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Abstract

There are well defined methods for supporting regular
problems with scalable performance, typified by the HPF
language and the BSP model. Less well understood is the
solution of more irregular problems, supporting complex
shared data structures and task dependencies, and typically
requiring dynamic load balancing to sustain high perfor-
mance. It is demonstrated how the use of Shared Abstract
Data Types (SADTs), together with an extended BSP cost
model, can support irregular problems in a structured man-
ner. An SADT is an extension of a serial ADT which al-
lows the concurrent invocation of its methods. A number
of SADTs are used to implement a solution of the travelling
salesman problem on the Cray T3D machine, and a descrip-
tion of the restructuring of a parallel CFD code using SADTs
is provided, with initial results given for the Cray T3E.

1. Introduction

The Bulk Synchronous Parallelism (BSP) model [7, 13]
provides a simple and elegant cost model, as a result of using
supersteps to develop parallel software. The independent
execution of processors in generating remote accesses al-
lows a superstep to be costed by an h�relation [7]. Specif-
ically, given a machine with network performance g, barrier
cost L and computational performance s, a superstep can be
costed as gh + sw + L, where h and w are the maximum
usage of each resource by a processor.

The BSP model seems less suited to the efficient support
of irregular problems, which require dynamic load balanc-
ing and introduce runtime task dependencies [10]. This pa-
per describes work on supporting irregular problems with
scalable high performance, while preserving the BSP-style
cost model. The key idea has been to develop scalable
Shared Abstract Data Types (SADTs) which support dy-
namic sharing patterns [10, 3]. An SADT is an extension
of a serial ADT which allows the concurrent invocation of
its methods. It is shown how SADTs can encapsulate the
often complex sharing patterns present in irregular compu-

tational problems, leading to portable code at a high level
of abstraction, whose serial and parallel components can be
more readily tuned for a given platform.

The next section provides an overview of SADTs. Two
case studies are then used to demonstrate how SADTs can
structure both parallel code and the costing analysis. Section
3 focuses on divide and conquer problems, using the travel-
ling salesman problem, and develops a cost model to predict
performance at design time, with results given for the Cray
T3D. Section 4 describes the restructuring of a parallel CFD
code, resulting in a very significant reduction in code com-
plexity, while also providing increased performance, with
results given for the Cray T3E machine. Section 5 points to
some current and future work.

2. Shared Abstract Data Types

Shared Abstract Data Types (SADTs) [4] are used to de-
scribe the patterns of sharing among the processors, pro-
viding the algorithmic structuring advantages of ADTs, but
with the ability to support concurrent access. SADTs can be
used to encapsulate dynamic synchronisation and commu-
nication details, to provide both scalable and portable high
performance [9]. The introductionof concurrency offers the
possibilityof weakening the sequential semantics, by allow-
ing processes to observe different versions of the instance,
where this will not effect the correctness of the application
using it. Alternative SADT versions may be available, of-
fering tradeoffs between consistency and performance, en-
abling a programmer to select the most efficient implemen-
tation which meets the correctness criteria [4].

There are many related research efforts in this area. Dis-
tributed Shared Abstractions (DSAs) [1] demonstrate the
scalable and high performance on shared memory multi-
processors, using weak data consistency. Parallel Abstract
Data Types [2] describe commonly used computational pat-
terns in science and engineering applications. Information
Sharing Abstractions [5] implement different ADTs which
support concurrent access, with an emphasis on their ability
to support compile-time and run-time optimisations, and in
the development of performance and debugging tools.
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Figure 2. (a) Support for the TSP; (b) PriQueue
implementation

2.1. The use of SADTs within a bulk syn-
chronous environment

Coarse-grain supersteps organise parallel execution at
the application level. Within a superstep, the processors ac-
cess SADTs to implement the key sharing patterns of the
application, which may use extended operations support-
ing fine-grain parallelism, to provide scalable high perfor-
mance. Figure 1 shows a program using a FIFO Queue
SADT [8]. Information is shared between the processors by
enqueueing and dequeueing data items. In the code frag-
ment (replicated on each processor), the dequeue into the
variable data will first access the enqueued items data1
from the first superstep, before any items data2 from the
second superstep are accessed. Removing the barrier oper-
ations would result in an arbitrary interleaving of enqueue
and dequeue operations among the processors (although the
FIFO ordering still applies to the accesses generated by an
individual processor).

