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Abstract

There are well defined methods for supporting regular
problems with scalable performance, typified by the HPF
language and the BSP model. Less well understood is the
solution of more irregular problems, supporting complex
shared data structures and task dependencies, and typically
requiring dynamic load balancing to sustain high perfor-
mance. It is demonstrated how the use of Shared Abstract
Data Types (SADTS), together with an extended BSP cost
model, can support irregular problemsin a structured man-
ner. An SADT is an extension of a serial ADT which al-
lows the concurrent invocation of its methods. A number
of SADTs are used to implement a solution of the travelling
salesman problemon the Cray T3D machine, and a descrip-
tionof therestructuring of aparallel CFD code using SADTs
is provided, withinitial results given for the Cray T3E.

1. Introduction

The Bulk Synchronous Parallelism (BSP) model [7, 13]
providesasimpleand elegant cost model, asaresult of using
supersteps to develop parallel software. The independent
execution of processors in generating remote accesses al-
lowsasuperstep to be costed by an h — relation [7]. Specif-
ically, given amachine with network performance g, barrier
cost L and computationa performance s, asuperstep can be
costed as gh + sw + L, where h and w are the maximum
usage of each resource by a processor.

The BSP model seems | ess suited to the efficient support
of irregular problems, which require dynamic load balanc-
ing and introduce runtime task dependencies[10]. Thispa
per describes work on supporting irregular problems with
scalable high performance, while preserving the BSP-style
cost model. The key idea has been to develop scalable
Shared Abstract Data Types (SADTs) which support dy-
namic sharing patterns [10, 3]. An SADT is an extension
of aserial ADT which alows the concurrent invocation of
its methods. It is shown how SADTSs can encapsulate the
often complex sharing patterns present in irregular compu-

tational problems, leading to portable code at a high level
of abstraction, whose serial and parallel components can be
more readily tuned for a given platform.

The next section provides an overview of SADTs. Two
case studies are then used to demonstrate how SADTS can
structureboth parallel code and the costing analysis. Section
3 focuses on divide and conquer problems, using thetravel-
ling salesman problem, and developsacost mode to predict
performance at design time, with results given for the Cray
T3D. Section 4 describesthe restructuring of aparalel CFD
code, resulting in avery significant reduction in code com-
plexity, while also providing increased performance, with
results given for the Cray T3E machine. Section 5 pointsto
some current and future work.

2. Shared Abstract Data Types

Shared Abstract Data Types (SADTS) [4] are used to de-
scribe the patterns of sharing among the processors, pro-
viding the algorithmic structuring advantages of ADTS, but
with theability to support concurrent access. SADTs can be
used to encapsulate dynamic synchronisation and commu-
nication details, to provide both scalable and portable high
performance[9]. Theintroductionof concurrency offersthe
possibility of weakening the sequentia semantics, by allow-
ing processes to observe different versions of the instance,
where thiswill not effect the correctness of the application
using it. Alternative SADT versions may be available, of-
fering tradeoffs between consistency and performance, en-
abling a programmer to select the most efficient implemen-
tation which meets the correctness criteria[4].

There are many related research effortsin thisarea. Dis-
tributed Shared Abstractions (DSAs) [1] demonstrate the
scalable and high performance on shared memory multi-
processors, using weak data consistency. Parallel Abstract
Data Types [ 2] describe commonly used computational pat-
ternsin science and engineering applications. Information
Sharing Abstractions [5] implement different ADTs which
support concurrent access, with an emphasis on their ability
to support compile-time and run-time optimisations, and in
the development of performance and debugging tools.
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implementation

2.1. The use of SADTs within a bulk syn-
chronous environment

Coarse-grain supersteps organise parallel execution at
the application level. Within a superstep, the processors ac-
cess SADTs to implement the key sharing patterns of the
application, which may use extended operations support-
ing fine-grain parallelism, to provide scalable high perfor-
mance. Figure 1 shows a program using a FIFO Queue
SADT [8]. Information is shared between the processors by
enqueueing and dequeueing data items. In the code frag-
ment (replicated on each processor), the dequeue into the
variable data will first access the enqueued items datal
from the first superstep, before any items data2 from the
second superstep are accessed. Removing the barrier oper-
ations would result in an arbitrary interleaving of enqueue
and dequeue operations among the processors (al though the
FIFO ordering still applies to the accesses generated by an
individual processor).

