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Data assimilation is an essential tool for predicting the behavior of real physical systems
given approximate simulation models and limited observations. For many complex
systems, there may exist several models, each with different properties and predictive
capabilities. It is desirable to incorporate multiple models into the assimilation procedure
in order to obtain a more accurate prediction of the physics than any model alone can pro-
vide. In this paper, we propose a framework for conducting sequential data assimilation
with multiple models and sources of data. The assimilated solution is a linear combination
of all model predictions and data. One notable feature is that the combination takes the
most general form with matrix weights. By doing so the method can readily utilize differ-
ent weights in different sections of the solution state vectors, allow the models and data to
have different dimensions, and deal with the case of a singular state covariance. We prove
that the proposed assimilation method, termed direct assimilation, minimizes a variational
functional, a generalized version of the one used in the classical Kalman filter. We also pro-
pose an efficient iterative assimilation method that assimilates two models at a time until
all models and data are assimilated. The mathematical equivalence of the iterative method
and the direct method is established. Numerical examples are presented to demonstrate
the effectiveness of the new method.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Numerical simulations of mathematical models are essential tools for predicting the behavior of physical systems. Myriad
numerical techniques and approximations are used to simulate physical phenomena in fluid dynamics, electromagnetics,
chemical systems, astrophysics, and more. Since all of these simulations involve approximations, uncertainty and error
are inevitably present in their predictions. To complicate matters, a single physical process may be described by multiple
mathematical models and numerical approximations. In addition, one may have access to empirical observations of the
system—noisy and limited in number, scope, and resolution. A natural question to ask is how to combine the models and
the observational data to predict the physical state with greater fidelity than can be obtained with any of the models
individually?

Various techniques for model averaging and data assimilation, all of which attempt to implement such a combination of
models and data, have received attention in recent years. In the case of a single dynamical model with a stream of noisy
observations, the Kalman filter [15,14] is both simple and remarkably effective. The assimilation step of the Kalman filter
updates the state by weighing the model prediction and the data in order to minimize a quadratic objective. This operation
can be interpreted in many different ways, for instance, as a minimum variance estimator or as a Bayesian update. The
. All rights reserved.
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original Kalman filter was designed for linear systems, but derivate methods for filtering nonlinear systems are plentiful, e.g.
the extended Kalman filter [9,11], the ensemble Kalman filter [7,8] and its variants [1,2,5,21,24], and is the subject of exten-
sive ongoing work.

The use of multiple models for filtering, on the other hand, has seen less development. With static data sets, Bayesian
model averaging (BMA) is a well-established technique for statistical prediction in the presence of model uncertainty [10].
BMA writes the predictive distribution of any quantity of interest as a weighted average of the posterior predictions due to
each model; the data-dependent scalar weights are the posterior model probabilities [19]. Alternatively, one might
consider non-Bayesian approaches to model averaging with static data; these are generally focused on providing point pre-
dictions rather than predictive distributions [10,6]. Dynamic model averaging (DMA) [20] generalizes BMA to the dynam-
ical setting, where data arrive sequentially and one would like to make online predictions about the state of a system. DMA
updates the state conditional on a discrete model indicator, but some Markovian dynamics (e.g. a matrix of transition
probabilities or a forgetting factor) for this model indicator must be specified. As in BMA, the predictive distribution is
a mixture with one component for each model. Other methods for sequential estimation with multiple models include
the Interacting Multiple Model filter [4] and the generalized pseudo-Bayes framework [23]. Both of these techniques intro-
duce dynamics for the ‘‘switching’’ behavior between models and update state probabilities based on innovations from a
Kalman filter.

Like all of the aforementioned methods, we propose an assimilation technique that relies on a weighted arithmetic mean
of the models. A limitation of the previous methods, however, is that the weights used in model averaging are scalar-valued,
even when the state is vector-valued. Therefore, the assimilation process cannot employ different model weights in different
sections of the state vector (corresponding to regions of space where one model might be superior to another, for instance).
In this paper we consider more a general assimilation technique: if u1; . . . ;uM are state vectors for M different models and d
is the data vector, we attempt to find an assimilated state w of the form
w ¼
XM

m¼1

Amum þ Bd; ð1:1Þ
where Am and B are matrices. Therefore, we allow our assimilation to be the most general linear functional of all the models
and data. This form also allows the model states and data to have different dimensions. Also it is possible to have different,
independent sources of data d1; . . . ;dN , measuring different quantities-of-interest. Mathematically they can be concatenated
into a single vector d, allowing us to use (1.1) as a general form. (We will show that assimilating data is philosophically the
same as simply taking the data to be extra model states in (1.1). In other words, our method treats model predictions and
data as identical mathematical objects.)

We derive our assimilation technique by minimizing a variational functional similar to, and a generalization of, the one
used in the classical Kalman filter. With only a single model and data, the assimilation is identical to the Kalman filter. When
two or more models are present, the direct assimilation in the form (1.1) can be employed, where the explicit forms of the
matrices Am and B are derived. For practical systems with large dimensions, we also propose a more efficient iterative assim-
ilation method, which seeks to perform a series of two-model assimilations until all models and data are assimilated. We
then establish the mathematical conditions under which the iterative assimilation is equivalent to the direct assimilation,
and more importantly, invariant to the permutation of the model states. Our proposed iterative assimilation approach
can also handle singular model and data covariance matrices. Like all Kalman filtering methods, the present methodology
requires the prescription and propagation of the model covariances. However, the method is rather a framework and not tied
to any specific algorithm for covariance propagation. Therefore, the method can be readily combined with most variants of
the Kalman filter, such as the ensemble Kalman filter.

It is worth pointing out that the explicit inclusion of the data in our assimilation method (1.1) represents a subtle, and yet
important, difference from the BMA. In BMA, the role of data presents itself implicitly in the form of the averaging weights,
which is determined by the posterior probability. As a result, the BMA is an ‘‘average’’ of all models. When all models are
consistently biased towards one side of the prediction, the BMA result is, by construction, guaranteed to be no better than
the best available model. The form of (1.1) effectively prevents this from happening.

In Section 2 we formalize notation and present the assimilation problem. This section also reviews existing assimila-
tion methods that are relevant to our discussion. Section 3 introduces our algorithm and presents its mathematical jus-
tification. In doing so, we compare a simultaneous assimilation procedure with a sequential assimilation procedure, and
make the argument that the sequential procedure is more robust. A Bayesian interpretation of both procedures is also
provided. Section 4 provides examples of our assimilation method in practice, and Section 5 follows with closing
remarks.