2.2. The travelling salesman problem

The solution of the travelling salesman problem (TSP)
presented here is a parallel version of Little’s sequential
branch-and-bound code [6]. The algorithm is based on re-
lated work carried out in the TallShiP project [4], which
studied the application of SADTs to promote high level shar-

PriQueue SADT Tours;
Accum SADT Best;

while (true) f
task = Tours.PriDeq ();
if (task empty(task)) exit;
if (task len(task) < Best.Read ()) f

if (task leaf(task)) Best.Write (task);
else f

task expand (task, &left, &right);
Tours.PriEnq (left); Tours.PriEnq (right);

g
g

g

Figure 3. A solution of the TSP

ing mechanisms in parallel systems. The approach leads
to the expansion of a tree of possible tours using a depth-
first search, with the root of the tree representing all possi-
ble tours. The pseudocode in Figure 3 shows the parallel so-
lution of the method. A Priority Queue (PriQueue) SADT
holds the current set of generated tours. The length of the
tour gives the corresponding priority of the item. An Accu-
mulator (Accum) SADT notes the best tour discovered so
far. Further details of the solution are given in [4].

Figure 2(a) presents an overview of the implementation
method for the TSP. The approach is based around the sup-
port of both bulk synchronous parallelism and extended op-
erations for supporting more irregular forms of parallelism,
as mentioned earlier. Another common characteristic is that
the code which solves the TSP is shielded from the increased
complexity of the extended operations through the access of
a set of SADTs, together with the use of coarse grain paral-
lelism. The code given in Figure 3 shows that this particular
solution in fact consists of a single superstep.

The implementation makes use of three SADTS - the
Lock, Accumulator and PriQueue. The Lock is not directly
visible to the application in this case, since it is used to
support Accum and PriQueue. The implementation issues
for the Lock and Accumulator are described in [3]. The
PriQueue implementation is described in more detail in Sec-
tion 3. One point to note is that the PriQueue stores the
tasks within a highly concurrent shared data structure, and
therefore requires a high performance network for good per-
formance. An alternative implementation of the PriQueue,
which is more amenable to networks where communication
is more costly, is outlined in [3].
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Swap/Inc D+ 2g
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L 2.00
s 0.0533
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Figure 4. (a) SHMEM costing; (b) Cost values

3. A Performance Analysis of the Travelling
Salesman Problem

A key characteristic for scalable performance was to use
weakened data consistency [1]. Sequential consistency can
provide a global priorityordering on the PriQueue elements,
but typically through the use of a serialising lock. This
becomes the bottleneck in large systems, limiting perfor-
mance. The implementation here removes this lock by re-
moving the strict ordering guarantee. Each processor 0::p�
1 holds a locally ordered data segment, as shown in Fig-
ure 2(b). These are accessed cyclically by the processors
when storing and retrieving data, distributing the priorities
approximately evenly. A processor is then only guaranteed
to remove one of the p highest priorities (Section 3.4 will
show that this does not have any substantial effect on the
operation of the algorithm). This approach provides for a
highlyconcurrent implementation, allowing scalable perfor-
mance characteristics as the number of processors grow.

3.1. Performance at the machine level

As described in the introduction, a superstep cost can be
modelled as gh+sw+L, where g, s andL cost the machine
operations (network access, local computation and barrier
synchronisation respectively), withh and w specifying their
maximum usage by any one processor within the superstep.
In order to effectively model the operations for fine-grain
parallelism, two additional machine costs, D and t, are re-
quired. The costD measures the round-tripnetwork latency,
and is incurred when there exists a data dependency within
a superstep (for example, when accessing the results of an
atomic increment). The cost t represents the time to trans-
fer words within the local memory, and is present due to the
fact that irregular applications typically access complex lo-
cal data structures. So the cost of a superstep can now be
represented by gh+sw+ tn+Dc+L, where n and c again
reflect the maximum resource usage.

