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Abstract

Longitudinal data arises in many applications in which
the goal is to understand changes in individual entities over
time. In this paper, we present a method for analyzing lon-
gitudinal data that take values in a Riemannian manifold.
A driving application is to characterize anatomical shape
changes and to distinguish between trends in anatomy that
are healthy versus those that are due to disease. We present
a generative hierarchical model in which each individual is
modeled by a geodesic trend, which in turn is considered as
a perturbation of the mean geodesic trend for the popula-
tion. Each geodesic in the model can be uniquely parame-
terized by a starting point and velocity, i.e., a point in the
tangent bundle. Comparison between these parameters is
achieved through the Sasaki metric, which provides a natu-
ral distance metric on the tangent bundle. We develop a sta-
tistical hypothesis test for differences between two groups of
longitudinal data by generalizing the Hotelling T 2 statistic
to manifolds. We demonstrate the ability of these methods
to distinguish differences in shape changes in a compari-
son of longitudinal corpus callosum data in subjects with
dementia versus healthily aging controls.

1. Introduction
A longitudinal study tracks changes in individuals by re-

peatedly collecting measurements over time. Longitudinal
studies are popular in medicine, where the goal is to under-
stand change processes, such as healthy development, ag-
ing, or disease progression. Often, shape is the quantity of
interest being tracked. For example, understanding changes
in neuroanatomy is a critical goal in the study of degenera-
tive diseases such as Alzheimer’s and in developmental dis-
orders such as autism. Longitudinal shape data also arises
in various branches of biology, such as as evolutionary biol-
ogy, where the evolution of the shapes of bones in the fossil
record is of interest. The main challenge for these studies
is that shape, i.e., the geometry of an object that is invari-
ant to rotation, scaling, and translation, is inherently nonlin-
ear and high-dimensional. Because of this, manifold repre-

sentations of shape have proven to be effective. Therefore,
analysis of shape changes necessitates the development of
models for dealing with manifold-valued longitudinal data.
Such models would also benefit other applications that in-
volve serial collection of manifold data, such as directional
data, transformation groups, and tensors.

Related to the longitudinal data analysis problem is the
regression problem. However, regression does not model
individual changes and is not appropriate for analyzing lon-
gitudinal data. Instead, regression models are used for de-
scribing cross-sectional data, where only one data point per
individual is available. Several authors have proposed meth-
ods for regression on manifolds. Jupp and Kent [6] propose
an unrolling method on shape spaces. Regression analy-
sis on the group of diffeomorphisms has been proposed as
growth models by Miller [10], nonparametric regression by
Davis, et al. [1], and second-order splines by Trouvé and
Vialard [16]. Shi, et al. [15] proposed a semiparametric
model with multiple covariates for manifold response data.
Recently, parametric models of regression, where the re-
gression function is a geodesic curve, have been introduced
independently by Fletcher [5] and Niethammer et al. [11].

Related work in longitudinal analysis includes several
approaches in the setting of diffeomorphic transformations,
which form an infinite-dimensional manifold, applied to im-
age sequences. Durrleman et al. [4] construct spatiotempo-
ral image atlases from longitudinal data. Qiu et al. [13] use
parallel translation to bring individual trajectories to a com-
mon point for comparison. Lorenzi et al. [9] use a hierar-
chical model on stationary velocity fields, in a framework
that does not include a Riemannian metric on the manifold
of diffeomorphisms. An important shortcoming of these ap-
proaches is that they do not model distances between trajec-
tories. This makes it difficult to compare the differences in
trends of two groups, or even to rigorously define the con-
cept of the variance of a population of trends.

We propose a generative hierarchical model for longitu-
dinal data analysis on Riemannian manifolds. Serial data
from each individual is represented by a geodesic trend in
the first stage, and these trends are in turn modeled as per-
turbations of the mean geodesic trend of the group in the
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second stage. Geodesic trends in both stages are uniquely
parameterized by their initial conditions: an initial position,
or “intercept”, and an initial velocity, or “slope”. We then
define a distance metric between trends, which allows us to
develop least-squares estimation of our model parameters, a
definition of the variance of trends, and a method for com-
paring the mean trends between two groups. We do this by
considering the slope-intercept pairs to be elements of the
tangent bundle, which can be given the structure of a dif-
ferentiable manifold with geodesic distances defined by the
Sasaki metric.

