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Abstract. In this work we consider a general notion of distributional sensitivity, which
measures the variation in solutions of a given physical/mathematical system with re-
spect to the variation of probability distribution of the inputs. This is distinctively
different from the classical sensitivity analysis, which studies the changes of solutions
with respect to the values of the inputs. The general idea is measurement of sensitivity
of outputs with respect to probability distributions, which is a well-studied concept
in related disciplines. We adapt these ideas to present a quantitative framework in
the context of uncertainty quantification for measuring such a kind of sensitivity and
a set of efficient algorithms to approximate the distributional sensitivity numerically.
A remarkable feature of the algorithms is that they do not incur additional computa-
tional effort in addition to a one-time stochastic solver. Therefore, an accurate stochas-
tic computation with respect to a prior input distribution is needed only once, and
the ensuing distributional sensitivity computation for different input distributions is a
post-processing step. We prove that an accurate numerical model leads to accurate cal-
culations of this sensitivity, which applies not just to slowly-converging Monte-Carlo
estimates, but also to exponentially convergent spectral approximations. We provide
computational examples to demonstrate the ease of applicability and verify the con-
vergence claims.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07
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1 Introduction

Uncertainty quantification (UQ) has become an important tool for modelling in recent
years. Many physical systems have uncertainties caused by unknown parameters in the
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model or by measurement noise plaguing experiments. In such cases, it is critical to
understand and predict how the uncertainty affects quantities of interest (QoI) of the
systems. This introduces a new paradigm for scientific computing and extends the tradi-
tional deterministic simulations to stochastic simulations.

One of the major challenges for stochastic computation and UQ is the simulation cost,
as the dimensionality of simulations depends on the total number of random variables
that one employs to parameterize the inputs. The larger the dimensionality the higher the
cost, (the curse of dimensionality). To circumvent the difficulty, it is crucial to conduct
sensitivity analysis (SA) prior to simulations. The goal of the sensitivity analysis is to
determine which input variables have notable effects on the QoI and eliminate those
with negligible effects on the simulation.

In this work we discuss a different kind of sensitivity analysis-distributional sensitiv-
ity analysis (DSA), which is intended to quantify the impact on the QoI with respect to
changes in the probability distribution of the inputs. This is motivated by the fact that in
many cases there is not sufficient data or evidence to fully specify the probability distri-
bution of the inputs. Such kind of uncertainty is often referred to as epistemic uncertainty,
as opposed to aleatory uncertainty where probabilistic information about the inputs is fully
specified. For many practical systems, uncertain inputs often present themselves in the
form of epistemic uncertainty, and acquiring more information to specify their proba-
bility can be a (highly) costly, and sometimes impossible, task. One of the immediate
goals of DSA is to provide a guideline to direct the modeling effort. For inputs with large
distributional sensitivity (DS), more effort will be required to acquire their probabilistic
information; for inputs with small and negligible DS, it is acceptable to specify their dis-
tribution with something of computational convenience. By doing so, we can reduce the
total number of epistemic variables to a minimum. It is worth remarking on the differ-
ence between the DS and the traditional sensitivity. While an input with small sensitivity
in the traditional sense naturally implies small DS, there is no direct association on the
other hand, i.e., an input with large sensitivity in the traditional sense does not neces-
sarily imply large DS, and vice versa. Therefore, while the traditional SA is a necessary
step to reduce the computational burden for (aleatory) stochastic simulations, the DSA is
a necessary step to reduce the simulation effort for dealing with epistemic uncertainty.

Indeed, the underlying concern of DSA is the study of how assumptions about proba-
bility densities affects outputs. Unsurprisingly, this notion already exists in related fields;
one manifestation of this is the ”score function” approach [1, 13]. The score function
method assumes a parameterization of a family of input distributions and primarily uses
a Monte-Carlo estimate to compute sensitivities. The ”what-if” problem, extrapolation
of the QoI values to unsimulated density locations, is not a consideration of this paper.
The spirit of DSA is also captured in the study of local/global sensitivity analysis from
Bayesian statistics; this analysis studies the effect that the assumed prior has on the re-
sulting posterior [4, 9, 14]. Our problem is not in the context of Bayesian statistics; in
particular we are not concerned with updating our assumed ”prior”.

Since computational effort is of great concern in stochastic computations, it is desir-
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able to keep the simulation efforts for DSA to a minimum. In this paper, in addition to
proposing a definition of DS, we also present a set of numerical algorithms that require
only a forward stochastic simulation, which is needed for any traditional UQ computa-
tions, and reduce the evaluation of DS to a post-processing step. The forward stochastic
simulation will be based on two of the most widely used methods, generalized Polyno-
mial Chaos (gPC) based methods, and sampling-based methods.

This paper is organized as follows. Section 2 introduces notation and some requisite
definitions for distributional sensitivity. Section 3.1 discusses convergence theory for a
Galerkin-like discretization and Section 3.2 considers a sampling-based approximation.
Section 4 discusses the implementation aspects of computing distributional sensitivity.
Finally, we conclude with a few numerical examples in Section 5 and closing remarks in
Section 6.