3.2. Performance of the SHMEM library

For the implementation study on the Cray T3D, the
SHMEM communications library of operations has been

used, as given in Figure 4(a). SHMEM allows the direct
access of remote memory locations through the specifica-
tion of a processor-address pair, supporting high bandwidth
and low latency operations. Coarse-grain parallelism can
be supported through the use of the Put and Get operations,
which write to and read from remote memories respectively,
and a Barrier operation. Put supports the pipelining of mul-
tiple requests, to amortise the network latency cost (and al-
low overlapping of communication with subsequent local
computation), with Quiet being used to suspend until these
complete.

Figure 4(a) shows how the SHMEM operations are
costed. For the Swap and Inc operations, performance is
measured by the latency termD and the network access cost
g. For the Put and Get operations, the time g is incurred at
both the sending and receiving ends. Figure 4(b) gives each
of the cost parameters for the Cray T3D. Further details on
the costing approach can be found in [10].

The PriQueue concurrency can be exploited by the
SHMEM operations which support fine-grain parallelism.
Looking back to Figure 2(b), the local data segments are ac-
cessed cyclically by the processors, which can be supported
by a SHMEM concurrent atomic increment operation, Inc
(taken modulus p to obtain the required PriQueue data seg-
ment). Each data segment contains a number of locks and
local flags, which are used to control the access to the data
segments [3]. The implementation of these locks, through
a lower level Lock SADT [3], can use the SHMEM atomic
Swap operation, in which a new value is exchanged with the
current contents of a shared word on a given processor. This
operation allows for the construction of a scalable linked list
[8]. In addition, Wait can be used to support fine-grain point-
to-point synchronisation methods, which are typically used
to coordinate the access of the shared lists [8].

3.3. Performance at the SADT / TSP levels

As described in Section 3.1, the performance at the ma-
chine level can be modelled using the terms gh + sw +

tn +Dc + L, where h, w, n and c represent the maximum
usage of each associated machine resource. When charac-
terising the performance of parallel software, two terms are
used to model the workload at a given level of abstraction.
The term tot measures the total usage of a given resource
across all processors, whereas max measures the maximum
resource usage by any given processor. For example, the
performance of the solution to the travelling salesman prob-
lem can be described as:

PriEnq (max,tot) + PriDeq (max,tot) +
Read (max,tot) + Write (u) + Compute (max)

In this case, tot and max refer to the number of generated
tours. The costs PriEnq and PriDeq are for the PriQueue,
and Read and Write the Accumulator (the u term has been



Operation Cost
PriEnq Inc(max,tot) + 882*max*s +
(max,tot) Get(1,4*max,4*max) +

Put(10,max,max) +
max*Add Heap(HEAP SIZE) +
2 * Acquire(max,tot/p) +
2 * Release(max,tot/p)

PriDeq Inc(max,tot) + 1107*max*s +
(max,tot) Get(1,max,max) Get(9,3*max,3*max) +

Put(1,max,max) +
max*Sub Heap(HEAP SIZE) +
2 * Acquire(max,tot/p) +
2 * Release(max,tot/p)

Operation Cost
Add Heap (n) Put(18,n,n) + 2*Get(9,n,n)
Sub Heap (n) Put(18,n,n) + 3*Get(9,n,n)

Operation Cost
Acquire Swap(max,tot) + Swap(max,max) +
(max,tot) 37*max*s
Release Put(1,tot,tot) +
(max,tot) 36*tot*s

Operation Cost
Swap/Inc (max,tot) max*D + tot*2*g
Get (x,max,tot) max*D + tot*4*g*x
Put (x,max,tot) max*D + tot*2*g*x

Table 1. The PriQueue and related costing

found by experiment to be a small constant number). A
Compute term measures the local work required for a given
number of tours. In this example, SADT access occurs
within a single superstep. Processors independently pro-
duce and consume tours through the access of the PriQueue.
The only exception is when all items have been temporar-
ily removed from the PriQueue and new items are being
enqueued (causing any idle processors to momentarily sus-
pend execution), and at the termination stage. The former
case typically only occurs for a short time at the start of ex-
ecution, when the first few PriQueue items are being gen-
erated. Thus, the independent superstep behaviour is pre-
served at the application level. The highly concurrent be-
haviour of the SADTs preserves this state of affairs, allow-
ing the simple BSP cost model to be employed.

