of the
approximating polynomial on each element and the
reference to world space mappings employed) [11] and
references therein). The premise of this work is that since
finite elements provide functions with explicit levels of
smoothness, this structure should be both respected and
exploited in the visualization.

Although spectral/hp element solution techniques gen-
erally deal with “global degrees of freedom” (degrees of
freedom associated with functions defined over the entire
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Fig. 1. Schematic of the four basic element types in three dimensions:

hexahedron, prism, tetrahedron, and pyramid.



tessellation), most solution construction is done on an
element-by-element basis (with global stiffness summation,
for instance, being used to assemble the global system).
Since our interest is in postprocessing high-order finite
element results, we will focus only on the procedure for
reconstructing the solution. Given a collection of global
degrees of freedom, one can assess what are the local (to
each individual element within the tessellation) degrees of
freedom which contribute to the solution. Hence, to answer
the query “What is the value of our finite element solution
uð~xxÞ for ~xx 2 T ð�Þ?”, we first determine the element �e �
T ð�Þ such that ~xx 2 �e, and we then use element evaluation
operations to reconstruct the solution on the element. Most
finite element methods define local element operations with
respect to a reference element, and use a mapping function
to relate “world space” with “reference space.” For instance,
the reference element for a hexahedron in world space may
be the cube ½�1; 1�3 in reference space coordinates. A
schematic illustrating this is given in Fig. 2.

Let us define amapping function x ¼ �ðXÞ frompositions
in our reference element (denotedwithX ¼ ðX1; X2; X3ÞT ) to
positions in world space (denoted with x ¼ ðx1; x2; x3ÞT ).
Spectral/hp element methods seek to express solutions as a
high-order polynomial function on the reference element
F ðXÞ 2 PN1;N2;N3 , whereN1; N2; N3 denote (possibly) differ-
ent polynomial orders in the three principle directions. The
polynomial order per element may vary within the tessella-
tion, hence allowing for adaptive resolution (hence, the hp in
spectral/hp element methods—different element types and
sizes denoted as “h” resolution and different polynomial
orders per element denoted as “p” resolution). Given the
solution degrees of freedom on an element, either in nodal
form [25] or in modal form [11], we can find the value of the
finite element solution at any pointwithin the element~xx 2 �e

by evaluating fð~xxÞ ¼ F ð��1ð~xxÞÞ,where the functionF ð~XXÞ is a
polynomial over the reference domain determined by the
local degrees of freedomof the solution, and the function fð~xxÞ
denotes the mapped smooth function over the world space
domain. A few observations need to be mentioned at this
stage, as they will become important later in the paper:

. “Curved” elements (those elements with nonplanar
faces) can be accommodated with carefully con-
structed mapping functions. Quite often, isopara-
metric or superparametric representations of the
curved faces are used so that the geometric approx-
imationerror is on the sameorder as the solution error.

. Note that the inverse of the mapping function is
needed to evaluate the finite element solution in
world space coordinates. In general, the inverse
mapping function cannot be constructed analytically
and, hence, numerical inversion must be used. The
mapping from a reference tetrahedron to an all-
planar-faced tetrahedron in world space is one of the
few instances in which an analytic inverse is
possible. In an effort for a general scheme, we will
assume that analytic inversion is not possible. We
assume, however, that the element construction and
mappings used this work form legitimate (admis-
sible) spectral/hp element discretizations as de-
scribed in [11]. Tolerances for the numerical
inversion of the mapping function will be discussed
further in Section 4.1 as errors may be introduced.

. Due to the nature of the mapping function x ¼ �ðXÞ
used in spectral/hp element methods (for instance,
in the case of a hexahedron, a trilinear mapping from
reference space to world space is used [11]), a line
segment in world space does not always correspond
to a line segment in the reference space. On the
contrary, it is often the case that the mappings cause
line segments in world space to be curves in
reference space (as illustrated in the schematic given
in Fig. 2). Hence, one is often forced to decide
between working with a polynomial function in
reference space (and, hence, looking for zeros of a
function along a not-necessarily-parameterizable
curve) or a smooth function along a line segment
in world space. In this work, we choose the latter
approach.

. Although spectral/hp element methods as in [11]
seek polynomial solutions with respect to the reference
element, the solution with respect to world space
coordinates may not be polynomial (and, in general,
is not). Under the mappings used in spectral/hp
finite elements, we are guaranteed that the solution
is at least C0 continuous and is smooth on the
interior of each element. In this work, we assume
that all discretizations investigated respect smooth-
ness criteria on the interior of each element. This
smoothness of the function within each element will
be exploited in Section 4.2 when finding a projected
polynomial approximation along the ray.