2 Distributional sensitivity

2.1 Notations

Let Z ∈RD be a random variable on probability space (Ω,F ,ν), i.e.,

P[Z∈A]=
∫

A
dν.

We assume in this paper that any measure of interest ν is absolutely continuous with
respect to Lebesgue measure (λ) so that a density ρ exists:

P[Z ∈A]=
∫

A
ρdλ.

The density ρ of a measure ν will be denoted by its Lebesgue-Radon-Nikodym derivative
dν/dλ. We use Eν to mean the expectation of a quantity with respect to the measure ν and
Lp(ν) to mean the space of Lp integrable functions under the measure ν; the norm on this
space is denoted ‖·‖Lp(ν). When ν=λ, we use shorthand notation ‖·‖p for the norm. On
an inner product space, we denote 〈·,·〉ρ to be the inner product with respect to Lebesgue
measure weighted by the density ρ. If a measure η is absolutely continuous with respect
to a measure ν we write η≪ν. If the norm on Lp(η) dominates the norm on Lp(ν), i.e., if
there exists a constant K such that for all u∈Lp(η) we have ‖u‖Lp(ν)≤K‖u‖Lp(η), then we
write ‖·‖Lp(ν)≤‖·‖Lp(η).

Since we assume that all probability measures are dominated by λ, a density function
exists that is semi-positive on the interior of the domain; therefore the measure ν admits
a collection of L2(ν)-orthogonal polynomials. For example, if ν ∼N (µ,σ2), the normal

distribution, then dν/dλ is proportional to e−z2/2 on R and the Hermite polynomials
form such an orthogonal family. For Z = (z1,z2,··· ,zD) define the space of D-variate
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polynomials of degree N or less as

ΠN =span
{

zα1
1 zα2

2 ···zαd

d : αj ≥0,
d

∑
j=1

αj ≤N
}

.

Let P (ν)
N be the L2(ν)-projection operator defined by

〈
u−P (ν)

N u,v
〉

ρ
=0, v∈ΠN ,

where u∈L2(ν).

2.2 Problem setup

Assume a physical system is modeled by a differential operator

L(u;x;Z)=0, (2.1)

where u is the unknown quantity, x is the independent spatial/temporal variable (it is not
necessary for L to depend on time, and we do not distinguish between time and space
in our notation). We assume that L is well-posed in both the x and Z variables. There-
fore, for each realization z of Z we can solve the problem (2.1) and obtain the solution
u(x;z). We denote the QoI ξ, and it is usually obtained from u via integration over Z . For
example, ξ can be the mean or variance of u. For some generality assume

ξν(u)=
∫

f (u(z))dν(z)=Eν f (u), (2.2)

where f itself may integrate over t and/or x. In the specific cases where ξ is the mean or
variance, we make use of the notation µ and σ2, respectively:

µν(u)=Eνu, σ2
ν (u)=Eν[u−Eνu]2.

Many quantities of interest are computable once an approximation for the solution u has
been formed. However, there are situations when one is interested in estimating how
quantities of interest change with respect to the underlying distribution of the random
parameter Z . In addition, sometimes the distribution of Z may not a priori be known with
certainty. Such an example is the class of Bayesian inference problems when the density
function is continually updated based on newly computed data [10]. Having already
spent considerable computational expense in determining an approximation to u, one
is interested in quantifying the deviation in the approximation caused by incremental
changes to the density function. In addition, the input distribution to a numerical model
affects the computed quantities of interest; we propose below a quantitative method for
evaluating sensitivity of the model with respect to the underlying distribution.



144 A. Narayan and D. Xiu / Commun. Comput. Phys., 10 (2011), pp. 140-160

2.3 Distributional sensitivity

In order to quantify sensitivities with respect to distributional changes, we require a met-
ric on probability distributions. Such metrics are plentiful, we denote them as follows:

Definition 2.1. For measures ν and η, we let d(ν,η) denote any (possibly nonsymmetric)
distance over the measures.

Our allowance of nonsymmetry means that d is not necessarily a proper metric. Since
we assume that both ν and η are dominated by λ, we can use measures of distance be-
tween the densities as well. Some examples for d(·,·) are

d(ν,η)=
∥∥∥ dη

dλ
− dν

dλ

∥∥∥
1

(L1(λ) distance between densities),

d(ν,η)=
1√
2

∥∥∥
√

dη

dλ
−

√
dν

dλ

∥∥∥
2

(Hellinger distance),

d(ν,η)=Eη log
dη

dν
(Unsymmetrized Kullback-Leibler divergence).

In the numerical results of this paper, we only use the L1 metric; our experiments show
that the choice of metric is relatively unimportant. Various relations between the differ-
ent metrics can also be used to determine which is the appropriate choice for a given
problem [7, 9]. We are now in a position to define the distributional sensitivity:

Definition 2.2. Let u be the solution to Eq. (2.1). Consider ξ·(u) :U→RN , where

U
.
={ν : ν is a probability measure and ν≪λ}.