The top set of costings in Table 1 gives the costing of the
PriEnq and PriDeq operations. These include access to
the Inc, Put and Get SHMEM operations. The Inc cost rep-
resents a potential source of contention, including a term of
tot, reflecting its use to coordinate the access of the local
data segments which make up the PriQueue. The PriQueue
costing also includes the need to maintain a local priority or-
dering within each local data segment after an PriEnq or
PriDeq occurs, using Add Heap and Sub Heap respec-
tively. These costs are parameterised by the size of the local
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Figure 5. SADT and TSP performance results

segment (2HEAP SIZE items). Also included are costs to
Acquire and Release a lock at a local segment. The term
of tot=p in these costs reflects the scalable distributed im-
plementation, in which the local data segments are accessed
cyclically by the processors.

The next two costings in Table 1 give the costs for
maintaining the priority ordering of the data segments and
the Lock SADT. The ordering uses a binary search to ex-
change data items within the segment, resulting in the
HEAP SIZE term. The Lock SADT implementation is
too involved to describe here, but further information can be
found in [10]. Finally, the bottom table gives the cost of the
SHMEM operations, when parameterised by max and tot.
It can be seen that when a Swap operation is concurrently
performed on a given shared word, the max term gives the
usage of the network latency resource D (since max � D
gives the total time that any processor incurs the latency re-
source), and the tot term gives the usage of the network re-
source g (since tot � g is the total contention at the memory
module holding the word being accessed).

3.4. Predicted and observed performance

Figure 5(a) shows the close correspondence between the
predicted and observed PriQueue performance, in which all
processors continuously generate PriEnq and PriDeq re-
quests. Figure 5(b) shows the TSP performance for 20 and
21 city problems. Speedups of over 150 on 256 processors
for a 21 city problem are typical, reducing the time from 53

secs on one processor to 1

3
sec on 256 processors. The pre-

dicted times are again close, using the performance models
derived for the SADTs. The values for tot and max, de-
scribed in Section 3.3, were taken from actual runs of the
TSP solution, on a given number of processors. It has been
demonstrated in [3] that the PriQueue supports good dy-
namic load balancing properties, and that the SADT over-
heads increase slowly with the number of processors, due to
the scalable implementation approach.
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4. The Application of SADTs to a CFD Code

This section describes work 1 investigating the use of
SADTs to support problems in computational fluid dynam-
ics [11, 12]. An unstructured 3D tetrahedral mesh, which
forms the basis for a finite volume analysis, is partitioned
among the processors, with frequently used remote mesh
objects stored locally as halo copies, in order to reduce the
communications overhead. The solver, adaptation and re-
distribution phases each require many different forms of
communication withina parallel machine in order to support
mesh consistency (of the solution values and the data struc-
tures), both of the local partition of the mesh and the halos.

4.1. The restructuring of the code

The SADT to maintain the consistency of the mesh parti-
tions uses two basic phases of communication. An all-to-all
communication describes the amount of data which will be
entering and leaving each processor, followed by the com-
munication of the actual data between the mesh partitions.
Both phases can be parameterised by a set of serial user-
defined functions, so that the SADT can decide what specific
mesh data fields to pack into a communications buffer, how
to unpack any data received, and any subsequent processing
(ie local mesh updates) which is required.

The new code structure is shown in Figure 6. At the ap-
plication level, local mesh access is supported by a library
of mesh routines. The mesh redistribution strategy is sup-
ported by linking in a parallel mesh repartitioner (such as
Metis or Jostle). The global mesh consistency is handled by
making calls to the SADT, which also performs local mesh
updates through the mesh library. The code now operates in
a sequence of supersteps, in the same manner as for the so-
lution of the TSP in the previous section. The coordination
between processors is supported by a small communications
library which supports common traffic patterns.