2. Problem setup

In this section we present the overall problem of data assimilation with multiple models, formalizing the assumptions
and notation to be used in subsequent analysis. We also review the Kalman filter (KF), which is widely used in data assim-
ilation with a single model and closely related to our proposed method for multiple model assimilation.
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2.1. Data assimilation with multiple models

Following usual practice in data assimilation, we present our models in the form of dynamical systems, emphasizing the
temporal nature of the problem. Let ut 2 RNt , Nt P 1, denote the ‘‘true state’’ of a physical phenomenon. Typically ut is a fi-
nite representation of the spatially distributed state of the physical system, after some spatial discretization has been ap-
plied. More generally, ut is a quantity of interest whose evolution we wish to track. This evolution is governed by certain
physical laws and processes that are not completely available to us. Nonetheless, we suppose that there exists some operator
that captures the exact evolution of the system under consideration. Considering only discrete values of time tk, we can write
utðtkþ1Þ ¼ Lðtk;utðtkÞÞ; ð2:1Þ
where the operator L is unknown to us, but represents the evolution of the truth state ut from one point in time to the next.
Instead of L, we have a set of models indexed by m ¼ 1 . . . M, that approximate the evolution of ut in different ways. In

particular, these models specify the temporal evolution of distinct state vectors um 2 RNm via an operator gm:
dum

dt
¼ gmðt;umÞ; t 2 ð0; T�;

umð0Þ ¼ um;0;

ð2:2Þ
with T > 0. Solutions of the differential equations above are the ‘‘forecast’’ states umðtÞ. We define the discrete solution oper-
ator for each system, given by
umðtkþ1Þ ¼ Gm tk;umðtkÞð Þ; ð2:3Þ
where the operator Gm is the discretized version of gm, and may be nonlinear in um. Note a strict first-order Markovian setting
has been used throughout this section. This is done for mere notational convenience and does not affect our discussion
below.

The forecast states are useful because they carry information about the true state. We will assume that, at any given time
tk, the forecast state variables um are linearly related to the true state ut , with the addition of a stochastic discrepancy. In
other words, we have
um ¼ Hmut þ �m; m ¼ 1; . . . ;M; ð2:4Þ
where Hm 2 RNm�Nt , and �m, satisfying E½�m� ¼ 0, are random variables that capture the discrepancy between the transformed
true state and um. Note that the �m can be time-dependent.

In practice the relation between the forecast states and the true states could be nonlinear:
um ¼ HmðutÞ þ �m; m ¼ 1; . . . ;M; ð2:5Þ
for some nonlinear operators Hm. Our technique uses a filtering procedure to assimilate different models, and in cases when
the measurement operators Hm are not linear, then nonlinear filtering techniques such as the Unscented Kalman Filter
[13,12] or particle filters [18,22] are appropriate. Here we restrict ourselves to the linear case, with the understanding that
one could replace our use of the Kalman filter with any appropriate nonlinear assimilation technique. One could also con-
sider (2.4) to be an approximation or linearization of the nonlinear operator Hm, as often done in practice.

We use d 2 RNd ; Nd P 1, to denote a set of measurements
d ¼ Hut þ �; ð2:6Þ
where H 2 RNd�Nt is the measurement matrix and � 2 RNd is the measurement error satisfying E½�� ¼ 0. Note that the rela-
tionship between the measurement and the true solution could in general be nonlinear, but we focus here on the linear case.
(Again the measurement matrix H could be considered as a linearization of a nonlinear measurement operator.) Our use of
the discrepancy terms � and �m encompasses many sources of uncertainty including, but not limited to, model discrepancy,
temporal/spatial numerical discretization error, numerical roundoff error, and measurement error. Also note that (2.6) easily
generalizes to the case of multiple measurements that are conditionally independent given ut . For our purposes it is nota-
tionally convenient to collect all these observations into one vector d, but the algorithm we present below can immediately
be applied to assimilation problems where different measurements are treated as separate vectors.

Our goal is to construct an ‘‘analyzed solution,’’ denoted by w 2 RNt and of the form (1.1), using the forecast solutions
fumgM

m¼1 and the measurement d to provide a more accurate prediction of the true solution ut .
2.2. Kalman filter

The Kalman filter (KF) is widely used for data assimilation with a single model; here we only list relevant properties, and
more in-depth discussion can be found in [8]. Following our setup in Section 2.1, we consider the case of M ¼ 1 and H1 ¼ I,
where I is the identity matrix. That is, there exists only one forecast state u1 and it is a direct prediction of the true state ut .
Let U1 2 RN1�N1 be the covariance matrix of the forecast solution u1 and suppress the subscript 1 hereafter only in this
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section. The analyzed solution w obtained by the standard KF is a linear combination of the forecast solution u and the mea-
surement d in the following manner,
w ¼ uþ Kðd�HuÞ; ð2:7Þ
where K is the so-called Kalman gain matrix defined as
K ¼ UHTðHUHT þ DÞ�1
: ð2:8Þ
Here the superscript T denotes the matrix transpose, and D 2 RNd�Nd is the covariance of the measurement error �. The
covariance matrix of the analyzed state w, W 2 RNt�Nt , is then obtained by the update
W ¼ ðI� KHÞUðI� KHÞT þ KDKT ¼ ðI� KHÞU: ð2:9Þ
This assimilation process is repeated at every instance of time when data is available. The analyzed state w is the solution
that minimizes the following variational functional:
J ½w� ¼ ðw� uÞT U�1ðw� uÞ þ ðHw� dÞT D�1ðHw� dÞ: ð2:10Þ
There are many ways to rationalize the desire to minimize the objective (2.10). The functional J ½w� is the sum of Mahalan-
obis distances between the known states Vu and Vd and we want to find a state Vw lying as close as possible to both of them.
Alternatively, we may pose the problem in the Bayesian framework: we suppose that u and its covariance specify a prior
Gaussian distribution on state space; assuming likewise that d is obtained as a Gaussian perturbation from linear measure-
ments the truth, the likelihood of observing the data can be computed. We then take the analyzed state w to be the mode of
the posterior; equivalently, w minimizes the negative log-likelihood of the posterior. In this setup, the negative log-likeli-
hood is given by J , cf. (3.14) and Section 3.7.

3. Assimilation of multiple models

We present our algorithm for multiple model assimilation in this section. Section 3.1 begins by standardizing our nota-
tion. Our algorithm is implicitly related to the problem of computing harmonic means of covariance matrices, and so Section
3.2 introduces the concept of harmonic means on positive semi-definite matrices. An unavoidable complication that may
arise in any assimilation procedure is the existence of model and/or measurement states that have competing values that
cannot be clearly resolved. We acknowledge this reality in Section 3.3 and present sufficient conditions under which differ-
ing values can be unambiguously assimilated. Section 3.4 presents a version of our algorithm that simultaneously assimilates
all models and measurements, and Section 3.5 follows up with our proposed sequential algorithm. We then provide a simple
example to demonstrate why sequential assimilation is preferred. Section 3.7 concludes by providing a Bayesian interpreta-
tion of the multi-model assimilation scheme.

3.1. Preliminaries

We work on a complete probability space ðX;F ;lÞwith X the collection of events,F a r-algebra on sets of X, and l a prob-
ability measure on F . All random variables considered here are in the L2 stochastic space: u 2 L2

l )
R

X kuðxÞk
2dlðxÞ ¼

uðxÞk k2
l � E uk k2 <1, where uk k is the standard Euclidean norm when u is vector-valued; this is sufficient to ensure the exis-

tence of the mean and variance of u. When talking about limits of random variables, equality is in the L2
l sense:

lime!0ue ¼ u) ue � uk kl ! 0.
Throughout this paper we will use lowercase boldface letters (e.g. u) to denote vectors and uppercase boldface letters (e.g.