Then the continuous Distributional Sensitivity of ξ with respect to the measure ν in the
direction ∆ν≪λ is the modulus of the Gat̂eaux derivative of ξ at ν along ∆ν:

D̃Sξ [ν;∆ν]=
∥∥∥ lim

ǫ→0

ξν+ǫ∆ν(u)−ξν(u)

ǫ

∥∥∥, (2.3)

where ‖·‖ is the Euclidean norm.

See, for example, the same definitions in Section 3 of [9]. We elect to define the sen-
sitivity by not taking the derivative inside the integral in (2.2) as is done in the score
function method; in order to pass the derivative under the integral we require some ad-
ditional assumptions for mathematic rigor, and we could not keep the simplistic form
dependent explicitly on ξ.

With the unrestrictive definition of ξ in (2.2), it is possible for the distributional sen-
sitivity to not exist in some direction(s) ∆ν. Indeed, it is not necessarily the case that ξ
satisfies the stronger notion of Frechét differentiability at ν; such considerations are com-
mon in Bayesian sensitivity studies [3, 5]. The examples shown in Section 5 suggest that
ξ is frequently not Frechét differentiable. The above definition serves as inspiration for a
more easily computable, discrete version of the distributional sensitivity that we define
below:
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Definition 2.3. The discrete Distributional Sensitivity of the quantity of interest ξ be-
tween measures ν and η is defined to be

DSξ [ν,η](u)=

∥∥ξν(u)−ξη(u)
∥∥

d(ν,η)
. (2.4)

This finite-difference notion of sensitivity appears in many other contexts including
estimates of stochastic derivatives [2] and in obtaining Lipschitz stability results for solu-
tions to optimization problems [11, 12].

We emphasize that we only require the two measures η and ν to be members of the
same Banach space so that the continuous definition (2.3) makes sense (and therefore the
discrete definition (2.4) is meaningful). η and ν need not share a common parameteriza-
tion. In particular, if ν is some ”nominal” measure, the collection of perturbations {η}
over which we measure the DS could be characterized by complicated topology.

The remainder of this paper deals with the distributional sensitivity defined in Defi-
nition 2.3. Hereafter, the term ”distributional sensitivity” refers to the discrete distribu-
tional sensitivity. The distributional sensitivity is a function of ν and η and the definition
is not dependent on the particular numerical approximation of u. It is a measure of how
a quantity of interest changes depending on the assumed distribution of the random pa-
rameter(s).

Example 2.1. Consider a system whose solution u is given by the model

u(z1,z2)=exp(2z1)cos(3πz2). (2.5)

The unknown system parameters are z1 and z2 and we are interested in the mean and
variance of the output. Suppose the nominal state of the system dictates that z1 and z2

are independent uniform random variables over [−1,1]; denote this measure ν. Let us
devise a prioritization of the two parameters, measured by the effect that each has on ξ
(the mean or variance). To test the sensitivities of the system, now let zi ∼Beta(αi,αi) for
i=1,2. Let us call this new measure η. Using the L1(λ) distance metric, the following are
readily computable:

DSµ[ν,η](u) DSσ2 [ν,η](u)

α1 = 1
2 , α2 =0 0 4.2080

α1 =− 1
3 , α2 =0 0 5.0884

α1 =0, α2 = 1
2 0.2946 0.2198

α1 =0, α2 =− 1
3 0.6787 0.7008

The results clearly show that if the mean is considered, then the parameter z2 affects the
system more than z1; the reverse is true if the variance is the quantity of interest. This
conclusion is logically consistent when the solution u in the form (2.5) is considered. We
note finally that our choice of perturbed measures as being parameterized by the scalars
α1, α2 is done for convenience of exposition; there is no such restriction in the definition
of DS.
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We now discuss some useful facts about DS. If we choose the probability distance
function d(η,ν) as the L1 distance between the densities and use the definition of ξ pro-
vided in (2.2), then the distributional sensitivity satisfies

DSξ [η,ν](u)≤Eρ| f (u)|, (2.6a)

ρ=

∣∣ dη
dλ− dν

dλ

∣∣

Eλ

∣∣ dη
dλ− dν

dλ

∣∣ , (2.6b)

and ρ is a probability density with respect to λ. Even if a different distance function is
used, the bound (2.6a) is correct for any ξ of the form (2.2) (with the expectation changed
to an integral); however ρ may not be a probability density and may not satisfy (2.6b).

In some applications the particular distributional perturbations of interest may fall on
a one-dimensional parameterization, e.g.,

dν

dλ
(Z)= gα(Z)

for a scalar parameter α. In this case the discrete distributional sensitivity can be replaced
by a more accurate functional derivative. We obtain a new quantity:

D̂Sξ [ν,α](u)=
∣∣∣
∫

f (u)
∂gα

∂α
dλ

∣∣∣.

Then the above quantity coincides with the continuous distributional sensitivity D̃S. The
above case is mathematically equivalent to the modulus of the score function formula-
tion [13]; a unique (and important) aspect of the score function method is to write

∂gα

∂α
= gα

∂

∂α
loggα,

identifying sensitivity as an expectation, which is not done in our formulation. Of course,
in such a case when the parameterization is specifically available, the above quantity,
implemented using the score function approach, is preferred.