4 RAY-TRACING HIGH-ORDER ELEMENTS

The ray-tracing process for finite element data can be
summarized by the following three steps:

Step 1: Cast the ray ~rr : ½0;1Þ ! IR3;~rrðtÞ ¼ ~ooþ t~vv (where
~oo denotes the ray origin and ~vv denotes the ray vector) into
the volume and find the closest element (i.e., the ray-
element intersection has the smallest value of the ray
parameter t). Finding this element can be time consuming
since simulations typically have many elements. Many
strategies exist to accelerate this process, such as octrees
[26], uniform spatial subdivision [27], multilevel grids [19],
and hierarchical bounding volumes [28], to name a few. As
mentioned in the previous section, high-order finite ele-
ments allow for the possibility of curved faces and, hence,
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Fig. 2. Schematic of the element mapping. X denotes reference space
coordinates, x denotes world space coordinates, and x ¼ �ðXÞ denotes
the mapping between the two systems. Note that a line segment in world
space may represent a curve in reference space (as explained in the
text).



special considerations must be taken to accurately compute
the intersection point on the curved boundaries. This was
discussed in [7], [8], [9] for quadratic-curved elements. For
the purposes of this paper, we assume that machine
precision accurate element intersection points can be
obtained.

Step 2: Determine the ray-isosurface intersections inside
the element. This is accomplished by classic polynomial
root-finding applied to a polynomial approximation ob-
tained by projecting the finite element solution over
element-partitioned segments along the ray. This is dis-
cussed in Section 4.2. We are only interested in the closest
isosurface intersection if multiple intersections exist. If there
are no intersections, then repeat Step 1 to find the next
closest element. The remainder of this section gives the
details necessary to find these intersections accurately.

Step 3: Compute the normal vector at the intersection
point. The normal is equal to the normalized gradient of the
functions presented in Section 3. It is important to note that
the computation of the gradient is accomplished upon the
original data, not upon the projected polynomial. Given that
gradient computations are part of the normal spectral/hp
element solution procedure, we compute the gradient at the
intersection point as would be done as part of the original
simulation. Hence, any approximation error in the computa-
tion of the normal is of the same order as the gradient
computations used throughout the simulation. Based upon
the normal, we then calculate the color for the pixel based
on the material properties of the surface and the lights in
the scene.

In the discussion of pixel-exactness, the correctness of the
normal may have a notable perceivable influence due to its
use in establishing color/shading. Given that we use the
“exact” normal computed at an intersection point, the
visual error introduced due to the normal computation is
tacitly dependent upon the accuracy of the intersection
point computation and upon the curvature of the under-
lying function around the intersection point (as it will
determine the rate of change of the normal)—as with all
isosurface approximation methods. By minimizing the error
in the intersection point computation and using the “exact”
normal, we expect that variations in the image due to the
normal computations will be minimized. This is certainly an
area of future study for this methodology—to explicitly
attempt to understand the sensitivity of this methodology to
small inaccuracies. In addition to further theoretical con-
siderations, common ray-tracing antialiasing techniques are
available and could be exploited [29].

In this work, we focus our attention on quantifying and
minimizing thevisualizationerror associatedwithStep2.The
three itemswithin the visualization error budget uponwhich
we will focus are the function evaluation error (mainly
consisting of mapping inversion error), the function projec-
tion error, and the root finding error.We note that perceptual
error could certainly be added to our visualization error
budget, but is a topic beyond the scope of this work.

4.1 Function Evaluation

Recall from Section 3 that function evaluation at a point ~xx in
world space consists of three parts: 1) finding the element
�e for which ~xx 2 �e, 2) finding the reference space

coordinate ~XX which corresponds to ~xx through an inversion
of the mapping function x ¼ �ðXÞ, and 3) evaluation of the
function F ð~XXÞ representing the local solution.

Of the three steps outlined above, the one most
susceptible to numerical errors is 2)—the numerical inver-
sion of the mapping. The most frequently used approach is
to define the Jacobian of the transformation

J ¼ @xðx1; x2; x3Þ
@XðX1; X2; X3Þ

;

which often can be done analytically and to use the
Newton-Raphson method (which uses the inverse of the
Jacobian) with convergence tolerance �M (error tolerance
with respect to the mapping). Hence, the first error in our
visualization error budget is the numerical mapping
inversion error �M .

4.2 Function Projection

As mentioned in Section 3, although the solution on the
reference element is a polynomial in the reference coordi-
nates, it is only guaranteed to be a smooth function with
respect toworld coordinates. This is a key feature of spectral/
hp element discretizationswhichwewill seek to exploit—the
smoothness of the function interior to an element.