2.2. The travelling salesman problem

The solution of the travelling salesman problem (TSP)
presented here is a paradle version of Little's sequential
branch-and-bound code [6]. The agorithm is based on re-
lated work carried out in the TalShiP project [4], which
studied the application of SADTsto promotehighleve shar-

PriQueue_SADT Tours;
Accum_SADT Be<t;

while (true) {
task = Tours.PriDeq ();
if (task_empty(task)) exit;
if (task_len(task) < Best.Read ()) {
if (task_leaf (task)) Best.Write (task);
ese{
task_expand (task, &left, &right);
Tours.PriEng (l€eft); Tours.PriEng (right);
}
}
}

Figure 3. A solution of the TSP

ing mechanisms in paradle systems. The approach leads
to the expansion of a tree of possible tours using a depth-
first search, with the root of the tree representing al possi-
bletours. The pseudocodein Figure 3 showsthe parallel so-
[ution of the method. A Priority Queue (PriQueue) SADT
holds the current set of generated tours. The length of the
tour gives the corresponding priority of theitem. An Accu-
mulator (Accum) SADT notes the best tour discovered so
far. Further details of the solution are givenin [4].

Figure 2(a) presents an overview of the implementation
method for the TSP. The approach is based around the sup-
port of both bulk synchronous parallelism and extended op-
erations for supporting more irregular forms of parallelism,
as mentioned earlier. Another common characteristicisthat
thecode which solvesthe TSPisshielded fromtheincreased
complexity of the extended operationsthrough the access of
aset of SADTS, together with the use of coarse grain paral-
Ielism. The code givenin Figure 3 showsthat thisparticular
solutionin fact consists of a single superstep.

The implementation makes use of three SADTS - the
Lock, Accumulator and PriQueue. The Lock isnot directly
visible to the application in this case, since it is used to
support Accum and PriQueue. The implementation issues
for the Lock and Accumulator are described in [3]. The
PriQueueimplementationisdescribed in more detail in Sec-
tion 3. One point to note is that the PriQueue stores the
tasks within a highly concurrent shared data structure, and
therefore requires ahigh performance network for good per-
formance. An dternative implementation of the PriQueue,
which is more amenabl e to networks where communi cation
ismore costly, isoutlinedin [3].
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Figure 4. (a) SHMEM costing; (b) Cost values

3. A Performance Analysis of the Travelling
Salesman Problem

A key characteristic for scal able performance was to use
weakened data consistency [1]. Sequential consistency can
provideaglobal priority ordering on the PriQueue el ements,
but typically through the use of a serialising lock. This
becomes the bottleneck in large systems, limiting perfor-
mance. The implementation here removes this lock by re-
moving the strict ordering guarantee. Each processor 0..p —
1 holds a locally ordered data segment, as shown in Fig-
ure 2(b). These are accessed cyclicaly by the processors
when storing and retrieving data, distributing the priorities
approximately evenly. A processor isthen only guaranteed
to remove one of the p highest priorities (Section 3.4 will
show that this does not have any substantia effect on the
operation of the agorithm). This approach provides for a
highly concurrent implementation, allowing scal able perfor-
mance characteristics as the number of processors grow.

3.1. Performance at the machine level

Asdescribed in the introduction, a superstep cost can be
modelled asgh + sw+ L, where g, s and L cost themachine
operations (network access, loca computation and barrier
synchronisation respectively), with /2 and w specifying their
maximum usage by any one processor within the superstep.
In order to effectively mode the operations for fine-grain
paralelism, two additional machine costs, D and ¢, are re-
quired. The cost 1> measures theround-tripnetwork latency,
and isincurred when there exists a data dependency within
a superstep (for example, when accessing the results of an
atomic increment). The cost ¢ represents the time to trans-
fer words withinthelocal memory, and is present dueto the
fact that irregular applicationstypically access complex lo-
cal data structures. So the cost of a superstep can now be
represented by gh + sw+tn+ De+ L, wheren and ¢ again
reflect the maximum resource usage.