Finally, we remark that the definitions of distributional sensitivity extend to cases
when ν is not absolutely continuous with respect to λ. For the continuous case, one must
define the appropriate enclosing Banach space on which to apply the Gat̂eaux derivative.
For the discrete case, only a choice of probability distance d(·,·) is required. In particular,
the case of a discrete state space is an easy extension.

3 Numerical approximations of distributional sensitivity

The definition of distributional sensitivity is computable if the exact solution u is avail-
able. However in practice we have an approximation uN obtained by assuming Z∼ν, a
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”prior” density. In applications, we can compute the distributional sensitivity from the
approximation uN . We would like to know if our computed DS(uN) is comparable to the
true DS(u). We will characterize the computed DS in terms of the true DS by making
assumptions on the accuracy of uN .

3.1 Solutions converging in averaged norms

Let the solution u
(ν)
N be a numerical approximation of u, obtained by, for example, the

stochastic Galerkin solution of the original system:
〈
L

(
u

(ν)
N −u;x;Z

)
,φ

〉
ρ
=0, φ∈ΠN ,

where ρ=dν/dλ. Due to the strong L2-theory behind Galerkin approximations, it is often
possible to state convergence estimates between uN and u under an Lp-norm weighted
by the pdf ρ. If the norms induced by the two measures η and ν are related, then we
can prove convergence of the quantity of interest ξ in the cases when ξ is the mean and
variance. Here we discuss two widely encountered Lp-norms, the L1- and L2-norms.

Proposition 3.1. Assume that ‖·‖L1(η)≤‖·‖L1(ν), with

∥∥u−u
(ν)
N

∥∥
L1(ν)

< ε.

Then

∣∣DSµ[η,ν](u
(ν)
N )−DSµ[η,ν](u)

∣∣≤ 2ε

d(η,ν)
.

Proof. Due to the relationship between the norms, the true solution u with respect to
measure ν is also the solution with respect to η. Using the triangle inequality with the

definition of DSµ[η,ν](u
(ν)
N ), we obtain

d(η,ν)DSµ[η,ν](u
(ν)
N )≤

∣∣Eη(u
(ν)
N −u)−Eν(u

(ν)
N −u)

∣∣+
∣∣Eηu−Eνu

∣∣,

which implies that

d(η,ν)
(

DSµ[η,ν](u
(ν)
N )−DSµ[η,ν](u)

)
≤Eη

∣∣u−u
(ν)
N

∣∣+Eν

∣∣u−u
(ν)
N

∣∣.

The same bound can be obtained for DS(u)−DS(u
(ν)
N ) by using the triangle inequality on

the definition of DS(u). Now the dominance of the ν measure along with the assumption
of accuracy for the Galerkin solution establishes the result.

The assumption of the relationship between the norms here plays a role both in iden-
tifying a common solution u and in translating a bound in the η norm into one for the
ν norm. If the L2 error norm is bounded then the L1 assumption in Proposition 3.1 is
satisfied. In this case of stronger convergence, we have convergence of the variance:
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Proposition 3.2. Assume that ‖·‖L2(η)≤‖·‖L2(ν) and u∈L2(ν), with

∥∥u−u
(ν)
N

∥∥
L2(ν)

< ε.

Then

∣∣DSσ2 [η,ν](u
(ν)
N )−DSσ2 [η,ν](u)

∣∣≤ Kε
(
σν(u

(ν)
N )+µν(u

(ν)
N )2+ε2

)

d(η,ν)
.

Proof. As with the previous proposition, the triangle inequality applied to the definition

of DS(u
(ν)
N ) yields

d(η,ν)DSσ2[η,ν](u
(ν)
N )≤d(η,ν)DSσ2[η,ν](u)

+
∣∣∣Eη[u

(ν)
N ]2−Eηu2

∣∣∣
︸ ︷︷ ︸

(A)

+
∣∣∣(Eηu

(ν)
N )2−(Eηu)2

∣∣∣
︸ ︷︷ ︸

(B)

+
∣∣∣Eν[u

(ν)
N ]2−Eνu2

∣∣∣
︸ ︷︷ ︸

(C)

+
∣∣∣(Eνu

(ν)
N )2−(Eνu)2

∣∣∣
︸ ︷︷ ︸

(D)

.

By using Hölder’s inequality and the assumption on the norms, term (A) satisfies

∣∣∣Eη[u
(ν)
N ]2−Eηu2

∣∣∣≤2Kε‖u
(ν)
N ‖L2(ν)+ε2,

where K is the constant of relating the norms. Term (C) also satisfies this bound with
K =1. Similarly, one can bound term (B):

∣∣∣Eη[u
(ν)
N ]2−Eηu2

∣∣∣≤2Kε‖u
(ν)
N ‖L2(ν)+ε2,

and K =1 for term (D). This establishes the result when

DS(uN)≤DS(u).

The reverse bound can be obtained by using the triangle inequality on the definition of
DS(u).