A) to denote matrices. AT and Ay denote the matrix transpose, and the Moore–Penrose pseudoinverse of A, respectively. For
random vectors we will use the same letter but with uppercase to denote their corresponding covariance matrices. For exam-
ple, let v 2 RN be a random vector with zero mean, then V ¼ E½vvT � 2 RN�N denotes its covariance matrix. A square matrix A is
positive definite if vT Av > 0 for all non-trivial v, and is positive semi-definite (or ‘semi-positive’) if vT Av P 0. For any fixed
size N, the space of all N � N positive definite matrices is denoted byH, and the space of all positive semi-definite matrices by
H0.

3.2. Matrix harmonic means

The standard way to define a harmonic mean for positive definite matrices A1;A2 2 H is
F2 ¼ 2 A�1
1 þ A�1

2

� ��1
and it is not difficult to imagine generalizing this to a sequence of matrices Am 2 H; m ¼ 1; . . . ;M:
FM ¼ M
XM

m¼1

A�1
m

 !�1

: ð3:1Þ
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It is clear that this cannot be used for (non-invertible) semi-positive matrices. However, one can proceed by taking a different
route.

Definition 1 (Matrix harmonic mean). Let A1; . . . ;AM 2 H0, and define F1 ¼W1 ¼ A1. For m ¼ 2; . . . ;M, define:
1 Rec
random
Wm ¼Wm�1ðWm�1 þ AmÞyAm; ð3:2aÞ

Fm ¼ mWm: ð3:2bÞ
FM is called the harmonic mean of the matrices A1; . . . ;AM .
This definition coincides with the traditional definition of harmonic means of M P 2 positive-definite matrices. More

importantly, this definition is a generalization to semi-positive matrices.

Theorem 1. For a sequence of matrices Am;m ¼ 1; . . . ;M, on H, the harmonic mean of Definition 1 coincides with the formula
(3.1). For Am on H0; FM is

1. closed on H0 : FM 2 H0;
2. continuous: if Fe

M is the harmonic mean of Ae
1; . . . ;Ae

M 2 H0 where Ae
m ! Am then Fe

M ! FM;
3. consistent: A1 ¼ A2 ¼ � � � ¼ AM ) FM ¼ A1;
4. symmetric: For m1;m2; . . . ;mM any permutation of 1;2; . . . ;M, the harmonic mean of Am1 ; . . . ;AmM is the same as that of

A1;A2; . . . ;AM;
5. decreasing: FM 6 Am for all m;
6. monotone: If Am 6 Bm for all m, then FM 6 JM, where FM is the harmonic mean of the Am and Jm is the harmonic mean of the Bm.

The above properties justify calling FM a matrix mean. The Appendix contains the proof, along with mathematical discus-
sions that are not directly related to our present task of multiple model data assimilation.

We note here that using properties of pseudoinverses one may rewrite the iterative procedure (3.2a(a)) for updating Wm:
Wm ¼ I�Wm�1 Wm�1 þ Amð Þy
� �

Wm�1 , I� Kð ÞWm�1
Comparing this with the Kalman filter covariance update from (2.8) and (2.9) when H ¼ I, we see that the iterative procedure
for computing harmonic means is almost identical to a standard Kalman filter procedure.

Our algorithm for model assimilation produces an assimilated model state whose covariance is proportional to the har-
monic mean of the input covariances. (If the input covariances are Am, then the matrix WM from (3.2b) is the assimilated
covariance.) We will see later that the algorithm itself can be implemented by iterating a standard Kalman filter, and thus
implicitly uses the iterative definition of the matrix harmonic mean (3.2b) to compute the assimilated state.

3.3. Consistent random variables

Any assimilation procedure must preclude the situation where there is no logical way to reconcile a quantitative differ-
ence between two models. For example, if we have two models of a scalar quantity of interest with u1ðxÞ ¼ 1 and u2ðxÞ ¼ 2
almost surely, then no assimilation procedure can produce a good synthesis. In our setting, we exclude such situations by
insisting that the random variables corresponding to our model state vectors are consistent.

Definition 2. Consider L2ðXÞ random vectors um 2 RNm , m ¼ 1; . . . ;M, each paired with a measurement matrix Hm 2 RNm�Nt ,
where Nt is the size of the truth state.1 Then um are consistent if the components in each random variable corresponding to
zero variance can be assimilated, almost surely without contradiction, from the other variables. More precisely, let S0

m be a
matrix of orthogonal column vectors corresponding to the nullspace of Um. Then um are consistent if the linear system defined
by the M vector-valued equations
S0
m

� �T
Hmw ¼ S0

m

� �T
E½um�; m ¼ 1;2; . . . ;M ð3:3Þ
has at least one solution for the vector w.
The condition (3.3) essentially states that the random variables um do not have competing zero-variance components. If

all the random variables um have strictly positive covariance kernels, then they are automatically consistent. In all that fol-
lows, we will only consider collections of random variables that are consistent.
all from (2.4) that Hm is only used to connect model states to the truth solution. The source of randomness, whether stemming from �m or from
ness in the truth, is here irrelevant.
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3.4. Main result: direct assimilation method

We now prescribe a method for assimilating multiple models along with data. The single-model Kalman filter procedure
can be identified as minimizing the variational functional (2.10). This suggests that an assimilation procedure for assimilat-
ing multiple models with data can be proposed simply by making appropriate changes to the variational functional.

Theorem 2. Consider a set of M forecast states um;m ¼ 1; . . . ;M, satisfying (2.4) and with error covariance Um ¼ E½�m�T
m� 2 H,

and data vector (2.6) with error covariance D ¼ E½��T � 2 H. Assume that the row spaces of H and Hm span all RNt :
2 In t
truth st
Neverth
quantit

3 Thi
treatme
long as
span ranH; ranH1; ranH2; . . . ; ranHMf g: ð3:4Þ
Define
J ½w� ¼
XM

m¼1

ðHmw� umÞT U�1
m ðHmw� umÞ þ ðHw� dÞT D�1ðHw� dÞ; ð3:5Þ
then the minimizer satisfies
w ¼WM

XM

m¼1

HT
mU�1

m um þHT D�1d

 !
; ð3:6Þ
where WM is given by:
WM ¼
XM

m¼1

HT
mU�1

m Hm þHT D�1H

 !�1

:

Proof. The proof can be easily obtained by straightforward calculus, where the condition (3.4) is required to assure strict
positivity of J ½w�. h

The analyzed state is w and the analyzed model states are
vm ¼ Hmw; m ¼ 1; . . . ;M: ð3:7Þ
The matrices Am in (1.1) are thus given by
Am ¼WmHT
mU�1

m : ð3:8Þ
The technical assumption (3.4) is made2 to ensure a unique minimizer for the quadratic form J . While (3.6) will produce the
assimilated state we propose, the assumptions Um;D 2 H, i.e., strictly positive definite covariances, may be too restrictive in
practice. (Note that under such an assumption all random variables in Theorem 2 are automatically consistent.) This restriction
can be relaxed by using a more robust iterative assimilation method.