3.2. Performance of the SHMEM library

For the implementation study on the Cray T3D, the
SHMEM communications library of operations has been

used, as given in Figure 4(a). SHMEM allows the direct
access of remote memory |ocations through the specifica-
tion of a processor-address pair, supporting high bandwidth
and low latency operations. Coarse-grain parallelism can
be supported through the use of the Put and Get operations,
which writeto and read from remote memories respectively,
and aBarrier operation. Put supportsthe pipelining of mul-
tiple requests, to amortise the network latency cost (and a-
low overlapping of communication with subsequent local
computation), with Quiet being used to suspend until these
compl ete.

Figure 4(a) shows how the SHMEM operations are
costed. For the Swap and Inc operations, performance is
measured by thelatency term D and the network access cost
g. For the Put and Get operations, thetime ¢ isincurred at
both the sending and receiving ends. Figure 4(b) giveseach
of the cost parameters for the Cray T3D. Further details on
the costing approach can be found in [10].

The PriQueue concurrency can be exploited by the
SHMEM operations which support fine-grain paralelism.
Looking back to Figure2(b), thelocal datasegmentsare ac-
cessed cyclically by the processors, which can be supported
by a SHMEM concurrent atomic increment operation, Inc
(taken modulus p to obtain the required PriQueue data seg-
ment). Each data segment contains a number of locks and
local flags, which are used to control the access to the data
segments [3]. The implementation of these locks, through
alower level Lock SADT [3], can use the SHMEM atomic
Swap operation, inwhich anew vaueisexchanged with the
current contents of ashared word on agiven processor. This
operation allowsfor the construction of asca ablelinked list
[8]. Inaddition, Wait can be used to support fine-grain point-
to-point synchronisation methods, which are typically used
to coordinate the access of the shared lists[8].

3.3. Performance at the SADT / TSP levels

As described in Section 3.1, the performance at the ma
chine level can be modelled using the terms gh + sw +
tn + Dc + L, where h, w, n and ¢ represent the maximum
usage of each associated machine resource. When charac-
terising the performance of parallel software, two terms are
used to model the workload at a given level of abstraction.
The term tot measures the total usage of a given resource
across al processors, whereas max measures the maximum
resource usage by any given processor. For example, the
performance of the solutionto thetravelling salesman prob-
lem can be described as:

PriEng (max,tot) + PriDeq (max,tot) +

Read (max,tot) + Write (u) + Compute (max)
In this case, ot and max refer to the number of generated
tours. Thecosts PriEng and PriDeq arefor the PriQueue,
and Read and Write the Accumulator (the u term has been



Operation | Cost

PriEng Inc(max,tot) + 882* max* s+
(max,tot) Get(1,4* max,4* max) +
Put(10,max,max) +
max* Add_Heap(HEAP_SIZE) +
2* Acquire(max,tot/p) +
2 * Release(max,tot/p)
PriDeq Inc(max,tot) + 1107* max* s+
(max,tot) Get(1,max,max) Get(9,3* max,3* max) +

Put(1,max,max) +

max* Sub_Heap(HEAP_SIZE) +
2* Acquire(max,tot/p) +

2 * Release(max,tot/p)

Operation Cost

Add_Heap (n) | Put(18,n,n) + 2*Get(9,n,n)

Sub_Heap (n) | Put(18,n,n) + 3*Get(9,n,n)
Operation | Cost
Acquire Swap(max,tot) + Swap(max,max) +
(max,tot) 37*max*s
Release Put(1,tot tot) +
(max,tot) 36*tot*s

Operation Cost

Swap/Inc (max,tot)
Get (x,max,tot)
Put (x,max,tot)

max* D + tot* 2*g
max* D + tot* 4* g*x
max* D + tot* 2* g*x

Table 1. The PriQueue and related costing

found by experiment to be a small constant humber). A
Compute term measurestheloca work required for agiven
number of tours. In this example, SADT access occurs
within a single superstep. Processors independently pro-
duce and consume toursthrough the access of the PriQueue.
The only exception is when al items have been temporar-
ily removed from the PriQueue and new items are being
engueued (causing any idle processors to momentarily sus-
pend execution), and at the termination stage. The former
casetypically only occursfor a short time at the start of ex-
ecution, when the first few PriQueue items are being gen-
erated. Thus, the independent superstep behaviour is pre-
served at the application level. The highly concurrent be-
haviour of the SADTSs preserves this state of affairs, allow-
ing the simple BSP cost model to be employed.