The assumptions and results of the previous two propositions are not directly tied to
how the approximate solution uN is obtained. However, the assumptions on the relation-
ship between the true solution u and the approximate solutions uN are frequently proved
for many Galerkin approximations of differential equations. The critical requirement that
may become restrictive is that the η-norm is dominated by the ν-norm. In an extreme case
where the underlying measures do not even have the same support, bounds on the error
may not be possible.
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3.2 Solutions converging uniformly

In practice one may be able to obtain an approximate solution that is convergent uni-
formly in the random space. Such a stronger approximation (stronger than Lp-norm)
is usually a result of high regularity of the true solution in the random space. In this
case, convergence for the distributional sensitivity of the mean and variance are easier to
prove:

Proposition 3.3. Assume that ‖·‖L1(η)≤‖·‖L1(ν) and

‖uN−u‖L∞ < ε.

Then

∣∣DSµ[η,ν](uN)−DSµ[η,ν](u)
∣∣≤ 2ε

d(η,ν)
,

∣∣DSσ2 [η,ν](uN)−DSσ2 [η,ν](u)
∣∣≤Kε

|µν(uN)|+ε

d(η,ν)
.

Proof. Both proofs follow the methodologies of the previous propositions. The proof for
the mean µ is straightforward. For the proof of the variance, term (A) from the proof of
Proposition 3.2 can be bounded by

∣∣Eη[u
(ν)
N ]2−Eηu2

∣∣≤
∣∣Eη(uN−u)(uN +u)

∣∣≤ εEη(uN +u)≤ ε(2|µν(uN)|+ε).

The bounds for the remaining terms are obtained analogously.

If (a) uN is obtained as a Monte-Carlo estimate and (b) the measures are parameterized
so that

D̃Sµ[ν;∆να ]=
∣∣∣
∫

u
∂gα

∂α
dλ

∣∣∣

for some parameter α, then precise estimates of the bias are possible [19]; for example,

E
(
D̃Sµ(u)−DSµ(uN)

)2∼N− 2
3 .

These specialized results do not rely on the assumptions of the proposition.

In Proposition 3.3 we still assume that the ν-norm dominates the η-norm to relate the
η-mean to the ν mean. However, as long as we can guarantee pointwise convergence to
the common solution, computing the mean and variance with accuracy is always possi-
ble.

Although the convergence results of Propositions 3.1-3.3 are proven under the as-
sumption that a continuous density exists for each measure, this can be relaxed. In par-
ticular, the results remain true for discrete distributions (in which case one must replace,
e.g., L1 with l1).
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4 Computability of distributional sensitivity

Here we discuss numerical approaches for computing distributional sensitivity based on
two widely adopted stochastic solvers, the generalized Polynomial Chaos (gPC) methods
and sampling methods. A key feature of the proposed algorithms is that the computa-
tion of DS requires only a forward stochastic simulation, by either gPC or sampling, and
therefore renders the DS computation as a post-processing step. The gPC and Monte-
Carlo approaches are examples of how DSA can be used in computation; the formulation
of DS is not dependent on these two simulation methods.

4.1 Algorithms based on generalized polynomial chaos

The generalized Polynomial Chaos (gPC) approximation, made popular by the work
of [6,16], is a function expansion over stochastic space to approximate the dependence of
an unknown on the random parameters. Typically, the function expansion takes the form
of a polynomial expansion. That is, we seek an approximation uN , in a properly defined
polynomial space Π, such that ‖uN−u‖ converges in a proper norm. For example, let
u(x;·)∈L2(ν) for all x, and assuming Z∼ν, we expand u(x;z):

u(x;z)≃uN(x;z)=
N

∑
n=1

Ψn(z)ûn(x), (4.1)

where the {Ψn}∞
n=1 form an orthogonal basis for L2(ν). For practicality the state space is

usually chosen to be a Euclidean hypercube and the basis is chosen as a tensor-product
of orthogonal polynomials under the appropriate one-dimension marginal distributions
of ν. In the above expansion, an approximation uN is said to be of gPC order P if ΠP =
span{Ψn : n=1,2,··· ,N}.

Once the polynomial approximation is obtained, the solution statistics can be approx-
imated by computing the statistics of uN. Similarly, uN can be used to compute an ap-
proximation of ξ, the QoI, using (2.2). Our general form for ξ amounts to an integration
over Z-space so that as long as f (uN) can be expanded as in (4.1) then computing ξ
can be accomplished by integrating the basis functions Ψn, for which exact formulae or
quadrature may be used.

The crucial step in all of this is the computation of the gPC expansion coefficients û.
This is what separates the different flavors of polynomial chaos approximation, of which
the two most popular are:

• the Galerkin (or intrusive) approximation, in which an approximation uN ∈ ΠN is
sought such that 〈L(uN−u;x;z),v〉ρ =0 for all v∈ΠN , where ρ=dν/dλ.

• the Collocation (or nonintrusive) approximation, in which the approximation uN is
obtained from numerous samples in stochastic space u(x;zj), j=1,2,··· ,M. The gPC
coefficients ûn in (4.1) are usually computed using either interpolation or quadra-
ture.
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In either case, we call uN(z) the resulting approximation to u in parameter space assum-
ing Z∼ν. For more details on the methods, we refer the interested readers to the recent
literature, for example the review article [15].