2. Riemannian Geometry Preliminaries

Before introducing our longitudinal model, we briefly re-
view some necessary facts about Riemannian geometry (see
[2] for more details). Recall that a Riemannian manifold
(M, g) is a differentiable manifold M equipped with a met-
ric g, which provides a smoothly varying inner product on
the tangent spaces of M . Given two vector fields v, w on
M , the covariant derivative ∇vw gives the change of the
vector field w in the v direction. The covariant derivative
is a generalization of the Euclidean directional derivative to
the manifold setting. Consider a curve γ : [0, 1] → M and
let γ̇ = dγ/dt be its velocity. Given a vector field V (t)
defined along γ, we can define the covariant derivative of
V to be DV

dt = ∇γ̇V . A vector field is called parallel if
the covariant derivative along the curve γ is zero. A curve
γ is geodesic if it satisfies the equation ∇γ̇ γ̇ = 0. In other
words, geodesics are curves with zero acceleration.

We write an element of the tangent bundle as the pair
(p, u) ∈ TM , where p is a point in M and u ∈ TpM is
a tangent vector at p. The tangent bundle TM can also
be given the structure of a differentiable manifold, which
is twice the dimension of the original manifold M . The
tangent bundle TM serves as a convenient parametrization
of the set of possible geodesics on M . Recall that for any
(p, u) ∈ TM there is a unique geodesic curve γ, with ini-
tial conditions γ(0) = p and γ̇(0) = u. This geodesic is
only guaranteed to exist locally. When γ is defined over
the interval [0, 1], the exponential map at p is defined as
Expp(u) = γ(1). In other words, the exponential map
takes a position and velocity as input and returns the point
at time 1 along the geodesic with these initial conditions.
The exponential map is locally diffeomorphic onto a neigh-
borhood of p. Let V (p) be the largest such neighborhood.
Then within V (p) the exponential map has an inverse, the
Riemannian log map, Logp : V (p) → TpM . For any point
q ∈ V (p), the Riemannian distance function is given by
d(p, q) = ‖Logp(q)‖. It will be convenient to include the
point p as a parameter in the exponential and log maps, i.e.,
define Exp(p, u) = Expp(u) and Log(p, q) = Logp(q).

If u, v, w are vector fields on a Riemannian manifold M ,
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Figure 1. Schematic of the geodesic longitudinal model.

the Riemannian curvature tensor R on M is defined as

R(u, v)w = ∇v∇uw −∇u∇vw +∇[u,v]w

where [u, v] is the Lie bracket of the pair of vector fields
u and v. Intuitively, for a manifold M , the curvature R
measures how far away it is from being “flat”, i.e., the man-
ifold being locally isometric to the Euclidean space. The
curvature tensor for the Euclidean space evaluates to zero,
and for a general manifold, R measures the extent of non-
commutativity of the covariant derivative.

3. Longitudinal Analysis on Manifolds

Our model is inspired by the work of Laird and Ware [8],
who proposed a hierachical mixed-effects model for longi-
tudinal data in a linear vector space. Consider a longitudinal
response variable for the ith individual, Yi, taking values in
a Riemannian manifold M . Realizations of the response
will be denoted yij , corresponding to the jth observation of
the ith individual. Let Xi denote the independent variable,
typically time, with realizations xij ∈ R corresponding to
each yij . We propose the following hierarchical model for
manifold-valued longitudinal data (see Figure 1).