Our goal of rendering an isovalue along a ray intersect-
ing an element equates to finding the zeros of a smooth
function. Since polynomial root finding is far easier, in
general, than finding the zeros of a general function, we
seek a means of representing the function along the ray
within an element in world space as a polynomial with
quantifiable and adaptability reducible error. This can be
accomplished by finding the L2 projection of the function
onto a Legendre series.

In what follows, we will review a few major concepts
and results from classical orthogonal polynomial theory
[30], [31], [32]. Let us focus our attention on polynomial
expansions of the form

uðxÞ ¼
X1
n¼0

ûunPnðxÞ; x 2 ½�1; 1�: ð1Þ

Here, PnðxÞ represent the nth order Legendre polynomial,
which is the polynomial solution to the Sturm-Liouville
problem

LPnðxÞ ¼
d

dx
ð1� x2Þ d

dx
PnðxÞ

� �
¼ ��nPnðxÞ; ð2Þ

where

�n ¼ nðnþ 1Þ:

The Legendre polynomials are normalized such that

Pnð�1Þ ¼ ð�1Þn:

Let us introduce the inner-product and associated norm

ðu; vÞ ¼
Z 1

�1

uðxÞvðxÞdx; kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðu; uÞ

p
:

We use this to define the usual spaces

L2½�1; 1� ¼ u j kuk < 1f g;
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and the associated higher Sobolev norms

Hp½�1; 1� ¼ u 2 L2jkuk2Hp½�1;1� ¼
Xp
i¼0

kuðiÞk2 < 1
( )

:

Note that higher Sobolev norms represent higher levels
of smoothness of the solution.

As the Legendre polynomials satisfy (2) [31], we know
that

ðPn; PmÞ ¼ �nm�n; �n ¼ 2

2nþ 1
; ð3Þ

where �nm denotes the Kronecker delta. Thus, for all
uðxÞ 2 L2, we recover the expansion coefficients, ûun, in (1)
of the form

ûun ¼ 1

�n
u; Pnð Þ: ð4Þ

Hence, just like Fourier series, we can exploit the
orthogonality of the Legendre polynomials to allow us to
successively compute more terms within our Legendre
expansion without having to recompute all lower-order
terms. This is one of the major advantages of using the
Legendre polynomial basis over other polynomial bases.

Rather than evaluating the above integral analytically,
one can use Gauss quadrature rules such as the Gauss-
Lobatto quadrature

~uun ¼ 1

~��n

XN
i¼0

uðxiÞPnðxiÞwi; ð5Þ

where ðxi; wiÞ represent the Legendre-Gauss-Lobatto quad-
rature nodes and weights, respectively (see [31]). The
quadrature is exact if uðxÞ is a polynomial of degree 2N �
1 at most. Note that Legendre-Gauss or Legendre-Gauss-
Radau quadrature would also be equally valid; the only
change would be the number of quadrature points needed
to guarantee the exactness of the computation for a given
polynomial order.

For the general case, ûun 6¼ ~uun; this difference in the
coefficients is recognized as the “aliasing error.” This
aliasing error is due to the inexactness of the quadrature
rule when integrating a polynomial times an arbitrary
smooth function. In requiring that the quadrature rule be
exact for the inner product of the polynomials of interest,
we guarantee (under the assumption of smooth functions)
that the aliasing error is on the same order as, if not less
than, the approximation error. Thus, the error can be
viewed as folding into the error estimates presented shortly
(as discussed in [31]). In the present context, we shall not
make an effort to distinguish between the two sets of
expansion coefficients.

For later use, let us define the discrete inner product and
associated L2½�1; 1�-equivalent discrete norm as

u; v½ �Q¼
XQ
i¼0

uðxiÞvðxiÞwi; kuk2Q ¼ u; u½ �Q; ð6Þ

where ðxi; wiÞ represent the Legendre-Gauss-Lobatto quad-
rature nodes and weights. As discussed in [31], the number

of nodes/weights Q can be chosen such that integration of
polynomials is done exactly to machine precision.

In computational methods, one is concerned with the
truncated expansion

uNðxÞ ¼
XN
n¼0

ûunPnðxÞ; x 2 ½�1; 1� ð7Þ

andhow it behaves asN increases. Inotherwords, onewishes
to understand how u� uN decays when increasing N .