3.5. Main result: iterative assimilation method

We now present the iterative assimilation method that behaves in a more robust manner, in the sense that it can readily
deal with semi-positive covariance matrices.

Theorem 3. Consider a set of M forecast variables um;m ¼ 1; . . . ;M, satisfying (2.4) and with error covariance
Um ¼ E½�m�T

m� 2 H0, and data vector (2.6) with error covariance D ¼ E½��T � 2 H0. Assume3 that H1 ¼ I; set w1 ¼ u1 and
W1 ¼ U1. For m ¼ 2;3; . . . ;M, let
Km ¼Wm�1HT
m HmWm�1HT

m þ Um

� �y
wm ¼ wm�1 þ Kmðum �Hmwm�1Þ ¼ wm�1 þWm�1HT

m HmWm�1HT
m þ Um

� �y
ðum �Hmwm�1Þ;

Wm ¼ ðI� KmHmÞWm�1 ¼Wm�1 �Wm�1HT
m HmWm�1HT

m þ Um

� �y
HmWm�1

ð3:9Þ
he absence of any prior information about the truth state, we also consider this condition as required to avoid infinities: if we know nothing about the
ate ut , and (3.4) is violated, all the models and data essentially contain insufficient information to say anything about certain components of ut .
eless we must assign some value to these components. In order to communicate our lack of knowledge, prescribing infinite variance is the only

atively accurate assignment.
s assumption is made for simplicity and is related to the concern from footnote 2. Weakening this assumption (H1 – I) is possible but requires special
nt to avoid infinite variances in the early stages of the assimilation procedure. When H1 – I one can formulate a well-defined assimilation procedure so
(3.4) holds.
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Finally, assimilate the data vector:
K ¼WMH HUMHT þ D
� �y

wMþ1 ¼ wM þ Kðd�HuMÞ;
WMþ1 ¼ ðI� KHÞWM :

ð3:10Þ
Wm is the covariance of wm. When Um; D 2 H, then wMþ1 is the same as w from (3.6). If u1; . . . ;uM are consistent random vari-
ables, then wM is independent of the ordering in the iterative procedure (3.9).

We give the proof in the Appendix. It is in this proof that we require the definition of consistent model states in order to
guarantee that the assimilated state does not depend on the ordering of the model states.

There are many observations to make about the iterative procedure defined in Theorem 3.

� The iterative method allows the covariance matrices to be semi-positive. When the covariance matrices are positive, the
iterative method is equivalent to the direct method. Therefore the iterative method has a mathematically wider range of
applicability than the direct method.
� The assumption H1 ¼ I is made only to make presentation of the assimilation procedure clearer. Generally we are inter-

ested in dynamical systems, so there is a model state w from the previous time step that can be used
� The ordering of the assimilation procedure does not matter if the random variables um; m ¼ 1; . . . ;M, and d are consis-

tent. In fact it is also independent of the data/model ordering. Therefore, one can treat data as another set of model sim-
ulation results. Consequently, multiple and conditionally independent sources of data can be assimilated by simply
performing additional data assimilation steps, independent of the ordering.
� The matrix WM can be interpreted as a harmonic mean of the matrices Um when paired with the measurement matrices

Hm. If the Hm are all identity matrices, then WM is exactly 1=M times the harmonic mean of the Um, where Definition 1 is
used when any of the Um is semi-positive. See also the discussion at the end of Section 3.2.
� The iterative procedure outlined above is essentially a sequential application of a standard Kalman filter update. (Use of

the pseudoinverse is the main difference.) Thus, assimilation of each new model may be viewed as a single-model Kalman
filter update.
� The iterative scheme allows one to assimilate any subset of models and data at times when they are available. One prac-

tical use of this is the ability to assimilate only model states in the absence of data. An example of such a situation is given
in Section 4.3.

The iterative assimilation method can be implemented in a straightforward manner:

� Initialization. For model u1 and data d, perform the standard Kalman update to obtain an analyzed model state w1 with
covariance W1.
� Iteration. For m ¼ 2; . . . ;M, apply the procedure (3.9). In other words, consider the present assimilated model state wm�1

with its covariance Wm�1 to be the forecast state, and conduct a Kalman update using the new model prediction um as
‘‘data’’ (with measurement matrix Hm) to obtain the new analyzed state w ¼ wMþ1 and the analyzed model states
vm ¼ Hmw.

3.6. Some motivating examples

The direct assimilation approach is applicable to cases when the quadratic form J from (3.5) is positive definite; this is
satisfied, for example, under the assumptions of Theorem 2. In other cases, for example when some components have zero
variance, the iterative procedure is more appropriate. However, the iterative assimilation approach is only robust if the mod-
el states are consistent. If the model states are not consistent, then one must abandon the hope of producing an assimilation
that is faithful to all the models. We now present examples that showcase these various situations.

Suppose we have two models u1;u2 2 R2 with identity observation matrices H1 ¼ H2 ¼ I. The direct assimilation scheme
is to form the variable
w ¼ ðU�1
1 þ U�1

2 Þ
�1 U�1

1 u1 þ U�1
2 u2

h i
: ð3:11Þ
If U1 and U2 are positive definite, there is no issue. But let us explore the issue of continuity with respect to semi-positive
definite matrices. Let us parameterize these random variables with respect to a small positive perturbation e:
Ue
1 ¼

e 0
0 1

� �
; Ue

2 ¼
1 0
0 e

� �
;

u1ðxÞ ¼
u11

u12

� �
; u2ðxÞ ¼

u21

u22

� �
:
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The values of u1 and u2 are not important, but clearly their uncertainties depend on e. Small values of e correspond to the
case where u1 has little uncertainty in its first component, and u2 has little uncertainty in its second component. The ‘sen-
sible’ way to assimilate such states then, is to put most of the weight on u11 and u22. Indeed the direct assimilation procedure
does exactly this; for e > 0 we obtain from (3.11)
we ¼ 1
eþ 1

u11 þ eu21

eu12 þ u22

� �
:

We can define w ¼ lime!0we and Uj ¼ lime!0Ue
j . Clearly, w ¼ ðu11;u22ÞT . One can verify that either iterative procedure
w ¼ u1 þ U1ðU1 þ U2Þyðu2 � u1Þ ð3:12aÞ

w ¼ u2 þ U2ðU2 þ U1Þyðu1 � u2Þ ð3:12bÞ
produces this state w regardless of ordering (indeed U1 þ U2 ¼ I > 0 so the pseudoinverse is not even necessary). One may
then be tempted to use the direct approach (3.11), but by naïvely replacing all direct inverses �1 by pseudoinverses �. If we do
this and then apply (3.11), we obtain a state w ¼ ðu21;u12ÞT . This state is the opposite of what we should do: we completely
ignore the components that we have the most information about. This shows that the direct assimilation approach cannot be
remedied for positive semi-definite covariances.