Individual Level Each individual response, Yi, is mod-
eled by a geodesic trend with noise (cf. [5]),

Yi = Exp(Exp(pi, Xiui), εi). (1)

The inner exponential map is a geodesic curve for the ith
individual, determined by an initial position, pi, and veloc-
ity, ui, and parameterized with respect to the independent
variable, Xi. The outer exponential map models the ran-
dom variation of observations from this curve, where εi is
a random variable taking values in the tangent space at the
corresponding position on the geodesic, Exp(pi, Xiui).
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Group Level The parameters, (pi, ui), of the individual
trends are modeled as perturbations from a mean geodesic
trend for the population, which is determined by the param-
eters (α, β) ∈ TM . The group model is given by

(pi, ui) = ExpS((α, β), (vi, wi)), (2)

where (vi, wi) is a tangent vector of TM , representing
the change in the α and β parameters, and ExpS is the
exponential map on the tangent bundle TM , equipped with
the Sasaki metric described below.

Figure 1 gives a diagram of the proposed model. The ob-
servations yij for different individuals are drawn with dif-
ferent symbols. The dashed red curves depict the individual
geodesic trends given by (1), and the blue curve represents
the mean trend of the population given by (2).

To define the random variation of the individual trends
in the group level model (2) above, we equip the tangent
bundle TM with a Riemannian metric, called the Sasaki
metric [14]. This makes possible the geodesic perturbations
from the mean trend, given by the exponential map ExpS
on TM . Let the pair (v, w) represent a tangent vector to
TM at a point (p, u). Intuitively, v represents a change in
p, and w represents a change in u. Technically, v and w live
in the tangent space TpM , and they need to be “lifted” to
T(p,u)TM , i.e., the tangent space to TM at (p, u). The lift
of the v component, denoted vh, is called the horizontal lift
of v. Geodesics along vh changes the point p while parallel
translating u. The lift of w, denoted wv , is called the verti-
cal lift of w. Geodesics along wv leave p fixed and move u
linearly. We will use the notation (v, w) ≡ vh + wv .

Now, to define a metric on the tangent bundle TM , we
need to define the inner product between combinations of
horizontal and vertical components. Given two tangent vec-
tors a = (v1, w1), b = (v2, w2) ∈ T(p,u)TM , the Sasaki
metric ḡ(a, b), is given as

ḡ(vh1 , v
h
2 ) = g(v1, v2),

ḡ(vh1 , w
v
2) = ḡ(vh2 , w

v
1) = 0,

ḡ(wv1 , w
v
2) = g(w1, w2),

where g is the metric on M .
Let η(t) = (p(t), u(t)) be a geodesic curve in TM . Then

η satisfies the geodesic equation

∇̄η̇ η̇ = 0,

where ∇̄ is the covariant derivative defined by the Sasaki
metric on TM . Splitting η̇ into its horizontal and vertical
components, η̇(t) = vh(t) + wv(t), the geodesic equation
can be written as a pair of coupled equations,

∇vv = −R(u,w)v, (3)
∇vw = 0, (4)

where R is the Riemannian curvature tensor of the man-
ifold M . Notice that (3) says that the position compo-
nent, the p(t) ∈ M , will bend depending on the curvature
tensor and the vectors u, v, w, while (4) indicates that the
u(t) ∈ Tp(t)M component will change at a constant rate
given by the parallel vector field w(t).

3.1. Least-Squares Estimation

To estimate the parameters of the geodesic longitudinal
model in (1), (2), we use a two-step least-squares estimation
procedure. The least-squares problem is phrased in terms of
the sum-of-squared Riemannian distance between the data
and the model.

The first step is to estimate the slope and intercept
(pi, ui) ∈ TM for each individual, given data (xij , yij) ∈
R×M . Following the geodesic regression models in [5, 11]
we minimize the sum-of-squared residuals, giving

(p̂i, ûi) = arg min
(p,u)

ni∑
j=1

d(Exp(p, xiju), yij)
2. (5)

This minimization problem can be solved using gradient de-
scent, where the gradients are given in terms of Jacobi fields
along the current estimate of the geodesic. See [5] for more
details.