Thetop set of costingsin Table 1 givesthe costing of the
Prilfng and PriDeq operations. These include access to
the Inc, Put and Get SHMEM operations. The Inc cost rep-
resents a potential source of contention, including aterm of
tot, reflecting its use to coordinate the access of the loca
data segments which make up the PriQueue. The PriQueue
costing a so includesthe need to maintain alocal priority or-
dering within each loca data segment after an PriEng or
PriDeq occurs, using Add_Heap and Sub_H eap respec-
tively. These costs are parameterised by the size of thelocal
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Figure 5. SADT and TSP performance results

segment (2HEAP-SIZE jtems). Also included are costs to
Acquire and Release alock at aloca segment. The term
of tot/p in these costs reflects the scalable distributed im-
plementation, in which thelocal data segments are accessed
cyclicaly by the processors.

The next two costings in Table 1 give the costs for
maintaining the priority ordering of the data segments and
the Lock SADT. The ordering uses a binary search to ex-
change data items within the segment, resulting in the
HEAP_SIZE term. The Lock SADT implementation is
tooinvolved to describe here, but further information can be
foundin[10]. Finaly, the bottom table givesthe cost of the
SHMEM operations, when parameterised by max and tot.
It can be seen that when a Swap operation is concurrently
performed on a given shared word, the max term gives the
usage of the network latency resource D (since max * D
givesthetota timethat any processor incursthelatency re-
source), and thetot term gives the usage of the network re-
source g (sincetot x g isthetota contention at the memory
modul e holding the word being accessed).

3.4. Predicted and observed performance

Figure 5(a) shows the close correspondence between the
predicted and observed PriQueue performance, in which all
processors continuoudly generate PriFEng and PriDeg re-
quests. Figure 5(b) shows the TSP performance for 20 and
21 city problems. Speedups of over 150 on 256 processors
for a21 city problem aretypical, reducing thetimefrom 53
SECS 0N ONe Processor to % sec on 256 processors. The pre-
dicted times are again close, using the performance models
derived for the SADTs. The values for tot and maz, de-
scribed in Section 3.3, were taken from actual runs of the
TSP solution, on a given number of processors. It has been
demonstrated in [3] that the PriQueue supports good dy-
namic load balancing properties, and that the SADT over-
headsincrease slowly with the number of processors, dueto
the scal abl e implementation approach.
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4. The Application of SADTsto a CFD Code

This section describes work ' investigating the use of
SADTSs to support problems in computational fluid dynam-
ics [11, 12]. An unstructured 3D tetrahedral mesh, which
forms the basis for a finite volume analysis, is partitioned
among the processors, with frequently used remote mesh
objects stored locally as halo copies, in order to reduce the
communications overhead. The solver, adaptation and re-
distribution phases each require many different forms of
communication withinaparallel machinein order to support
mesh consistency (of the solution values and the data struc-
tures), both of thelocal partition of the mesh and the halos.

4.1. The restructuring of the code

The SADT to maintain the consistency of the mesh parti-
tions uses two basi ¢ phases of communication. An all-to-all
communi cation describes the amount of data which will be
entering and leaving each processor, followed by the com-
munication of the actual data between the mesh partitions.
Both phases can be parameterised by a set of seria user-
defined functions, so that the SADT can decidewhat specific
mesh data fiel ds to pack into a communications buffer, how
to unpack any datareceived, and any subsequent processing
(ielocal mesh updates) which isrequired.

The new code structureis shown in Figure 6. At the ap-
plication level, local mesh access is supported by a library
of mesh routines. The mesh redistribution strategy is sup-
ported by linking in a parallel mesh repartitioner (such as
Metisor Jostl€). The global mesh consistency is handled by
making calls to the SADT, which also performslocal mesh
updates through the mesh library. The code now operatesin
a sequence of supersteps, in the same manner as for the so-
[ution of the TSP in the previous section. The coordination
between processorsissupported by asmall communications
library which supports common traffic patterns.