Insight into this can be gained by recalling Bessel’s
inequality,

kuk2 ¼
X1
n¼0

�n ûunð Þ2;

implying that

ku� uNk2 ¼
X1

n¼Nþ1

�n ûunð Þ2;

i.e., the accuracy depends solely on the decay of the
expansion coefficients, ûun, and the behavior of �n, given in
(3). Repeated integration by parts of (4) yields

ûun ¼ ð�1Þq 1

�q
n

1

�n
Lqu; Pnð Þ:

Recall (from [31], for instance) that L essentially is a second
order operator, i.e., if uðxÞ 2 H2q½�1; 1�, we can expect that
Lqu 2 L2½�1; 1�, which again implies that

1

�n
Lqu; Pnð Þ ’ Oð1Þ:

Combining these results yields

ku� uNk � CN�2qkukH2q ½�1;1�:

Likewise, we get the pointwise estimate [30]

ku� uNkL1½�1;1� � CN�2qþ1kukH2q ½�1;1�; ð8Þ

provided 2q > 1. Further discussion of these estimates can
be found in [31], [32]. The important point to note with
respect to this work is that, given a sufficiently smooth
function uðxÞ (at least C1—i.e., q ¼ 1) which we are
interested in projecting, the Legendre expansion is guaran-
teed to converge pointwise. No further continuity beyond
C1 is required to guarantee pointwise convergence. The rate
of convergence, however, is determined by the levels of
smoothness of the function. The smoother the function, the
faster the Legendre series converges (see [31], [32], and
references therein).

In this work, the solution we are attempting to fit is fð~xxÞ
along the ray (represented by the uðxÞ in the discussion
above), approximated by a polynomial pðtÞ (denoted by
uNðxÞ in the discussion above). Clearly, the smoothness of
the solution fð~xxÞ as indicated by the decay of the expansion
coefficients is the main source of accuracy in this metho-
dology. Since we know that the solution on an element is
smooth with respect to the world space coordinates [11], we
would expect that projection of the function onto Legendre
polynomials would yield highly accurate results. Note that
the smoothness requirement for pointwise convergence is
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the reason we only accomplish the projection within
elements, and not across elements (recall that, at element
interfaces, we merely have C0 continuity). The error
estimates above give us an indication of how rapidly the
approximating polynomial will converge to the true
function in both the L2 (integral) and L1 (pointwise) norms.

Given the discussion above, our procedure, as denoted in

Fig. 3, is the following:

. Specify the order M of the approximating poly-
nomial to be used along the ray (pðtÞ 2 PM ).

. Given entry and exit points ½ta; tb� along the ray (with
respect to the element of interest), determine the
necessary Legendre-Gauss-Lobatto points with re-
spect to world space (which is accomplished
through an affine transformation between ½�1; 1�
and ½ta; tb�). The number of quadrature points is a
function of the approximating polynomial order; the
number is chosen so that inner products of poly-
nomials of degree M are exact to machine zero. As
previously commented, by choosing the quadrature
points in this way, we are guaranteed that all
numerical integration errors are on the same order
as the projected polynomial and that the quadrature
order converges at a rate at least as fast as the
projection error (see [31]).

. Evaluate the high-order finite element function fð~xxÞ
at the Legendre-Gauss-Lobatto points along the ray.

. Use Gauss-Lobatto quadrature (as given in (6)) to
compute the projected polynomial pðtÞ of order M.

. Given the orthogonal nature of the Legendre basis
functions, adaptive error control can be accom-
plished. If the polynomial of order M does not
sufficiently represent the function fð~xxÞ along the ray,
additional terms in the expansion can be computed
without recomputing the initial terms (exploiting the
orthogonality property just as you are able to do so
with Fourier series expansions).

We can compute the (discrete) L2 error �P with respect to

the projected polynomial to determine if the order of the

projection is sufficient by using the quadrature rules
described within the projection process (here, we tacitly rely
upon the convergence properties of the quadrature as
discussed in [31] to justify ignoring the quadrature error
introduced in this process). This error can be viewed as
measuring the difference between a full expansion approx-
imation given by (1) and the truncated expansion of (7). If the
error is higher than a user-specified tolerance, more poly-
nomial terms can be added. Note that, althoughwe are using
the integral error measure, we are tacitly exploiting the
relationshipwith the pointwise error (as discussed in [31]). A
pointwise error estimator could be explicitly adopted (eval-
uating along the segment at a finite number of points) if
required. Hence, the second error in our visualization error
budget is the numerical projection error �P .

4.3 Root Finding

Given the projection to a polynomial described above, the
ray root finding problem can now be formulated mathe-
matically as the following problem: Find the smallest value
t 2 ½ta; tb� such that pðtÞ � C ¼ 0, where C is the isovalue of
interest.

