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Abstract 

Background:  Discordance of birth weight has been observed in twin pairs, though little is 

known about prenatal and early neonatal discordance of head and brain size, and the role that 

zygosity and chorionicity play in discordances of early brain development in twins.   

Aims:  To compare prenatal and neonatal discordances of head size in monozygotic –

monochorionic (MZ-MC), monozygotic-dichorionic (MZ-DC), and same-sex dizygotic-

dichorionic twin pairs (DZ-DC). 

Study Design:  Subjects prospectively had ultrasounds at 22 and 32 weeks gestational age, and 

magnetic resonance imaging (MRI) of the brain MRI after birth. 

Subjects:  88 twin pairs recruited from two university hospital prenatal diagnostic clinics; 22 

MZ-MC, 17 MZ-DC, and 49 same sex DZ-DC pairs.   

Outcome measures: Discordance of head circumference (HC) and weight at 22 weeks, 32 

weeks and birth, as well as intracranial volume (ICV) on neonatal MRI.  

Results:  There were no group differences in discordance of head circumference and weight on 

the 22 or 32 week ultrasounds, or at birth.  MZ-MC twins tended to have numerically greater 

discordances of HC and weight.  There was a significant group difference in ICV on neonatal 

MRI (ANOVA, p = 0.0143), with DZ-DC twins having significantly greater discordance than 

MZ-MC (p = 0.028) or MZ-DC (p = 0.0131) twins. 

Conclusions:  This study indicates that zygosity and chorionicity do not contribute to significant 

discordances of head size in late prenatal development.  DZ twins do have significantly greater 

discordances of ICV on neonatal MRI, suggesting a relatively greater genetic influence on brain 

growth in the first weeks after birth.  
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Introduction 

Twin studies compare phenotypic concordance in monozygotic (MZ) and dizygotic (DZ) 

twins to estimate the heritability of and environmental contributions to development of a trait or 

disease.  The twin study methodology has been applied to many neuropsychiatric and 

neurodevelopmental disorders, yielding heritability estimates of greater than 90% for autism 

(Freitag 2007), 70-88% for epilepsy (Kjeldsen et al., 2001), 81% for schizophrenia (Sullivan et 

al., 2003), and 70-80% for ADHD (Martin et al., 2002).  

Twin studies are based on the “equal-environment assumption” that twins have identical 

prenatal environments (Kendler et al., 1993).  However, adverse prenatal environments 

experienced by MZ twins may predispose them to disease and violate this assumption (Phillips 

1993).  One-third of MZ twin pregnancies are dichorionic (DC) and two-thirds are 

monochorionic (MC) (Machin 1995); DZ twins are DC.  Differences in placental status and thus 

in intrauterine environment may result in discordant growth.  

Estimates of the incidence of discordant growth in twin pregnancies range from 10 to 

30% (Kingdom et al., 2005; Bagchi and Salihu, 2006).  Discordance of birth weight has been 

associated with increased risk of neurologic morbidity in preterm twins (Adegbite et al., 2004), 

increased risk of morbidity and mortality in small for gestational age twins (Blickstein and Keith, 

2004; Yinon et al., 2005) and in twins born at term (Hack et al., 2008).  Overall, birth weight 

discordance has been shown to be greater in MC than DC twins (Corey et al., 1979; Dube et al., 

2002; Gonzalez-Quintero et al., 2003; Race et al., 2006; Hack et al., 2008; but see Chauhan et 

al., 2004; Blickstein et al., 2006). 

There have been a few studies that indicate that twins also have divergent brain growth.  

Prenatal biparietal diameter is discordant in MZ and DZ twins; this discordance becomes greater 

 3



at later gestational ages (Persson and Grennert, 1979).  We have previously shown in a 

retrospective study that MZ twins have discordances of head circumference and biparietal 

diameter on ultrasound in the second trimester that are similar to those observed in DZ twins 

(Gilmore et al., 1996).  This pattern of MZ twins having similar discordances as DZ twins was 

also seen in subsequent studies of prenatal biparietal diameter (Charlemaine et al., 1997) and 

head circumference (Charlemaine et al., 2000).  

The aim of this study is to better characterize the effects of zygosity and chorionicity on 

discordance of prenatal and neonatal measures of brain size using prenatal ultrasound and 

neonatal MRI.  Additional aims include the examination of: 1) the relationship of discordance of 

discordance of brain structure and weight; 2) the development of discordance over time; and 3) 

prenatal challenges and perinatal morbidities as predictors and outcomes of growth discordance.  
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Methods 

Subjects

This study was approved by the Institutional Review Board of the University of North 

Carolina (UNC) School of Medicine and Duke University Medical Center (DUMC).  Mothers 

with same-sex twin pregnancies were recruited from the outpatient OB-GYN clinics at UNC 

Hospitals from 2004 onwards and from the OB-GYN clinics at DUMC from 2004 to 2006.  

Exclusion criteria included maternal HIV infection, major congenital abnormality on fetal 

ultrasound, and chromosomal abnormalities of fetuses.  Fetal ultrasounds were performed in the 

second and/or third trimester, depending on gestational age at the time of recruitment, and MRI 

scans were performed at term, approximately 40 weeks gestational age.  For zygosity testing, 

PCR-STR analysis of 14 loci was performed on DNA isolated from buccal swab cell collection 

(BRT Laboratories, Baltimore, MD).  Chorionicity of twin pairs was determined by placental 

pathology (N=63) or ultrasound if placental pathology was not performed or unavailable (N=25).  

Birth weight, length and head circumference were obtained from delivery records.  