In the second step, we estimate the parameters (α, β)
in the group model (2). Again we take a least-squares
approach, where now we want to minimize the sum-of-
squared geodesic distances between the estimates (α̂, β̂)
and the individual trends (pi, ui). Now geodesic distance is
in the tangent bundle TM , with respect to the Sasaki met-
ric. This amounts to computing the Fréchet expectation of
the (pi, ui) in TM , which is defined as

(α̂, β̂) = arg min
(p,u)

N∑
i=1

dS((pi, ui), (p, u))2, (6)

where dS denotes geodesic distance in TM under the
Sasaki metric. A gradient descent procedure for minimizing
this equation is as follows:

Algorithm 1: Group Parameter Estimation
Initialize: (α̂, β̂)0 = (p1, u1)
Iterate over k:

δ = τ
N

∑N
i=1 LogS((α̂, β̂)k, (pi, ui))

(α̂, β̂)k+1 = ExpS((α̂, β̂)k, τδ)
While ‖δ‖ > ε.

The update δ in this algorithm is the negative gradient of (6)
at the current estimate, τ is a step size, and ε is the stopping
criteria. This algorithm requires that we have a procedure
to compute the exponential and log maps on TM under the
Sasaki metric, which we now develop.
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Figure 2. Example of a Sasaki geodesic on, TS2, the tangent bun-
dle of the sphere.

3.2. Computing Sasaki Geodesics on TM

In this section, we give algorithms for computing the
ExpS and LogS maps on TM with the Sasaki metric. For
most manifolds, these maps will not have closed form. But
for many useful manifolds, we do have closed form solu-
tions for computations on M . Thus, we formulate the dis-
cretized form of the geodesic equation on TM , in terms of
computations involving geodesics, parallel translation, and
the curvature tensor on M .

An example of a Sasaki geodesic on TS2, the tangent
bundle of the sphere, is shown in Figure 2. This was
computed using the LogS map algorithm described below.
A geodesic curve (p(t), u(t)) on the tangent bundle TS2

can be thought of as a curve on the sphere p(t), shown
in black, and a corresponding vector field u(t) along that
curve, shown in red. Notice that a geodesic on S2 would
be a great circle, and that the p(t) curve shown here is not a
geodesic on S2, but rather must bend according to the cur-
vature tensor term in (3).

Exponential Map: The Sasaki exponential map com-
putes a geodesic on TM with input initial conditions
(p0, u0) ∈ TM for the initial position and (v0, w0) ∈
T(p0,u0)TM for the initial velocity. We shoot a Sasaki
geodesic using an Euler integration on TM . Let k =
1, . . . , L be the discrete time step and ε = 1/L. The up-
date equations for kth step is

pk+1 = Exp(pk, εvk),

uk+1 = φ(uk + εwk, pk+1),

vk+1 = φ(vk − εR(uk, wk)vk, pk+1),

wk+1 = φ(wk, pk+1),

where φ(v, p) denotes parallel translation of the vector v to
the point p. Notice that pk+1 is simply a small step M -
exponential map in the direction of vk. All other computa-
tions are tangent vector computations. Once computed, they
need to be parallel translated to the next point, pk+1. Again,
the exponential map, parallel translation, and curvature ten-
sor for M are assumed to be known. We give specific for-
mulae for these when we consider example manifolds in the
next section.

Log Map: Starting with points a = (p0, u0) ∈ TM and
b = (pL, uL) ∈ TM , the Sasaki log map, LogS(a, b), re-
turns the tangent (v, w) ∈ TaTM , which is the initial veloc-
ity of the geodesic segment between a and b. Now we will
iteratively relax a discretized geodesic between a and b, de-
noted {(pik, uik)}, where k = 0, . . . , L is the discrete time
step along the curve, and i is the current iteration. The re-
laxation procedure minimizes the discrete geodesic energy,

E(p, u) =

L∑
k=1

(‖vk‖2 + ‖wk‖2),

where vk is the tangent vector of a geodesic segment on M
between pk and pk+1, and wk is the linear change between
uk and uk+1 after parallel translation.

Minimization of the discrete geodesic energy proceeds
by gradient descent as follows:

• The initial curve is obtained by discretizing the M -
geodesic between p0 and pL, and linearly interpolating
between u0 and uL in parallel translated coordinates as

uk = (1− k/L)φ(u, pk) + (k/L)φ(uL, pk).