There are several means of accomplishing root finding of
polynomials, most of which are iterative techniques. The
most common technique is a Newton-Raphson iteration
combined with polynomial deflation [1]. A modified
version of this methodology was successfully applied in
[33] for ray-tracing algebraic surfaces. We present an
alternative numerical means of finding the roots of a
polynomial. The availability of several different ways of
solving this problem allows the scientist to chose the one
that is most efficient and least susceptible to numerical
errors (or instabilities).

Since we want to guarantee that we have found the
smallest root in the interval ½ta; tb�, we desire to find all
possible roots from which we can then easily ascertain the
smallest one which lies within our interval of interest. Since
we desire an algorithm which extends to arbitrary order, we
utilize the mathematical idea of a companion matrix of a
given polynomial. The linear algebra concept of a compa-
nion matrix provides us with the following result: Given a
polynomial of degreeM, there exists a matrixA determined
by the coefficients aj (called the companion matrix of the
polynomial pðtÞ) such that the eigenvalues of A provide the
roots of the polynomial pðtÞ. Hence, instead of a root-
finding problem per se, we must solve an eigenvalue
problem. This concept naturally follows from the linear
algebra concept of the characteristic polynomial of a matrix
[34]; there is a rich history between root finding and
eigenvalue solutions which we seek to exploit.

To help provide guidance as to how the companion
matrix of a polynomial is formed, we will demonstrate with
respect to a sixth-order polynomial example. For example,
consider the following polynomial:

pðzÞ ¼ a6z
6 þ a5z

5 þ a4z
4 þ a3z

3 þ a2z
2 þ a1zþ a0;

where aj 2 IR; j ¼ 0 . . . 6, and where we assume that a6 6¼ 0.
The companion matrix for this polynomial is as follows

[35]:
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Fig. 3. Schematic showing how a projected polynomial is formed along

the ray. Once the entry and exit points within an element are known, the

scalar field within the element fð~xxÞ can be sampled along the ray using a

Legendre-Gauss-Lobatto point distribution. A “best-fit” polynomial (in L2)

can be formed, upon which root finding can be accomplished.



0 0 0 0 0 �a0=a6
1 0 0 0 0 �a1=a6
0 1 0 0 0 �a2=a6
0 0 1 0 0 �a3=a6
0 0 0 1 0 �a4=a6
0 0 0 0 1 �a5=a6

0
BBBBBB@

1
CCCCCCA
:

This matrix is of upper Hessenberg form and, hence, a
prime candidate for typical eigenvalue-finding techniques.
Easily generated companion matrices exist for the mono-
mial basis [35] and the Bernstein basis [36], [37]. The
companion matrix associated with the Bernstein basis has
been shown to be less prone to numerical precision errors.
Given our polynomial pðtÞ from Section 4.2 as a Legendre
sequence, we can do a basis rotation to either the monomial
or the Bernstein basis. Once this has been accomplished, a
companion matrix can be formed and the corresponding
eigenvalue problem solved. For all root finding results
presented in this paper, a balanced QR iterative eigenvalue
finding algorithm was used [1].

Given the iterative root finding procedure above (or any
other iterative root finding procedure), we can access how
accurately we have determined the roots by evaluating the
polynomial at the computed roots. Hence, the third error in
our visualization error budget is the numerical root finding
error �R.

5 OVERVIEW OF NUMERICAL EXAMPLES

To demonstrate the utility of the ray-tracing procedure
outlined in Section 4 and to provide data for the empirical
examination performed in Section 6, we will examine four
numerical examples. Two examples were generated
through Galerkin (finite element) projections of smooth
functions onto spectral/hp discretizations and two exam-
ples consist of computational solutions of the three-
dimensional incompressible Navier-Stokes equations. All
spectral/hp element results were obtained using the
simulation code N "�T �r [11], [38]. Error budget informa-
tion will be presented in Section 6.

5.1 Example 1: Projected Sinc Function

For our first example, we project (in the Galerkin finite
element sense) the following function onto a spectral/hp
element discretization:

uðx; y; zÞ ¼ 2:0ðy� ycÞ � sincð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðz� zcÞ2

q
Þ;

where ðxc; yc; zcÞT ¼ ð0:5; 0:3; 0:5ÞT and where the domain is
½0; 1�3. A mesh consisting of 125 nonevenly spaced hexahe-
dra were used, each element supporting eighth order
polynomials per direction. In Fig. 4a, we present an
isosurface rendering using our ray-tracing methodology
for an isovalue of C ¼ 0:0; the spectral/hp element grid is
also shown.