The new SADT-based approach uses MPI, so that it may
be readily ported between different platforms, and also the
Cray/SGI SHMEM library, to exploit the high performance

I Funded by the EPSRC ROPA programme- Grant number GR/L 73104

Original PTETRAD version:

Repartition+ | Redistribute+ Total
assign owners | establishlinks
Appl. 1,780/ 53 7,300/216 | 9,080/269
SADT PTETRAD version:
Repartition+ | Redistribute + Total
assign owners | establishlinks
Appl. 230/8 300/9 530/17
SADTs 440/ 11 1,660/ 40 2,100/51
Mesh 2,590/74
TOTAL: 5,220/142
SADT libraries:
Mesh SADTs 250/ 6
MPI Library 220/ 6
SHMEM Library | 170/5
TOTAL 615/18

Table 2. A summary of the source code re-
qguirements (lines / KBytes)

direct memory access routines present on the SGI Origin
2000 and the Cray T3D/E. Using an alternative communica-
tions mechanism is requires a new communications library
(typicaly around 250 lines of code), and linking the com-
piled library into the main code.

4.2. Source code characteristics and perfor-
mance results

A CFD code called PTETRAD [11, 12] was used to
demonstrate this approach, which currently usesMPI. Table
2 summarises the amount of source code in the original and
new PTETRAD versions, for the mesh redistribution phase.
The amount of code which the programmer must write has
been reduced from 9, 080 to 5, 220 lines. A drastic reduc-
tion in the amount of application code has been achieved by
supporting the stages of global mesh consistency as SADT
cals, and implementing the mesh access operations within
a separate library. The mesh access library isalso being re-
used during the restructuring of the solver and adaptation
phases. As atypica example, the code for the communi-
cation of mesh nodes during redistribution is reduced from
340 linesto 100 lines, with only around 20 of theselinesper-
forming actual computation. Within the SADT library, the
SADTs for maintaining mesh consistency contain 250 lines
of code. The MPI and SHMEM communications interfaces
each have their own library.

Test runs were performed using the original version of
PTETRAD, and the SADT version of the redistribution



phase, using pairwise MPI, collective MPI communication
and SHMEM, on 4 processors of the Cray T3E. The re-
sultsare for a gas dynamics problem described in [12]. Im-
proved performance of between 7% and 10% using MPI,
and 15% by linkingin the SHMEM communicationslibrary
were found. A more comprehensive description of the per-
formance of PTETRAD can befoundin [11, 12].

The results show how performance can be improved us-
ing three complementary approaches. The use of an exist-
ing communicationslibrary, such as MPI, can be examined,
to determine if aternative operations can be used, such as
collective communications. Different communications li-
braries, such as SHMEM, can aso be linked in. Finaly,
due to the clear distinction between the parallel communi-
cations and local computation, the seria code executing on
each processor can also be more readily tuned. In the case
of PTETRAD, new routinesto determine the mesh data to
redistribute reduced the amount of searching of the local
mesh partition. Thisshows up in the performance results by
an immediate increase in performance when moving to the
SADT version using MPI pairwise communications.

5. Concluding Remarks and Future Work

This paper has presented an approach for the design and
performance analysis of scalable high performance paral-
lel software, focusing on the area of irregular computational
problems, using Shared Abstract Data Types (SADTS) to
support the key data sharing patterns. It was shown how ap-
plications could be supported which operate using coarse-
grain parallelism, while making use of SADTSs to support
dynamic patterns of sharing, and to encapsulate possibly
highly concurrent implementations. A solution of the trav-
elling salesman problem on the Cray T3D was used as the
main case study. Thiswas used to demonstrate how SADTs
can encapsul ate highly concurrent implementation methods
to give scalable performance, and to show how an extended
BSP cost model can be used to predict performance.

A second case study was based around the restructur-
ing of the PTETRAD parald CFD software[11, 12], using
SADTs. The approach has led to significant reductions in
code compl exity, through code re-use, and improved perfor-
mance through the ability to more readily optimise the se-
rial and parale code. These increasingly higher levels of
abstraction are aimed at eventually supporting the proposed
SOPHIA applicationsinterface [11, 12], which providesan
abstract view of amesh and its halo data, based around the
bulk synchronous approach to parallelism [7]. Alongside
thiswork isan ongoing effort to devel op acost model for the
SADTs and PTETRAD. Within PTETRAD, a cost model
could predict when the overheads introduced by mesh re-
distribution would be outwei ghed by the resulting improve-
ment in performance of the solver, for example.
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