• Compute the vik and wik as finite differences:

vik = Log(pik, p
i
k+1)/ε (7)

wik = (φ(uik+1, p
i
k)− φ(uik−1), pik)/(2ε) (8)

• Compute ∇vikv
i
k as a central difference,

∇vikv
i
k = (φ(vik+1, p

i
k)− φ(vik−1, p

i
k))/(2ε)

∇vikw
i
k is similarly computed as a second-order finite

difference of uik’s (i.e., repeated first-order finite dif-
ferences).

• The gradients of E with respect to pik and uik are

∇pikE = ∇vikv
i
k +R(uik, w

i
k)vik

∇ui
k
E = ∇vikwk

To clarify notation, the ∇ on the left is the gradient
of the energy, whereas the ∇ on the right denotes the
covariant derivative of tangent vectors along other tan-
gent vectors.
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• Now update the discrete curve in the negative gradient
direction:

pi+1
k = Exp(pik, δ∇ipkE)

ui+1
k = φ(uik + δ∇ipkE, p

i+1
k )

Given the converged discrete geodesic, the output of the
LogS map is the initial tangent (v, w), given by

v = Log(p0, p1)/ε

w = (φ(u1, p0)− u0)/ε

3.3. Testing Group Differences

One of the major motivations of longitudinal data anal-
ysis is to test if changes observed in one group differ from
those found in another. For instance, one might ask if the
brain anatomy of Alzheimer’s patients deteriorates faster
than those of healthily aging subjects. In this section we de-
velop a statistical hypothesis test for comparing the Sasaki
average trends between two groups. We do this by gen-
eralizing the Hotelling T 2 statistic to the manifold setting,
and applying this to the tangent bundle TM equipped with
the Sasaki metric. To test the statistical significance of the
group difference, we use a permutation test on this general-
ized T 2 statistic.

Recall the Hotelling T 2 statistic is a multivariate test of
the difference between sample means, p̄, q̄, of two groups of
data {p1, . . . , pm} and {q1, . . . , qn}, with all pi, qi ∈ Rd.
The idea is to compare the difference between the two
means, relative to the pooled sample covariance:

W =

∑
i(pi − p̄)(pi − p̄)T +

∑
i(qi − q̄)(qi − q̄)T

m+ n− 2
.

The T 2 statistic can be thought of as a squared Mahalanobis
distance between the means, using this pooled covariance,
W . The sample T 2 statistic is given by

t2 =
mn

m+ n
(p̄− q̄)TW−1(p̄− q̄)

To generalize the Hotelling T 2 statistic to the man-
ifold setting, consider two samples {p1, . . . , pm} and
{q1, . . . , qn}, with all pi, qi now being points on some Rie-
mannian manifold N . For the purposes of analyzing longi-
tudinal trends, we will mostly be interested in data on a tan-
gent bundle manifold N = TM equipped with the Sasaki
metric. Now we wish to develop a statistic for testing the
differences between the sample Fréchet means, p̄, q̄, of the
two groups. Note that p̄, q̄ are computed by solving the min-
imization problem (6). The difference between the means
can be represented as the tangent vector vp = Log(p̄, q̄),
or as the vector vq = Log(q̄, p̄). However, the difficulty is
that these two options live in two different tangent spaces,

vp ∈ Tp̄N and vq ∈ Tq̄N , respectively. Similarly, the sam-
ple covariance matrices for the pi and qi are defined in these
different tangent spaces. Therefore, pooling the sample co-
variance matrix is not straightforward. Instead we com-
pute two mean differences, one in each tangent space and
weighted by the respective single-group covariance, and
then average the results. This gives the following gener-
alization of the sample T 2 statistic:

t2 =
1

2

(
vTpW

−1
p vp + vTq W

−1
q vq

)
, (9)

where the individual group covariances are computed as

Wp =
1

m

∑
i

Log(p̄, pi) Log(p̄, pi)
T ,

Wq =
1

n

∑
i

Log(q̄, qi) Log(q̄, qi)
T .