Let us now show how the iterative scheme treats consistent random variables with semi-positive covariances. Again we
take u1;u2 2 R2, and we now prescribe the covariances
Ue
1 ¼

e 0
0 e

� �
; Ue

2 ¼
1 0
0 e

� �
:

We now expect that the procedure should discard u21 in favor of u11, and should equally weigh the values from u12 and u22.
When e > 0 we can use either the direct or iterative schemes to obtain
we ¼
1

eþ1 u11 þ eu21ð Þ
1
2 u12 þ 1

2 u22

 !
:

Taking limits we obtain wð1Þ , lime!0we ¼ u11;
1
2 u12 þ 1

2 u22
� �T as expected. Again define U1 ¼ lime!0Ue

1 and similarly for U2.
The iterative scheme (3.12a) produces the state wð2Þ ¼ ðu11;u12ÞT whereas the second scheme (3.12b) produces
wð3Þ ¼ ðu11;u22Þ. Both of these are potentially different from wð1Þ, and from each other. However, if u1 and u2 are consistent
random variables, then u12 and u22 are almost surely equal, and therefore wð1Þ ¼ wð2Þ ¼ wð3Þ almost surely, so that the final
choice among the three options is largely irrelevant.

If the random variables are not consistent, then all three w vectors differ with nonzero probability, but in this case there
can be no remedy: we have two models with a non-vanishing discrepancy that are both entirely sure of their own accuracy.

We close this section by noting that the ability to assimilate components with vanishing variance opens up attractive pos-
sibilities. One may enforce constraints of the analyzed state vector (e.g. conservation of mass) in a post-processing step by
treating the constraints as zero-variance data.

3.7. Bayesian interpretation of multi-model assimilation

To place the present scheme in context, it is instructive to consider its Bayesian interpretation. Let wk
,wðtkÞ denote the

assimilated state at time tk. From the Bayesian perspective, wk is a random variable whose distribution captures the current
state of knowledge about the truth state utðtkÞ. In other words, the distribution of wk is the posterior distribution of the sys-
tem state, given the data up to time tk and the available models.

To be more specific, the present scheme provides the mean and covariance of the posterior probability density
pðwkjd1:k

;M1; . . . ;MMÞ, where d1:k
, dðtkÞ;dðtk�1Þ; . . . ;dðt1Þð Þ are the data provided up to assimilation timestep tk and Mm

are individual models. If we had only one model M1 and one source of data, the posterior density of wk would be written
as
p wkjd1:k
;M1

� �
/ p dkjwk;M1

� �
p wkjd1:k�1

;M1

� �
¼ p dkjwk

� �Z
p wkjwk�1;M1
� �

p wk�1jd1:k�1
;M1

� �
dwk�1: ð3:13Þ
As is typical in Kalman filtering variants, the assimilation step approximates the data likelihood p dkjwk
� �

and the forecast

distribution p wkjd1:k�1
;M1

� �
as Gaussian, even if propagation of uncertainty through a forecast model results in a non-

Gaussian distribution. In this case, if the forecast state has mean uk
1, covariance Uk

1, and H1 ¼ I, such that
wk ¼ uk
1 þ �k

1; �k
1 � Nð0;Uk

1Þ;
then the posterior mean and covariance of wk are exactly given by the Kalman update specified in Section 2.2.
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With more than one model, it is natural to interpret modelsMm, m P 2, as providing additional terms in the likelihood

function, e.g. pm uk
mjwk;d1:k�1

;Mm

� �
, where uk

m , umðtkÞ. These terms can be justified as follows. Beginning with the multi-

model prior p wk�1jd1:k�1
;M1:M

� �
, each model propagates this distribution forward to the next assimilation time and adds its

own sources of randomness (e.g. parametric uncertainty or process noise). Each resulting model-specific forecast distribu-

tion is then described only by its mean uk
m and covariance Uk

m. One can write the forecasts as
Hmwk ¼ uk
m þ �k

m;
where �k
m � Nð0;Uk

mÞ. The resulting likelihood term is
pm uk
mjwk;d1:k�1

;M1:M

� �
/ exp �1

2
Hmwk � uk

m

� �TðUk
mÞ
�1 Hmwk � uk

m

� �� �
: ð3:14Þ
Note that the conditioning on all modelsM1:M reflects the fact that all of these forecasts began with the assimilated multi-
model state at timestep k� 1, but the model-specific subscript in pm emphasizes that subsequent forecasting was performed
only with the mth model.

Since the model forecasts are conditionally independent given wk, the likelihood terms can be combined to yield the mul-
ti-model posterior density:
pðwkjd1:k
;M1:MÞ / pðdkjwkÞ

YM
m¼2

pmðuk
mjwk;d1:k�1

;M1:MÞ
 !

p1ðwkjd1:k�1
;M1:MÞ: ð3:15Þ
Here the prior predictive p1ðwkjd1:k�1
;M1:MÞ is chosen to reflect the forecast of any one of the M models, hereM1. Assuming

H1 ¼ I, this distribution is Gaussian with mean uk
1 and covariance Uk

1.
We can motivate the form of the variational functional (3.5) for the direct assimilation method from this Bayesian anal-

ysis: note that maximizing the posterior probability given by (3.14) and (3.15) is equivalent to minimizing its negative log-
arithm. The negative log-posterior (modulo constants) is given by the functional J ½w� from (3.5).

Compared to other model averaging techniques, the present scheme does not need to specify additional dynamics on the
model space. Instead, the role of the covariance is paramount in determining the weight assigned to each model prediction
and to the data. The covariance-based scheme thus allows matrix-valued weights and is a natural generalization of the Kal-
man filter.

4. Examples

In this section we provide a few simple examples that illustrate the broad range of applicability of the model assimilation
approach previously detailed. Our implemented methods use the iterative procedure outlined in Theorem 3, and we assume
that all models represent consistent random variables. For our examples, this is a valid assumption: all involved random
variables have strictly positive covariances. The cost of the assimilation procedure does not suffer greatly from use of the
pseudoinverse implementation as a safeguard.

Our first example concerns a rudimentary differential equation y0 ¼ ay and uses Taylor polynomials as the models. The
second example is a related stochastic differential equation (SDE) example that uses the same Taylor polynomial models,
but showcases the complex interplay that can occur between the models and the data. Finally, we consider a periodic
one-dimensional advection problem with non-constant wavespeed to show how the strengths of different models can be
combined by using the multimodel assimilation approach.

4.1. An exponential model

Consider a system whose truth is given by
dut

dt
¼ aut ; ðutÞ0 ¼ u0;
for some u0. The observations are scalar and the measurement matrix H is the identity (here, the scalar 1). The measurement
noise e is assumed to be Nð0;r2Þ. For any m P 1, the forecast model propagators Gm from (2.3) are given by
GmðvÞ ¼
Xm�1

k¼0

ðaDtÞk

k!

 !
v ;
which is a degree-ðm� 1Þ Taylor approximation of the true solution. We first let Dt ¼ 0:05; a ¼ 1; u0 ¼ 0:1, and r ¼ 0:05.
We use M ¼ 2 models (constant and linear approximations). Having information about the models, we assume that the stan-
dard deviation of the propagation error ðutÞn � GmððutÞn�1Þ is given by 0:1Dtm�1: i.e., the constant model is assumed to have
error with standard deviation 0:1Dt, while the linear model’s error has standard deviation 0:1Dt2. Naturally these are not
entirely accurate and we can make far better assumptions about the error, but this will serve our purposes. Furthermore,
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we assume that data is only available every 5 timesteps—in the absence of data, the propagators Gm are used to obtained
analyzed states without any assimilation.