The new SADT-based approach uses MPI, so that it may
be readily ported between different platforms, and also the
Cray/SGI SHMEM library, to exploit the high performance

1Funded by the EPSRC ROPA programme - Grant number GR/L73104

Original PTETRAD version:

Repartition + Redistribute + Total
assign owners establish links

Appl. 1,780 / 53 7,300 / 216 9,080/269

SADT PTETRAD version:
Repartition + Redistribute + Total
assign owners establish links

Appl. 230 / 8 300 / 9 530/17
SADTs 440 / 11 1,660 / 40 2,100/51
Mesh 2,590/74

TOTAL: 5,220/142

SADT libraries:
Mesh SADTs 250 / 6
MPI Library 220 / 6
SHMEM Library 170 / 5

TOTAL 615 / 18

Table 2. A summary of the source code re-
quirements (lines / KBytes)

direct memory access routines present on the SGI Origin
2000 and the Cray T3D/E. Using an alternative communica-
tions mechanism is requires a new communications library
(typically around 250 lines of code), and linking the com-
piled library into the main code.

4.2. Source code characteristics and perfor-
mance results

A CFD code called PTETRAD [11, 12] was used to
demonstrate this approach, which currently uses MPI. Table
2 summarises the amount of source code in the original and
new PTETRAD versions, for the mesh redistribution phase.
The amount of code which the programmer must write has
been reduced from 9; 080 to 5; 220 lines. A drastic reduc-
tion in the amount of application code has been achieved by
supporting the stages of global mesh consistency as SADT
calls, and implementing the mesh access operations within
a separate library. The mesh access library is also being re-
used during the restructuring of the solver and adaptation
phases. As a typical example, the code for the communi-
cation of mesh nodes during redistribution is reduced from
340 lines to 100 lines, with only around 20 of these lines per-
forming actual computation. Within the SADT library, the
SADTs for maintaining mesh consistency contain 250 lines
of code. The MPI and SHMEM communications interfaces
each have their own library.

Test runs were performed using the original version of
PTETRAD, and the SADT version of the redistribution



phase, using pairwise MPI, collective MPI communication
and SHMEM, on 4 processors of the Cray T3E. The re-
sults are for a gas dynamics problem described in [12]. Im-
proved performance of between 7% and 10% using MPI,
and 15% by linking in the SHMEM communications library
were found. A more comprehensive description of the per-
formance of PTETRAD can be found in [11, 12].

The results show how performance can be improved us-
ing three complementary approaches. The use of an exist-
ing communications library, such as MPI, can be examined,
to determine if alternative operations can be used, such as
collective communications. Different communications li-
braries, such as SHMEM, can also be linked in. Finally,
due to the clear distinction between the parallel communi-
cations and local computation, the serial code executing on
each processor can also be more readily tuned. In the case
of PTETRAD, new routines to determine the mesh data to
redistribute reduced the amount of searching of the local
mesh partition. This shows up in the performance results by
an immediate increase in performance when moving to the
SADT version using MPI pairwise communications.

5. Concluding Remarks and Future Work

This paper has presented an approach for the design and
performance analysis of scalable high performance paral-
lel software, focusing on the area of irregular computational
problems, using Shared Abstract Data Types (SADTs) to
support the key data sharing patterns. It was shown how ap-
plications could be supported which operate using coarse-
grain parallelism, while making use of SADTs to support
dynamic patterns of sharing, and to encapsulate possibly
highly concurrent implementations. A solution of the trav-
elling salesman problem on the Cray T3D was used as the
main case study. This was used to demonstrate how SADTs
can encapsulate highly concurrent implementation methods
to give scalable performance, and to show how an extended
BSP cost model can be used to predict performance.

A second case study was based around the restructur-
ing of the PTETRAD parallel CFD software [11, 12], using
SADTs. The approach has led to significant reductions in
code complexity, through code re-use, and improved perfor-
mance through the ability to more readily optimise the se-
rial and parallel code. These increasingly higher levels of
abstraction are aimed at eventually supporting the proposed
SOPHIA applications interface [11, 12], which provides an
abstract view of a mesh and its halo data, based around the
bulk synchronous approach to parallelism [7]. Alongside
this work is an ongoing effort to develop a cost model for the
SADTs and PTETRAD. Within PTETRAD, a cost model
could predict when the overheads introduced by mesh re-
distribution would be outweighed by the resulting improve-
ment in performance of the solver, for example.
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