To test the statistical significance of the manifold T 2

statistic, we use a nonparametric permutation test. The mo-
tivation for this is two-fold. First, it is difficult to formu-
late a parametric distribution for data on a general manifold
and then derive the resulting parametric distribution of the
T 2 statistic. Second, even if we had such a parametric for-
mulation, we prefer to not make such assumptions about
the distribution of the data we are given. The permutation
test procedure is as follows: (1) compute the t2 statistic, (2)
randomly permute (swap) data points between the p and q
groups, computing a t2k statistic for the permuted groups,
(3) repeat step 2 for k = 1, . . . , P , (4) compute the p-value:
p = B/(P + 1), where B is the number of t2k < t2. The
final p-value can be interpreted as the probability of finding
a larger group difference by random chance under the null
hypothesis (that there is no difference between the means).

We now return to the specific problem of comparing the
mean trends in two different groups. Consider two sets
of longitudinal data y

(1)
ij and y

(2)
ij on M and the result-

ing parameter estimates for the two groups, (α̂1, β̂1) and
(α̂2, β̂2), using the hierarchical model and estimation de-
scribed above. It is often most interesting to separate the
tests of the intercept parameter α and the slope parameter
β. For example, in testing the differences in anatomical
changes between a healthy and disease group, it is important
to distinguish if the shape differences are present at baseline
(intercept) or if they develop over time (slope). To make
this distinction, we can separate the above Hotelling T 2 test
into these two components. Let (v, w) be a tangent vector to
TM and define the projection operators π1(v, w) = (v, 0)
and π2(v, w) = (0, w). The two separated statistics, t2α and
t2β , are now given by (9), with the change that all tangent
vectors are replaced with their projected versions, using π1

for the α test and π2 for the β test. Note that this includes
projection of the vectors used in computing the covariances
Wp and Wq .
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4. Results
We validate the proposed model and estimation proce-

dure on two example manifolds. First, we generated data
from the geodesic longitudinal model on the sphere, S2,
and tested the least-squares estimation procedure with this
generated data. Second, we apply the geodesic longitudinal
model and Hotelling T 2 statistic to test group differences
in a real longitudinal data set of corpus callosum shapes in
individuals with and without dementia.

Review of Sphere Geometry: Let p be a point on an n-
dimensional sphere embedded in Rn+1, and let u be a tan-
gent at p. Let the inner product defined between tangents
at a base point p, be the usual Euclidean inner product. The
exponential map is then given by a 2D rotation on the sphere
by an angle given by the norm of the tangent, given as,

Expp(u) = cos θ · p+
sin θ

θ
· u, θ = ‖u‖. (10)

Likewise, the log map between two points p and q on the
sphere can be done by finding the initial velocity of the ro-
tation between the two points. Let πp(q) = p · 〈p, q〉 denote
the projection of the vector q onto p. Then the log map is
given by

Logp(q) =
θ · (q − πp(q))
‖q − πp(q)‖

, θ = arccos(〈p, q〉). (11)

Let u, v, w be tangent vectors at a point p, on the sphere.
Then the Riemannian curvature tensor for the sphere can be
written as

R(u, v)w = 〈w, u〉v − 〈w, v〉u (12)

Synthetic Longitudinal Sphere Experiment: To test the
estimation procedure in Section 3.1, we generated syn-
thetic data on S2 from our hierarchical longitudinal model
given in (1) and (2). We started with fixed parameters
α = (1, 0, 0), β = (0, π4 , 0) as the group intercept and
slope. We then generate (pi, ui) via the group model given
by (2). In this case, we generated 30 of these points on
TS2 via the Sasaki exponential map for each i, where the
(vi, wi), i.e., the vector perturbations about the mean trend,
were taken to be isotropic Gaussian with mean zero and
σ = π

16 . Once we had (pi, ui), we generated 8 time points
for each individual, with xij data from a uniform distribu-
tion on [0, 1], and isotropic Gaussian tangent vector resid-
uals, εij , with mean zero and σ = π

16 . We then used the
sphere exponential map to generate the data points yij via
the model (1).