When computing the distributional sensitivity of ξ(uN), we need to compute three
quantities: Eν[ f (uN)], Eη [ f (uN)], and d(ν,η). Depending on the choice of metric, d(ν,η)
can be computed via straightforward quadrature. Calculating Eν[ξ(uN)] is likewise
straightforward since we have obtained a gPC approximation for the solution under the
assumption that Z∼ν.

Using these coefficients, we can interpolate the approximate solution uN to any value
of Z . Therefore, we can derive an accurate quadrature rule for the new measure η (e.g.,
a Gauss rule) and use the interpolated values of uN to compute the integral in (2.2). This
method requires a gPC expansion of the QoI f , such that fN approximate f accurately.
This is usually accomplished via a stochastic collocation based method. Nevertheless,
once an accurate fN is constructed, the evaluation of DS requires manipulations of the
gPC polynomials and would incur no additional stochastic simulations.

4.2 Algorithms based on sampling methods

Another popular stochastic method is sampling, e.g., Monte Carlo sampling, or deter-
ministic sampling. The goal of sampling methods is often to evaluate solution statistics
such as mean, (co)variance, etc., and not to construct a polynomial approximation. In this
case, we can still evaluate the DS based on the sampling results, without requiring ad-
ditional simulations. We start with a collection of M realizations uj, j =1,2,··· ,M. These
realizations are taken from stochastic locations zj Without reconstructing the polynomial
then we have

Eν[ f (uN)]≃
M

∑
j=1

f (uj)ωj,

where ωj are the weights associated with the locations zj. For Monte Carlo sampling, the
weights are equal. The same quadrature rule can be used to compute Eη [ f ]:

Eη[ f (uN)]≃
M

∑
j=1

f (uj)ωj×
dη
dλ(zj)
dν
dλ(zj)

, (4.2)

where the last term is the ratio of densities between η and ν, or the Radon-Nikodym
derivative of η with respect to ν. Such a derivative exists as long as η is absolutely
continuous with respect to ν. This is not necessarily satisfied by our assumption that
λ dominates both measures, but in practice it is rarely a problem. The ratio of densities
can also be interpreted as a likelihood ratio between the two distributions. Implement-
ing (4.2) if we have the point-evaluations uj is trivial and can be applied to a broad class
of perturbations with minimal effort. The notion of likelihood estimation for epistemic
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uncertainty in stochastic systems [8] has established literature and is a well-understood
method. Since sampling methods are an example of how DS can be employed, we do not
discuss the alternative formulations of likelihood sensitivity estimators here.

If the measures are connected by a parameterization in this sampling-based setup,
the established practices of e.g., infinitesimal perturbation analysis and the score function
method [2] are well-understood and established and may well be preferred. In any case
the method (4.2) is inexpensive: the values f (uj) need only to be computed and stored
once; then (4.2) can be evaluated many times for a great variety of different likelihood
ratios. One caveat with this method is that if dη/dν is not a smooth function, then the
quadrature approximation (4.2) will not be accurate.

5 Examples

In this section we provide numerical examples. The purposes of the examples are to (1)
illustrate the procedure of computing DS numerically; and (2) demonstrate convergence
properties of the numerical DS. Since the topic of DS appears to yet be introduced to the
UQ field, our examples all take simple form. However, they include univariate cases
vs. multivariate cases, as well as stochastic ODE vs. stochastic PDE, and cover all the
key ingredients of computing DS. Again, for ease of exposition, almost all examples offer
sensitivity analysis for parameterized perturbations of the density.

5.1 One-dimensional interpolation

Suppose the solution to problem (2.1) has the form

u(Z)=exp[cos(15Z)],

where Z ∈ [−1,1] and Z∼Beta(3,2). We use the gPC approximation with Z∼Beta(3,2)
and we compute an N-term Galerkin expansion (i.e., a projection) using a high-order
quadrature. Having computing a gPC approximation to u, let us examine the distribu-
tional sensitivity of the mean and variance of u assuming perturbations in the parameters
of the Beta distribution. The perturbed density is then η∼Beta(3+∆α,2+∆β) for quanti-
ties ∆α and ∆β. We first report on the values of the distributional sensitivity by plotting it
against small changes in the perturbation parameters in Fig. 1. We see that the distribu-
tional sensitivity in this example exhibits a saddle-like structure, approaching one value
along ∆α+∆β = 0 and a different value along ∆α−∆β = 0. This shows that if epistemic
uncertainty is present in the distribution, the ”direction” of the perturbation is quite im-
portant. Also, this indicates that the Gat̂eaux differentiability in Definition 2.2 is perhaps
more relevant than Frechét differentiability. For this example, the distributional sensitiv-
ities of the mean and variance have very similar qualitative characteristics.