Note that by construction, all the forecast models are consistently biased below the true solution and data. If one adopts
Bayesian model averaging (BMA), then the analyzed state is guaranteed to be less accurate than the best available forecast
Fig. 4.1. Plot of the evolution of the forecast states along with indication of analyzed states and data with M ¼ 2 forecast models.
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model GM . This is because in the approaches such as BMA, data only manifest itself in the averaging weights via the posterior
probability. In our assimilation method, this shortcoming is naturally avoided.

We show the results of the data assimilation simulation in Fig. 4.1. We note in particular that while each of the two mod-
els undershoots the solution, the weight on the data is enough to bring the analyzed state closer to the data point. The vari-
ances of the forecasts are also plotted and the results are not surprising: the variances increase according to our coarse
assumption about the numerical discretization error, and at assimilation times the variance is reduced dramatically.

In Fig. 4.2 we show the evolution of these assimilation weights. In this case, the filter considers the computed variances of
the m ¼ 1 and m ¼ 2 model; compared to the measurement error variance, the data is slightly more accurate than the mod-
els, so the filter takes more information from the data. We run another test by (a) decreasing r2 to 4� 10�3, (b) increasing
our assumed numerical discretization error to Dtm, and (c) increasing the number of models to M ¼ 4, incorporating both
quadratic and cubic Taylor approximations. We show only the assimilation weights in the right-hand plot of Fig. 4.2.
Now the variances of the quadratic and cubic models are comparable to the data measurement error, so the filter places
more weight on the two accurate models. Of course, by decreasing the measurement noise r to a low enough level, we could
obtain data weights that are much larger than any of the polynomial forecasts. The figure shows that a steady state is
achieved quickly in terms of the assimilation weights that are placed on the data and models.

4.2. An SDE with multiplicative white noise

Let Wt ¼Wðt;xÞ be a standard Wiener process. We consider in this example the stochastic differential equation given by
Fig. 4.2
forecas
dut ¼ autdt þ butdWt ; utð0Þ ¼ u0;
which has an exact solution in terms of an Ito integral [16]:
ut ¼ u0 exp a� 1
2

b2
� �

t þ bWt

� �
: ð4:1Þ
We use the same models as the last example—Taylor polynomial approximations based upon the current state. We must
augment our assumption about the propagation error. We let the truth solution be a realization of (4.1). Brownian motion
is simulated by solving du ¼ dWt with an Euler method of stepsize 10�4. By making the crude assumption that
expðWtÞ � 1þWt þ 1

2 ðWtÞ2, we obtain that the standard deviation in a Dt step of propagation is u0b
ffiffiffiffiffiffi
Dt
p

expðða� 1
2 b2ÞDtÞ.

Every Dt time units, variances of the previous amount, as well as that corresponding to the discretization error of
0:1Dtm�1, are added to the current Um covariance. Since we have multiplicative noise, this noise is larger when um is large,
and smaller when um is small. Therefore we expect the assimilation procedure to place more weight on the models when jut j
is small, and less weight on the models when jut j is large.

We take a ¼ b ¼ 1 with u0 ¼ 0:5. We assimilate data, polluted by independent Nð0;2:5� 10�3Þ observational errors,
every 50 propagation steps and integrate up to t ¼ 3. The results of the evolution are shown in Fig. 4.3. The left-hand plot
shows that our assimilation method follows the truth solution with some relative degree of accuracy; we note that this hap-
pens despite the data, which sometimes is very inaccurate. The assimilation weights plotted on the right-hand side show
that the model puts weight on the data when the noise is small compared with the expected noise of the models. In other
cases it prefers the models over the data.

4.3. An advection example

Finally we present a few variations on the following example: our truth solution obeys the one-dimensional wave
equation
. Plot of the evolution of the assimilation weights for each of the forecast states along with the data. Left: M ¼ 2 forecast models. Right: M ¼ 4
t models.



Fig. 4.3. Plot of the evolution of the forecast states (top) along with the truth solution and provided data with M ¼ 3 forecast models for the SDE problem. At
this scale, models 2 and 3 are visually indistinguishable. Also plotted are the assimilation weights (bottom) for the models and the data. Since models 2 and
3 are piecewise linear and quadratic, respectively, they are indistinguishable in this plot due to the small stepsize and frequent assimilation.
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@ut

@t
¼ 1þ cðx;xÞð Þ @ut

@x
; x 2 ½0;2pÞ; ð4:2Þ
with initial data utðt ¼ 0Þ ¼ u0ðx;xÞ, meaning that u0 is random. Before discussing the numerical scheme, we first character-
ize the wavespeed c and the initial data u0. We introduce the orthonormal Fourier series functions /nðxÞ ¼ 1ffiffiffiffi

2p
p expðinxÞ. We
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let cðx;xÞ be a weakly stationary Gaussian random field with a permissible covariance function
CðrÞ ¼ E cðx;xÞ � EcðxÞ½ � cðxþ r;xÞ � Ecðxþ rÞ½ � defined by a sum of Fourier modes:
Fig. 4.4
Models
CðrÞ ¼
X
jnj6K

bCn/nðrÞ: ð4:3Þ
We also want c > 0 for all x with probability 1, which we enforce with high probability by imposing the mean EcðxÞ ¼ 4. ThebCn are given by 1
1þn2. We set K ¼ 15 for all the following simulations. The truth solution ut obeys the above equation for a

particular realization of the random field.
A similar set of assumptions is made about the initial data u0: it has the covariance function (4.3) with K ¼ 50 and the

same values for the bCn. The truth initial data again is a realization of this field. All our discretizations are finite-difference
methods, so all the fields are evaluated at grid points to produce degrees of freedom.

The numerical method we use to solve (4.2) will be an upwind finite-difference method, and we use periodic boundary
conditions. The vector of unknowns (point-evaluations) for model m is um, and entry n in the vector is denoted um;n. Since
c > 0, we have for example the following first and third order methods, assuming equidistant grids with stepsize h:
@um;n

@x
	 D1ðum;nÞ ¼

1
h

um;nþ1 � um;nð Þ;

@um;n

@x
	 D3ðum;nÞ ¼

1
h
�1

6
um;nþ2 þ um;nþ1 �

1
2

um;n �
1
3

um;n�1

� �
:

We then apply temporal discretization to the semidiscrete system
dum;n

dt
¼ Djðum;nÞ n ¼ 1;2; . . . ;N;
where the choice of accuracy j depends on the model. For all methods we use a fourth-order strong stability preserving ex-
plicit Runge–Kutta scheme to perform the temporal evolution with Dt ¼ 10�3 for all models and simulations. The truth solu-
tion is the finite-difference solution with N ¼ 900 equispaced points using the third-order upwind operator D3.