Having generated data, we ran the least-squares estima-
tion procedure described in Section 3.1 to test whether we
can faithfully recover the same parameters α, β from which

Figure 3. Estimation of the geodesic longitudinal model for syn-
thetic data on the sphere. Shown are estimated individual trends
(red), estimated group trend (blue), and true group trend (black).

the data were generated. The results showed that the dis-
tance between the estimated (α̂, β̂) and the true (α, β) was
0.035. The resulting estimated model is shown in Figure 3.
The red vectors are the estimated (pi, ui) for each indi-
vidual, the blue vector is the estimated group parameters,
(α̂, β̂), and the black vector is the true values for (α, β)
from which the model was generated.

Review of Kendall’s Shape Space: Intuitively, shape can
be thought of as the geometric properties of an object that
remain, when location, scale and rotational effects are re-
moved. We use the shape space introduced by Kendall [7],
which is the Riemannian manifold formed by taking the
equivalence classes of configurations of k points in R2 un-
der translation, rotation, and scaling.

A specific case would be a configuration of k points in
the 2D plane. This can be represented as a complex k-
vector, z ∈ Ck. Removing translation means requiring the
centroid to be zero, which projects this point to the linear
complex subspace V = {z ∈ Ck :

∑
zi = 0}, which is

equivalent to the space Ck−1. Next, points in this subspace
are deemed equivalent if they are a rotated and a scaled ver-
sion of each other. This can be represented as multiplication
by a complex number, ρeiθ, where ρ is the scaling factor and
θ is the rotation angle. The set of such equivalence classes
forms the 2D shape space, also known in our representation
as the complex projective space, CP k−2.

Thus, we think of a centered shape p ∈ V as represent-
ing the complex line Lp = {z · p : z ∈ C\{0} }, i.e., Lp
consists of all point configurations with the same shape as
p. A tangent vector at Lp ∈ V is a complex vector, u ∈ V ,
such that 〈p, u〉 = 0.

The nice thing about the Kendall shape space is that
it forms a Riemannian manifold. The exponential map is
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given by rotating (within V ) the complex line Lp by the
initial velocity u, that is,

Expp(u) = cos θ · p+
‖p‖ sin θ

θ
· u, θ = ‖u‖. (13)

Likewise, the log map between two shapes p, q ∈ V is given
by finding the initial velocity of the rotation between the
two complex lines Lp and Lq . We first Procustes align q
to p by computing z = pq̄, which is the rotation needed
for this alignment. Let πp(zq) = p · 〈p, zq〉/‖p‖2 denote
the projection of the vector zq onto p. Then the log map is
given by

Logp(q) =
θ · (zq − πp(zq))
‖zq − πp(zq)‖

, θ = arccos
|〈p, zq〉|
‖p‖‖zq‖

.

(14)
Notice that we never explicitly project a shape onto CP k−2.
This has the effect that shapes computed via the exponential
map (13) will have the same orientation and scale as the
base point p. Also, tangent vectors computed via the log
map (14) are valid only at the particular representation p
(and not at a rotated or scaled version of p). This works
nicely for our purposes and implies that shapes along the
estimated geodesic will have the same orientation and scale
as the intercept shape, p̂.

The complex projective space is a Riemannian manifold
with non-constant curvature. The Riemannian curvature
tensor of CP k−2 can be computed as follows. Let u, v, w
be vectors at a point p ∈ CP k−2. These vectors can be
represented in Ck−1 ∼= R2k−2. Writing the vector w as
w = (w1, . . . , w2k−2), define the operator

Jw = (−wk, . . . ,−w2k−2, w1, . . . , wk−1).

(This is just multiplication by i =
√
−1 if we take w as a

complex vector with the k − 1 real coordinates listed first.)
Using this operator, the curvature tensor R∗ is given as

R∗(u, v)w = R(u, v)w + 〈v, Jw〉Ju
+ 〈w, Ju〉Jv − 2〈u, Jv〉Jw

where R is the curvature tensor of the sphere, S2k−1. For
more details, refer to [12].