We now consider the convergence of DS(uN) to DS(u), where uN is either the
Galerkin or collocation gPC expansion. In Fig. 2 we show the difference between DS(uN)
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Figure 1: Contour plots of the distributional sensitivity of the mean (left) and variance (right) against the
perturbation parameters ∆α and ∆β. Darker lines indicates low-magnitude level sets.
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Figure 2: Plots of the mean and variance distributional sensitivity errors from the Galerkin (left) and collocation
(right) expansions.

and DS(u) as a function of N when ∆α =−0.05 and ∆β = 0.05. The Galerkin expansion
entails using a total of N gPC expansion coefficients to form the polynomial approxi-
mation uN and to find the mean and variance of that function by interpolating it to an
appropriate quadrature grid. The collocation expansion uses only N point-evaluations
of the solution and computes the means and variances using (4.2). The results show that
(spectral) convergence is obtained using both the Galerkin and collocation expansions;
this is expected since both the projection and the interpolant converge exponentially. It is
also worth noting with our choice of η∼Beta(2.95,2.05), then

‖·‖L2(η) 6≤‖·‖L2(ν),

as required by the convergence proofs in Section 3. Nevertheless, we do see convergence
in this example. This suggests that our requirements for the relationships between the
η and ν norms is a strong sufficient requirement and in practice weaker conditions are
sufficient.
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5.2 Truncation of infinite intervals

Consider now the differential equation

du

dt
=−Zu, t∈ [0,1]; u(0)=1,

where our quantities of interest are the mean and variance of u(t=1). The exact solution
to this problem is u= e−Z .

Using the definition we can compute the distributional sensitivity of the mean and
variance between two measures: a Gaussian measure ν, Z ∼ N(0,v) for a variance v
and a second measure η, Z ∼ Beta(α,α). We choose the state space of Z under η to be
Z∈ [−1,1]; the variance of ν is chosen to be v=1/4

√
2.

The domain is not truncated in computations of the distance metric. We will compute
distributional sensitivities between η and ν by varying the parameter α. Our method of
computation will be to use an approximation uN projected onto the N-dimensional space

ΠN using P (ν)
N . To ensure that we compute the correct quantities, Fig. 3 shows the error

between the distributional sensitivities of the mean and the variance as a function of N
for a fixed α=10. We see spectral convergence for our approximation of the distributional
sensitivity. This is expected since this example falls under the assumptions of Proposition
3.1.
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Figure 3: Error between the distributional sensitivity computed using uN and that computed using u. uN is the
Nth order Galerkin approximation under the measure ν. The exact solution u is taken as u50.

Having established the accuracy for our computation of the distributional sensitiv-
ity, we use uN , N = 20 to compute approximations to the distributional sensitivities of
the variance, taking α ∈ [10,20]. In Fig. 4 we show the L1 distance function d(ν,η) and
DSσ2(uN) as functions of α. The distance function shows a minimum near the value
α=15, but DSσ2 shows a minimum in a slightly different location. We omit the plot of the
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Figure 4: Plot of the L1 distributional distance d(ν,η) (left) as a function of α, the beta-distribution parameter

for η; also shown is the resulting distributional sensitivity of the variance σ2 (right).

distributional sensitivity of the mean, which shows similar qualitative features compared
to the variance, and differs mainly in magnitude.

5.3 A diffusion example

We examine the distributional sensitivity from an elliptic problem where the diffusion is
a random process [18]. The diffusion problem is given by

−∇x

(
κ(x;Z)∇xu(x;Z)

)
= f (x;Z). (5.1)

Here x ∈ [0,1] is the physical coordinate with homogeneous boundary conditions and
Z ∈RN is the N-dimensional random parameter Z = (z1,z2,··· ,zN). The diffusivity is
given by

κ(x;z)=1+σ
N

∑
k=1

zk

k2π2
cos(2πkx), (5.2)

where σ measures the strength of the overall randomness. The constant term is present
to ensure positivity of the diffusion. We do not allow ill-posedness of the problem and
therefore restrict zk to be bounded, zk ∈ [−1,1]. An analytic solution for (5.1) with dif-
fusion (5.2) is not available, so we use the P = 8 order gPC approximation as the true
solution u. We take N=4 and zk∼Beta(α,α) for all k. Let ν be the measure corresponding
to the distribution Beta(0,0)4 and η correspond to Beta(α,α)4, where Beta(α,β)N denotes
an N-variate componentwise-independent random variable with identical marginal dis-
tributions Beta(α,β). The quantity DSµ[ν,η](u) is plotted as a function of α and x in Fig. 5.
In this case the mean is relatively insensitive to the distribution of the perturbed random
variables. The sensitivity of the variance σ2 exhibits similar behavior.
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Figure 5: Plot of the distributional sensitivity DSµ(u) between measures ν=Beta(0,0)4 and η =Beta(α,α)4.

5.4 Supersensitivity

Finally we consider the viscous Burgers’ equation

ut+uux = ζuxx, (5.3a)

u(−1)=1+z2, u(1)=−1+z1, (5.3b)

where z2 and z1 are random parameters. The steady-state solution has the form

u∞(x)=−Atanh
( A

2ζ
[x−ξ]

)
,

for parameters A and ξ dependent on z2 and z1. The steady-state solution exhibits a steep
(but smooth) transition between positive and negative values at the location x=ξ, and A
is proportional to the transition slope. By solving a nonlinear system, the exact values of
A and ξ are computable using given values of ζ, z2, and z1. Details can be found in [17].
In this example, we fix ζ = 0.1. We are interested in quantifying the uncertainty of the
transition location ξ; in particular, we want to quantify the sensitivity of the mean and
variance of the transition layer with respect to the distributions of the uncertain boundary
conditions, represented by z2 and z1. Our quantities of interest are

µ=Eνξ, σ2 =Eνξ.