We consider four models; the first model u1 is a first order method using D1, but has a very fine equidistant mesh with
N ¼ 900. The second through fourth models are all third-order upwind schemes using D3, but have different coarser meshes.
For example, on the interval ½0;2p=3Þ;u2 is 3 times coarser than the grid for u1, and on ½2p=3;2pÞ it is 10 times coarser. A
qualitative plot of the grids for each model is shown in Fig. 4.4.

4.3.1. Assimilation of models
The first example here is to show that data-blind assimilation is also a useful method that can efficiently combine existing

models to provide a better guess of the true solution, provided rough error estimates for each of the models are available. In
this case we are not inserting randomness into the system: we generate one realization of c and use this as the wavespeed for
all models. However, due to the spatial discretization errors, we assume that each propagator Gm augments the covariance
matrix as follows:
Umðtkþ1Þ ¼ UmðtkÞ þ Jm; ð4:4Þ
where Jm is a diagonal matrix, whose nth diagonal entry is
Jmð Þn;n ¼ �hm;n
� �pðmÞ ð4:5Þ
and �hm;n is the average of the stepsizes of the left and right of the nth node of model m, and p denotes the spatial order of
accuracy of each model with pðmÞ ¼ 1 for m ¼ 1 and pðmÞ ¼ 3 for m ¼ 2; 3; 4. Although Jm is meant to be an error estimator
for the models, the approximation given by (4.5) is very rough. Furthermore, the covariance update (4.4) is not accurate since
it does not take into account the fact that error is advected across the domain, and assumes that the discretization error is
uncorrelated on the grid. Nevertheless, we proceed to use this covariance update to define the assimilation procedure. We
assimilate every 10 timesteps and integrate up to t ¼ 3 (300 assimilations). Since the average wavespeed is about 4, this cor-
responds to about 2 full cycles of the wave across the domain. The ‘2 error is measured as on the grid corresponding to u1,
. Qualitative plots of the grid densities for each of the four models considered. Model 1 has the finest grid, but uses a low-order finite difference.
2–4 have coarser grids in different parts of the interval, but use higher-order finite difference approximations.



6414 A. Narayan et al. / Journal of Computational Physics 231 (2012) 6401–6418
which is the finest grid. We show the evolution of this error in the top plot of Fig. 4.5, along with the errors of each of the
models without any assimilation procedures. We see that the assimilated state indeed picks the best parts of each solution
and combines them into one.
Fig. 4.5. Error plots for Section 4.3.1. Evolution of the ‘2 error (on the fine grid) against the truth for the four-model assimilation procedure. The top plot
shows a non-random simulation with multimodel assimilation with covariance update defined by (4.4). The bottom plot shows a simulation where there is
uncertainty present in the wavespeed and the covariance is computed via a 104-size ensemble.



Fig. 4.6. Truth wave vs. mean assimilated state for the advection model of Section 4.3.2. The snapshot on the right is shown at t ¼ 5 after 500 assimilations
and about three cycles of the wave through the domain.

A. Narayan et al. / Journal of Computational Physics 231 (2012) 6401–6418 6415
To further test the multimodel assimilation, we now test a more difficult and realistic situation. We take the same models
again. Suppose we are uncertain about the wavespeed; we again choose some realization of cðx;xÞ as the truth, and for each
model m, we perturb cðxm;nÞwith a mean-zero Gaussian, whose variance is proportional to �hpðmÞ

m;n . This uncertainty is meant to
mirror numerical discretization uncertainty, so now we forego the covariance update (4.4) and this time employ an ensem-
ble with 104 realizations to compute the covariance. The initial data for each model is exact—the only uncertainty that is
present is due to the uncertain wavespeed. We again see from the right-hand plot of Fig. 4.5 that because we have chosen
the uncertainty in the wavespeed to mimic the numerical discretization error, the discrete ‘2 between the truth and the
mean assimilated state is consistently smaller than that of any one of the models without assimilation.

4.3.2. Data assimilation
Now we introduce data into the system. We again consider the four models of the previous setup. However, now we take

11 equispaced point-value measurements on the domain. The data noise � is a multivariate mean-zero Gaussian with covari-
ance r2I, where r2 ¼ 10�4 and I is the 11� 11 identity matrix. We now also let the initial condition be uncertain: u0ðxÞ is a
random field described in the same way as cðx;xÞ.

Therefore, randomness is inserted into the system via three mechanisms:

� The truth initial data u0ðxÞ is a realization from the covariance function (4.3), and the ensemble of the initial data is sim-
ply taken as different realizations of this same field, evaluated at the appropriate grid values.
� The truth wavespeed is a realization of cðxÞ, but the gridpoint evaluations cðxm;nÞ (constant in time) are perturbed by

zero-mean multivariate Gaussians whose covariance is Jm, defined by (4.5).
� The data vector d is assumed to have covariance 10�4I, where I is the 11� 11 identity matrix.

We still employ an ensemble method with size 104, but we also encode information about the assumed accuracy of the
numerical models by performing the approximate covariance update (4.4) after computing the ensemble covariance. There-
fore our covariance incorporates uncertainty in the initial data and wavespeed through the ensemble, and uncertainty in the
numerical model through a post-operation at each time step of (4.4). We assimilate every 5 timesteps and integrate up to
t ¼ 5, which is more than 3 full rotations through the domain, and corresponds to 500 assimilations. We show the mean
assimilated state at t ¼ 5, compared to the truth, in Fig. 4.6. We emphasize that each of the models individually, even with
the data assimilation, do not closely follow the true wave at all. Only when we assimilate all the models do we obtain the
reasonable mean state shown in Fig. 4.6.

5. Conclusion

In this paper we presented a new framework for sequential data assimilation with multiple sources of models and data.
The framework can be considered as a notable generalization of the Kalman filter, which is widely used for single model data
assimilation. We presented the mathematical properties of the new method. More importantly, we also presented an effec-
tive iterative algorithm that essentially renders the implementation of the new method as a recursive two-model Kalman
filter scheme. The mathematical conditions under which the iterative algorithm is valid are established.

We remark that there remain many important modeling and computational challenges in the context of multiple model
averaging and filtering.

� The number of models considered may be extremely large, leading to significant computational expense.



6416 A. Narayan et al. / Journal of Computational Physics 231 (2012) 6401–6418
� One might like to remove models that are shown to be ineffective, based on some metric. A good example is the Occam’s
window technique [17].
� Effective and rigorous means of specifying the error covariance for each model in the current method is a challenge. This

is the same difficulty faced in the traditional Kalman filter setup. It represents the requirement to have a good prior
understanding of the models. (A similar requirement in BMA or DMA exists, as one needs to specify the prior model
probabilities.)
� Our method is employs a linear filtering technique to assimilate models and data. In situations when the truth state is

nonlinearly related to the model states as given by (2.5) then nonlinear filtering techniques become necessary. Such
extensions of our method could employ the Unscented Kalman Filter, particle filters, batch filters, or numerical solutions
of the Fokker–Planck equation.