5.2 Example 2: Projected Quartic Function

For our second example, we project (in the Galerkin finite
element sense) the following function onto a spectral/hp
element discretization:

uðx; y; zÞ ¼ð0:5� xÞ2 ð0:5� xÞ2 �K
� �

þ

ð0:5� yÞ2 ð0:5� yÞ2 �K
� �

þ

ð0:5� zÞ2 ð0:5� zÞ2 �K
� �

;

where K ¼ 0:169 and where the domain is ½0; 1�3. A mesh
consisting of eight nonevenly spaced, nonrectangular
hexahedra were used, each element supporting eighth
order polynomials per direction. In Fig. 4b, we present an
isosurface rendering using our ray-tracing methodology for
an isovalue of C ¼ �0:00716511; the spectral/hp element
grid is also shown.

5.3 Example 3: Flow Past a Block/Plate
Configuration

For our third example, we present flow past a block with an
array of splitter plates placed downstream of the block. A
schematic of the flow scenario under consideration is
presented in Fig. 5a.
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Fig. 4. (a) Isosurface corresponding to an isovalue of C ¼ 0:0 for Example 1. (Image generation data: resolution = 512� 512, mapping tolerance =
10�12, projected polynomial order = 25). (b) Isosurface corresponding to an isovalue of C ¼ �0:00716511 for Example 2. (Image generation data:
resolution = 512� 512, mapping tolerance = 10�12, projected polynomial order = 25). The respective spectral/hp element grids are shown in each
image.



As the fluid impinges upon the block, it is diverted

around the structure, generating vorticity along the surface.

For the purposes of this paper, we will focus our attention

on a configuration consisting of a nondimensional plate

spacing of one unit (nondimensionalized with respect to the

block height). The three-dimensional computational mesh

consists of 3; 360 hexahedra and 7; 644 prisms with the

computational fluid mechanics problem being solved with

third-order polynomials per element. All computations

were accomplished at a Reynolds number of Re ¼ 200. In

Fig. 5b, we present a pressure isosurface rendering using

our ray-tracing methodology for an isovalue of C ¼ �0:1.

5.4 Example 4: Flow Past a Rotating Canister

For our fourth example, we examine the wake of a rotating

canister traveling through a fluid. A schematic of the flow

scenario under consideration is presented in Fig. 6a.
The three-dimensional computational mesh consists of

5040 hexahedra and 696 prisms, with the computational

fluid mechanics problem being solved with third-order

polynomials per element. All flow computations presented

herein were done at a Reynolds number of Re ¼ 1; 000 and

with an angular velocity of � ¼ 0:2. In Fig. 6b, we present a

pressure isosurface rendering using our ray-tracing meth-

odology for an isovalue of C ¼ 0:0.

6 EMPIRICAL STUDY OF THE VISUALIZATION

“ERROR BUDGET”

In Section 4, we isolated three major contributors to the
visualization error budget of spectral/hp element solutions:
the mapping inversion error (�M ), function projection error
(�P ), and root finding error (�R). To elucidate the influences
of these errors, we performed empirical tests on the four
data sets presented above; instructive results are presented.

In this section, we will discuss two of the errors
previously mentioned: the mapping inversion error and
the projection error. The root finding (with respect to
polynomials) procedure is a well-understood process; most
practitioners set the root finding tolerance to single or
double precision machine zero (depending on the applica-
tion) as a matter of habit. In this work, all polynomial root
finding will be accomplished to a precision of at least 10�14.

After presenting results for the mapping inversion error
and the function projection error, we will provide image
comparison results between ray-traced images with differ-
ent tolerances and between ray-traced and marching cube
isosurfaces.

6.1 Mapping Inversion Error

Recall from Section 4.1 that, to evaluate a point within a
spectral/hp element, we must accomplish a numerical
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Fig. 5. Schematic showing the (a) basic block/splitter plate configuration under consideration and (b) third-order ray-traced solution for isosurface of

pressure at C ¼ �0:1. (Image generation data: resolution = 512� 512, mapping tolerance = 10�11, projected polynomial order = 12).

Fig. 6. Schematic showing the (a) basic rotating canister configuration under consideration and (b) third-order ray-traced solution for isosurface of

pressure at C ¼ 0:0. (Image generation data: resolution = 512� 512, mapping tolerance = 10�8, projected polynomial order = 13).



inversion of the mapping between a reference element and
a world space element. To see the influence of the mapping
inversion tolerance, we performed the following test. For a
512� 512 pixel image (i.e., 262; 144 rays), we ray-traced the
data sets corresponding to Examples 1-4 (corresponding to
Figs. 4, 5, and 6, respectively) at the isovalues and viewing
parameters presented in the respective captions. For the
positions on the rendered isosurface, we evaluated the
original high-order finite element function to determine
how close to the true isovalue the rendered isosurface was.
In Fig. 7, we present the maximum absolute difference and
the root-mean-square (rms) difference for the canister
example (Example 4) as an indicative result.