Corpus Callosum Shape Changes in Healthy Aging vs.
Dementia: The corpus callosum is the major white mat-
ter bundle connecting the two hemispheres of the brain. A
midsagittal slice from a magnetic resonance image (MRI)
with segmented corpus callosum is shown in Figure 4. Sev-
eral studies have shown that the volume of the corpus callo-
sum decreases with normal aging [3]. There have also been
studies involving regional measurements, such as volume,
length, and local curvature. However, there hasn’t been a

Figure 4. Corpus callosum segmentation and boundary point
model for one timepoint of one subject.

Variable t2 p-value
Intercept α 0.734 0.248
Slope β 0.887 0.027

Table 1. Hypothesis test of group differences in corpus callosum
shape changes between non-demented and demented subjects.

longitudinal study of individuals with and without demen-
tia that takes into account the entire shape of the corpus
callosum. The advantage of analyzing anatomical data in a
shape space is that it takes into account all shape properties,
and their correlations, at once. There is no need to predefine
derived shape measurements (length, curvature, etc.).

The longitudinal data we used was from the OA-
SIS brain database (http://www.oasis-brains.org/).
This database has about 150 subjects, aged between 60 to 96
years old, with MRI for two or more time points. Each time
point is separated by at least one year. Each subject is char-
acterized as non-demented, demented, or as having con-
verted from non-demented to demented during the study.
For our study, we worked with only the male subjects, to
avoid gender effects. Also, we only worked with subjects
having MRI for at least 3 different time-points. These se-
lection criteria resulted in 69 total corpus callosum shapes
from 11 subjects with dementia and 12 without dementia,
each with 3 time points.

Figure 5 shows the result of the geodesic longitudinal
model estimation for the corpus callosum shape trends in
the dementia (top) and non-dementia (bottom) groups. The
estimated model parameters can be interpreted as the aver-
age shape at baseline (the intercept, α̂) and the change in
shape over the 6 year course of the study (the slope, β̂). The
average shape at the end six year time period (shown in red
for each group) was generated by shooting along a geodesic
starting at α̂ with initial velocity β̂. Note that the average
baseline shapes for the two groups are quite similar. How-
ever, there is a stark difference in the changes in the cor-
pus callosum over time, with the dementia group displaying
more drastic thinning and bending over six years.

To test the statistical significance of the difference be-
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Figure 5. Estimated corpus callosum longitudinal shape trends —
(top) non-demented males and (bottom) demented males. The
black shape in each figure is the estimated group intercept, α̂, rep-
resenting the mean shape at baseline. The red shape in each figure
is obtained by shooting along the geodesic trend determined by the
estimated group slope, β̂. This represents a time period of 6 years.

tween the two groups, we performed a permutation test with
the manifold Hotelling T 2 test as described in Section 3.3.
Differences in the mean intercepts, α̂, and the mean slopes,
β̂, were tested separately. We computed t2 statistics for
10,000 permutations and computed p-values for both inter-
cept and slope differences. These results are shown in Ta-
ble 1. The difference in the mean intercept parameters be-
tween the two groups was not found to be significant. This
matches the fact that the baseline shapes in Figure 5 look
fairly similar. However, comparing the two groups on the
basis of the slope parameter, i.e, how the corpus callosum
shape has changed over time, we found a significant differ-
ence. Again, this matches the obvious differences seen in
the end point shapes seen in Figure 5.

5. Conclusion
We proposed a generative, hierarchical model for longi-

tudinal data analysis of serial manifold-valued data. A key
property of this model is the power of comparing geodesic
trends on the manifold using the Sasaki metric of the tan-
gent bundle. This provides methods for estimating aver-
age geodesic trends and for comparing differences between
two groups of longitudinal manifold data. The power of the
model to distinguish group differences in shape trends has
been demonstrated in a comparison of longitudinal corpus
callosum data of subjects with and without dementia. While

the geodesic model proved effective for this application, fu-
ture work will include development of more flexible curve
models for individual trends on manifolds.
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