We did not attempt to address these broader challenges in the present paper, and will conduct further study in the cur-
rent framework to address them.
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Appendix A

Here we compile proofs of results along with some mathematically relevant discussions. Given a linear subspace V 
 RN ,
we will use the notation PV to denote the Euclidean orthogonal projection operator onto V. The orthogonal complement of V
in RN is V?. Our main goals are the proofs of Theorem 1 and 3: that the harmonic mean FM defined in 1 satisfies properties
that justify calling it a mean, and that the iterative procedure for assimilation is order-independent. We start with the har-
monic mean, and since our main tool will be induction, it proves useful to consider the special case M ¼ 2.

Lemma 1. F2 is continuous in both arguments.
Proof. We show that W ,W2 is continuous. First we note that if ðker A1Þ \ ðker A2Þ ¼ f0g, then there is little to prove:
A1 þ A2 is invertible, and the standard inverse is continuous on the open set of invertible matrices, and so therefore W2 is
also. Therefore, assume that A1 and A2 have kernels with a nontrivial intersection, K ¼ ðker A1Þ \ ðker A2Þ. Let
We ¼ A1 þ
1
2
eI

� �
A1 þ A2 þ eIð Þ�1 A2 þ

1
2
eI

� �

We proceed by showing that for all v 2 CN; Wev !Wv. Let v ¼ vK þ vK? , where vK ¼ PKv. Let I ¼ PK þ PK? ¼ IKIT

K þ I?KIT
?K

be the spectral resolution of the identity on K and K?. Using the eigen decompositions of Aj and A1 þ A2, we have
Aj þ eI ¼ IK? IT
K?AjIK? þ eI

� �
IT
K? þ ePK

A1 þ A2 þ eIð Þ�1 ¼ 1
e

PK þ IK? IT
K? ðA1 þ A2ÞIK? þ eI

h i�1
IT
K? :
This implies, for example, that ðA1 þ A2 þ eIÞ�1vK? ¼ IK? IT
K?ðA1 þ A2ÞIK? þ eI

h i�1
IT
K?vK? , so we have that
WevK? ¼ IK? IT
K?A2IK? þ

e
2

I
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðaÞ

IT
K?ðA1 þ A2ÞIK? þ eI

h i�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

IT
K?A1IK? þ

e
2

I
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðcÞ

IT
K?vK? :
Terms (a) and (c) converge to IT
K?AjIK? as e! 0. Since IT

K?ðA1 þ A2ÞIK?
h i

is invertible, then term ðbÞ approaches the expression

without the e term. Noting that ðA1 þ A2Þy ¼ IK? IT
K?ðA1 þ A2ÞIK?

h i�1
IT
K? , and that the operator IK? IK? ¼ PK? is equivalent to the

identity on ranAj ¼ K?, we obtain

WevK? ! A1IK? IT
K?ðA1 þ A2ÞIK?

h i�1
IT
K?A2vK? ¼ A1ðA1 þ A2ÞyA2vK? :

The same properties derived above show that WevK ¼ e
2 PK 1

e PK e
2 PKvK, and so WevK ¼ 1

4 evK ! 0 ¼ A1ðA1 þ A2ÞyA2vK. Thus
Wev ! A1ðA1 þ A2ÞyA2v. h

Induction now allows us to show that FM as defined in (3.2b) satisfies standard operator mean qualities.
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Proof (Theorem 1). When appropriate, we show the results first for WM . All the results are a consequence of (i) the inductive
definition and (ii) continuity for M ¼ 2. First we show the results for M ¼ 2: For (1), continuity implies that W2 is Hermitian,
as well as that the eigenvalues are non-negative. Continuity (2) is Lemma 1. Consistency (3) for F2 is a direct result of the fact
that AAyA ¼ A for all matrices A (W2 is not consistent). Argument symmetry (4) is straightforward since W2 is Hermitian. (5)
is an easy consequence of continuity and the same result for W2 on H. We borrow monotonicity (6) from the theory of
strictly positive matrices [3] – taking limits along with continuity, this implies monotonicity on the completed space H0. To
extend the results to general M, induction is used. Since FM ¼ MWM , the results (1), (2), (4)–(6) clearly hold for FM as
well. h

We conclude by proving the order-independence of the iterative scheme (3.9).

Proof (Theorem 3). We will outline the proof only for the case when Hm ¼ I for all m. When Hm – I the ideas are essentially
the same, and the operations are similar to the standard single-model Kalman filter derivation, which is described in many
other texts.

If all the covariance matrices Um are invertible, then the iterative procedure is identical to the direct procedure, as can be
seen by manipulating standard matrix inverses with e.g. the Sherman–Morrison–Woodbury formula. It is thus independent
of the ordering. Now assume that there is at least one Um with vanishing eigenvalues. We will show independence of
ordering for M ¼ 2 and leave the rest to induction.

We first assume that Hm ¼ I for all m. Suppose that ðker U1Þ \ ðker U2Þ is the trivial subspace. Then U1 þ U2 is invertible, so
that
w2 ¼ ðI� U1ðU1 þ U2ÞyÞu1 þ U1ðU1 þ U2Þyu2

¼ ðI� U1ðU1 þ U2Þ�1Þu1 þ U1ðU1 þ U2Þ�1u2

¼ U2ðU1 þ U2Þ�1u1 þ ðI� U2ðU1 þ U2Þ�1Þu2

¼ ðI� U2ðU1 þ U2ÞyÞu2 þ U2ðU1 þ U2Þyu1
and the equivalence of the first and last lines show the order-independence for M ¼ 2. Thus, if the pairwise kernel intersec-
tions of fUmgM

m¼1 are all trivial, then the above shows order-independence for general M. Now suppose that
N ¼ ker U1 \ ker U2 is nontrivial so that the pseudoinverse is distinct from the traditional inverse. Then U1 þ U2 þ kPN > 0
for any k > 0, and ðU1 þ U2Þyu ¼ ðU1 þ U2 þ kPNÞ�1u for all u 2 ran ðU1 þ U2Þ ¼ ran I� PNð Þ. Let vj , ðI� PNÞuj. Then assimi-
lating u2 into u1 yields
wð1Þ ¼ u1 þ U1ðU1 þ U2Þyðu2 � u1Þ;
¼ ðI� PNÞu1 þ PNu1 � U1ðU1 þU2Þy½PNðu2 � u1Þ þ ðI� PNÞðu2 � u1Þ�;
¼ v1 þ U1ðU1 þ U2 þ PNÞ�1ðv2 � v1Þ þ PNu1:
Similarly, assimilating u1 into u2 yields
wð2Þ ¼ v2 þ U2ðU1 þ U2 þ PNÞ�1ðv1 � v2Þ þ PNu2:
Since PNvj ¼ 0, then
wð1Þ �wð2Þ ¼ PNðu1 � u2Þ:
Now if u1 and u2 are consistent model states, then there exists a vector y such that EPNu1 ¼ EPNu2 ¼ PNy, and so
E PNu1 � PNu2½ � ¼ 0. But PNu1 is a random variable with zero covariance so that EPNu1 ¼ PNu1 almost surely, and the same
for u2. Therefore, PNu1 ¼ PNu2 almost surely, and this implies that wð1Þ ¼ wð2Þ almost surely.

We have shown that ordering is independent for two consistent random variables when the observation matrices are
both the identity. By appropriate permutations, any group of random variables that are consistent can be assimilated in any
order. h
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