Observe that, after a mapping tolerance of 10�8, the
maximum error and root-mean-square errors are both
below 10�10 and level off. As expected, the trends of the
maximum error and the root-mean-square error follow each
other; henceforth, we will only show root-mean-square
error. Since, in this example, we needed to specify a
projected polynomial order, the leveling off is consistent
with the fact that the mapping error is no longer the
dominant error past a certain tolerance. In the next section,
we will examine the influence of the function projection
error. Based upon these results, all images produced in this
paper used a mapping inversion tolerance of 10�8 or less.

6.2 Function Projection Error

Recall from Section 4.2 that the general zero-finding problem
was simplified to a polynomial root-finding problem by
finding a “best fit” projected polynomial. The projection
process introduces anerror �P into the errorbudget. To see the
influence of the projected polynomial order, we performed a
test similar to the one above, but varied the projected
polynomial order. For a 512� 512 pixel image, we ray-traced
the data sets corresponding to Examples 1-4 (corresponding
to Figs. 4, 5, and 6, respectively) at the isovalues and viewing
parameters presented in the respective captions. For the
positions on the rendered isosurface, we evaluated the
original high-order finite element function to determine
how close to the true isovalue the rendered isosurfacewas. In
Fig. 8, we present the root-mean-square (rms) difference for
the four examples.

Notice that, although the rate of convergence is similar in
trend, there are differences between the different examples.
This is consistent with the fact that the projection method
theory does not provide a specific polynomial order to use
for all cases, but provides us with guidelines for quantifying
and minimizing the error. Successive (adaptive) increase in
the polynomial order used allows for an root-mean-square
error below single precision in all cases.

In the ideal case, all four lines would converge to the
same error; the discrepancies observed are consistent with
the mapping tolerance used and with the (known) rounding
error susceptibilities of the root finding employed (see
Section 4.3 and references mentioned therein). However, the
important point to observe is that all errors converge below
single-precision machine-zero in a way consistent with the
theory.

One natural question which arises is: Is it worth it? By
this we mean, does the increase in the accuracy of the
projection (or of the mapping inversion) truly create a
different image? This is addressed in the next section.

6.3 Image Comparison

To understand to what level the error tolerances mentioned
abovematter to the actual image,wepresent twodiscussions.
In the first discussion, we compare the images produced
using two different projected polynomial orders. In the
second discussion, we present isosurfaces obtained via
marching cubes versus our isosurface rendered technique.

6.3.1 Tolerance Sensitivity

In Fig. 9, we present two different images generated by our
ray-tracing technique. On the left, we present the image
obtained by using second-order projected polynomials and,
on the right, we present the image generated using
13th order projected polynomials.

With second-order projected polynomials, the difference
between the images is rather large. Increasing the projected
polynomial order to eighth order projected polynomials
provides images that were pixel-identical up to machine
precision. This was verified by examining the three
individual color values assigned to each pixel and generat-
ing the absolute maximum difference and root-mean-square
error. Using high-order projected polynomials past eighth
order provides no perceivable difference in the images.
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Fig. 7. Mapping inversion error as a function of the mapping inversion
tolerance for the canister example. Circles denote the maximum
absolute error and squares denote the root-mean-square error. Note
that the abscissa is presented as the reciprocal of the mapping tolerance
for easy left-to-right reading of the graph.

Fig. 8. Root-mean-square error between approximated isosurface value

and true isovalue as a function of polynomial order for Example 1

(circles), Example 2 (squares), Example 3 (asterisks), and Example 4

(triangles).



6.3.2 Marching Cubes Comparison

Since many people use marching cube type solutions for

isosurface rendered, we now provide in Fig. 10 an example

showing thedifferencesbetweenamarching cubes isosurface

and a high-order ray-traced isosurface for the canister data.
The marching cubes image was generated by sampling

the finite element volume on a rectilinear grid of spacing h,

using a marching cubes algorithm to provide a tessellated

isosurface, and rendering the triangular isosurface using

ray-tracing (since the marching cubes result is a triangular

mesh, the ray-tracing can be done exactly as done in [19]).

For the marching cubes image presented, a grid spacing of

h ¼ 0:015 (yielding 4; 705; 274 voxels) was used. For the

high-order ray-traced image, mapping inversion error of

10�8 and 11th order projected polynomials were used.