We assume that the stochastic parameters z1 and z2 have unknown distribution, but are
always restricted to the interval [−10−3,10−3] and are roughly uniform. It is known that
even with this small variation in the boundary conditions, the perturbation of ξ is O(1).
We initially assume that z1 and z2 are distributed uniformly and repeatedly solve (5.3a)
for multiple values of z1 and z2, thereby obtaining a stochastic gPC approximation for
u∞ over the (z1,z2) parameter space. The gPC approximation can take the form of a true
polynomial approximation that we can evaluate at any point in random variable space,
or as a collocation approximation where we collect point evaluations and use (4.2) to
compute expectations.
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Figure 6: Contour plots of the distributional sensitivity of the mean and the variance of the transition layer
location. The measures are the uniform measure ν and the perturbed measure η =Beta(α1,β1)×Beta(α2,β2),
where the perturbation takes of the form of a change in the distribution shape parameters. The diagonal plots
represent the value of the distributional sensitivity plotted against the value of the single perturbation parameter.

We denote the uniform distribution for (z1,z2) as the measure ν. As a first test,
we assume that the possible perturbations in the distribution of z1 takes the form
z1 ∼ η1 = Beta(α1,β1) with both α1 and β1 variable parameters. Similarly, we assume
that z2 ∼ η2 = Beta(α2,β2). Our perturbed measure is then the product ν = ν1×ν2. This
restricts the possible perturbations to a four-parameter family. Fig. 6 shows contour plots
of the distributional sensitivity for this perturbation for various couplings of two of the
four parameters; the two unused parameters are both set to 0 for each contour plot. The
(unplotted) symmetry against the main diagonal corresponds to transposition of the x-y
axes, and some of the observed symmetry along the antidiagonal in the figure corre-
sponds to symmetry in the parameters z1 and z2. Our experiments show that for this
example it makes little difference whether we use the approximate gPC projection by
computing expansion coefficients, or the gPC collocation approach of (4.2) to compute
the sensitivities.

For another example, we consider perturbation by a different four-parameter family.
Now the measure η is defined by the density function

dη

dλ2
(z1,z2)=

dν

dλ2
×g(z1,a1,b1)×g(z2,a2,b2), (5.4)

where the parameters are (a1,b1,a2,b2) and the shape function g are defined as

g(x,a,b)=

{
1, a|x−b|≥ 1

2 ,

1− 1
4 [t(x,a,b)2 +1][t(x,a,b)2− 1

2 ]exp[−t(x,a,b)2], a|x−b|< 1
2 ,

t(x,a,b)= tan[πa(x−b)×10−3].

The parameters 1/a and b correspond to affine scales and shifts, respectively, and the
function g is a localized, analytic ”bump” centered around x = b with approximate rel-
ative width 1/a. We allow the a variables to exist over the range [2/3,3/2] and the b
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Figure 8: Contour plots of the distributional sensitivity of the mean and variance of the transition layer location
as a function of four parameters defining the distributional perturbation of the boundary conditions. Darker
lines indicates contours of smaller-value level sets. The diagonal plots represent the value of the distributional
sensitivity plotted against the value of the single perturbation parameter.

variables to exist over the range [−0.25×10−3,0.25×10−3]. A plot of dν/dλ2 (which is
a probability density) for one realization of the 4-tuple (a1,b1,a2,b2) is shown in Fig. 7.
With this perturbation family, the distributional sensitivity of the mean and variance are
shown in Fig. 8. As before, we show contour plots when 2 of the 4 variables are allowed
to vary, keeping the other two at their nominal values (a is 1, and b is 0).

Our parameters of interest here are not the mean and variance of the solution, so
none of Propositions 3.1, 3.2, or 3.3 apply. Nevertheless, the gPC collocation expansion
provides an inexpensive approximation for the stochastic variation of the transition loca-
tion with uncertain underlying distribution.
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6 Conclusions

We have explored the notion of distributional sensitivity (DS) for modelling systems
where the underlying distribution is uncertain, where our definition of DS is extended
to a collection of probability distributions that does not need to be parameterized. The
concept of DS can help us to understand the relative importance (sensitivity) of the ran-
dom inputs, in the sense of how change of their probability distribution functions effect
the quantity of interest. We also discussed the numerical approximation of DS. When
the quantity of interest is the mean or the variance of the solution, we have shown that a
numerical algorithm that converges to the true solution under a measure will also yield
approximations to the distributional sensitivity that converge to the true value of the
distributional sensitivity.

The computation of the (discrete) distributional sensitivity can be accomplished in an
efficient post-processing step that is applicable for a wide class numerical discretizations,
including Monte-Carlo. With the generalized Polynomial Chaos discretization, we have
shown examples that verify the proven accuracy of the computed distributional sensitiv-
ity.
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