These parameters were chosen such that the spectral/hp

element evaluation time and rendering time were nearly

identical to generate the two images. The root-mean-square

error for the marching cubes image is 0:0158; the root-mean-

square error for the ray-traced image is 3:5� 10�11. The

images look very similar, however, the root-mean-square

error difference between the images is significant. We

should also point out that the file size for the marching

cubes representation is over an order of magnitude larger
than the high-order representation.

As we did previously, we can examine the convergence
rate of the marching cubes result by evaluating the finite
element solution at the nodes of the triangular mesh
defining the isosurface so as to see how close the isovalue
we are. In Fig. 11, we present the root-mean-square error for
the marching cubes solution at different mesh spacings for
Examples 1 and 2 (the two examples where the spectral/hp
elements are eighth order).

The marching cubes result converges in a manner
bounded by second-order convergence as would be ex-
pected of linear interpolation of the high-order results. We
observe that the marching cubes image will converge given
sufficient resolution and, hence, acknowledge that the
strategy of highly sampling of the high-order finite element
solution and using marching cubes is a valid strategy.
However, as the polynomial order of the spectral/hp
element solutions increase, the visualization error to speed
trade-off will only become more pronounced. In Fig. 12, we
plot the root-mean-square error (error computed as the
difference between rendered and true isovalue over all
rays) versus the time to evaluate and render a marching
cubes and ray-traced solution for Example 1 (top) and
Example 2 (bottom) for the isovalue and viewing para-
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Fig. 9. Ray-traced solution of the canister using (a) second-order projected polynomials and (b) 13th order projected polynomials for isosurface of
pressure at C ¼ 0:0. The left image shows the ramification of reducing the projected polynomial order. The right image shows the “best” case as
presented in the paper. Projected polynomials past eighth look no different than the right image. (Image generation data: resolution = 512� 512,
mapping tolerance = 10�8, projected polynomial order = 2 (a) and 13 (b)).

Fig. 10. (a) Marching cubes image with h ¼ 0:015 corresponding to 4; 705; 274 voxels and (b) ray-traced solution using 11th order projected

polynomials for isosurface of pressure at C ¼ 0:0 chosen such that the spectral/hp element data evaluation and rendering time is nearly identical (on

the order of 200 seconds). The root-mean-square error for the marching cubes image is 0:0158; the root-mean-square error for the ray-traced image

is 3:5� 10�11.



meters in Fig. 4 (end-to-end time). Time in this plot is

proportional to resolution, in the case of marching cubes
being proportional to number of sampling voxels and in the

case of ray tracing being proportional to the projected
polynomial order. In the context of the current investiga-

tion, the performance win normally associated with march-

ing cubes (some of which is gained by data preprocessing)
must be balanced with the number of sampling voxels

required and the number of triangles needed to generate a
pixel-exact isosurface. We emphasize that the dominant cost

in this MC comparison is the voxelization of the high-order
data. If only triangularization and rendering are considered

(for example, when dealing with nontime-dependent data

for which preprocessing can be done to accomplish the
voxelization), the triangle solution is more anemable to

current rendering acceleration stategies (e.g., use of GPUs).
However, for most spectral/hp element data sets used in

real-world engineering and science applications, it is
impractical and, in some cases, infeasible to sample and

store a voxelized volume sufficient to obtain the same level

of accuracy as the proposed method.

7 SUMMARY AND CONCLUSION

If scientific visualization is to be used as part of simulation

science, error budget analysis of the techniques employed
must fall under the same critical eye as other components of

the simulation science process (e.g., modeling error, numer-

ical simulation error). Visualizations of high-order finite
element results which do not respect the a priori knowledge

of how the data were produced and which do not provide a
quantification of the visual error produced undermine the

scientific process. The purpose of this paper was to present a
ray-tracing isosurface rendering algorithm for spectral/hp

(high-order finite) element methods in which the visualiza-

tion error budget is both quantified and minimized. A
methodology was prescribed in Section 4, pixel-exact images

of high-order finite element data were provided in Section 5,
and a discussion of the corresponding error budget analysis

was given in Section 6.

As with most numerical methodologies, the future work
for this project is to investigate more computationally
efficient means of accomplishing the ray-tracing methodol-
ogy without sacrificing the quantification of the method. All
images presented in this work took on the order of several
minutes to generate (using an unoptimized, single-proces-
sor ray-tracer). Parallelization as in [19] and software
optimization will certainly aid in accelerating the visualiza-
tion process. We believe that balancing efficiency, robust-
ness, and accuracy will lead to new visualization
methodologies which are high-order finite element aware.
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