Pregnancy and delivery records were reviewed for the presence of pregnancy, birth and neonatal 

complications.  

Image Acquisition 

Mothers who were recruited in time for ultrasounds at 20-24 and/or 30-34 weeks 

gestation age received study ultrasounds in which head circumference (HC), biparietal diameter 

(BPD), abdominal circumference (AC), and femur length (FL) were measured.  Estimated fetal 

weight (EFW) was calculated by the Hadlock A formula (Hadlock et al., 1984).  Ultrasounds 

were done on an ATL Philips Ultramark HDI 5000 (Philips, Amsterdam, Netherlands) or GE 

Voluson Expert (General Electric, Fairfield, CT) and were performed at UNC or DUMC by one 
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of two study sonographers at each site.  Ultrasounds were clinically reviewed by a maternal-fetal 

physician (HMW) at UNC or a fetal ultrasound radiology specialist (BH) at DUMC.  

MRI scans were done on a Siemens 3T head-only scanner (Allegra, Siemens Medical 

System, Erlangen, Germany).  Neonates were scanned unsedated; subjects were fed before 

scanning, swaddled, given ear protection, and held in place with a vacuum-fixation device for the 

head.  A nurse was present during all scans, and heart rate and oxygen saturation were monitored 

with a pulse oximeter.  T1-weighted structural pulse sequences were T1w structural pulse 

sequences were either a 3D magnetization prepared rapid gradient echo (MP-RAGE 

TR/TI/TE/Flip Angle 1820/400/4.38ms/7°) or a 3D spoiled gradient (FLASH TR/TE/Flip Angle 

15/7msec/25°).  Proton density and T2 weighted images were obtained with a turbo spin echo 

sequence (TSE TR/TE1/TE2/Flip Angle 6200/20/119ms/150°).  Spatial resolution was 1 x 1 x 

1mm voxel for T1 weighted images, 1.25 x 1.25 x 1.5mm voxel with 0.5 mm interslice gap for 

proton density/T2 weighted images.  MRIs were clinically reviewed by a neuroradiologist (JKS).  

Image Analysis 

Brain tissue was automatically classified as gray matter, non-myelinated white matter, 

myelinated white matter and cerebrospinal fluid using an atlas-moderated iterative expectation 

maximization segmentation algorithm as previously described (Prastawa et al., 2005; Gilmore et 

al., 2007).   Intracranial volume (ICV) was the sum of the automatic full brain segmentation 

results for gray, white and CSF (ventricles and subarachnoid space) volumes. 

Statistical Analysis 

Intra-twin pair discordance of measures of brain and body size was represented as both 

absolute difference and as relative discordance (defined as |intrapair difference|/measurement in 

larger twin).  Relative discordance was included to correct for baseline differences in size at the 
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time of scanning.  One-way analysis of variance (ANOVA) was used to detect differences in 

intrapair discordance of biometrics from the second and third trimester ultrasounds, birth, and 

neonatal MRI between the MZ-MC, MZ-DC, and DZ groups.  Pearson’s correlation coefficients 

were calculated to examine the relationship between intrapair discordance of weight and intrapair 

discordance of other biometrics.  Linear regression on weight and head circumference 

discordance over time was used to look for differences in development of discordance between 

the three zygosity/chorionity groups.  For analysis of incidence of prenatal and postnatal 

complications in the three groups, Fisher’s exact test was used for categorical variables and one-

way ANOVA for continuous variables.  Additional analysis of prenatal and postnatal 

complications was performed by the same method with twin pairs divided into birth weight 

discordance groups based on relative birth weight discordance <15% or ≥15%.  All statistical 

hypothesis tests were conducted at a significance level of 0.05.   
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Results 

The final study sample consisted of 88 twin pairs with successful T1 scans, including 22 

MZ-MC, 17 MZ-DC, and 49 DZ twin pairs.  Within this sample, abnormalities noted on review 

of ultrasounds included polyhydramnios (5 subjects), oligohydramnios (6 subjects), twin-twin 

transfusion syndrome (1 subject), left ventricular echogenic focus (3 subjects), choroid plexus 

cyst (2 subjects), dangling/droopy choroid (1 subject), mild pelviectasis (8 subjects), 

hydronephrosis (2 subjects), and multicystic kidney (1 subject).  Abnormalities noted on review 

of MRIs included mild ventriculomegaly (4 subjects), small subdural hemorrhages (4 subjects), 

calcifications (3 subjects), prominent CSF spaces (2 subjects), periventricular leukomalacia (1 

subject), and dilated periventricular spaces (1 subject).  None of these subjects were excluded 

from this analysis.  There were no significant differences in maternal age or ethnicity, gender, 

gestational age at birth, or gestational age at second trimester ultrasound, third trimester 

ultrasound, or neonatal MRI between groups.  The MZ-MC group had significantly lower 

average birth weight and birth length than the MZ-DC and DZ groups (Table 1).  

There were no significant differences in absolute or relative discordance of EFW or HC 

at second or third trimester ultrasounds between groups (Tables 2-3, Figure 1).  Similarly, there 

were no significant differences in absolute or relative discordance of BPD, FL, and AC at second 

or third trimester ultrasound between groups (Tables 2-3). 

At birth, there were no significant differences in absolute or relative discordance of birth 

weight, birth length, or birth head circumference between groups (Table 4, Figure 1).  On MRI 

at term, the DZ group had significantly higher intracranial volume discordance overall (Table 4, 

Figure 2) as well as significantly greater discordance of head circumference at the MRI visit 

than the MZ-MC group (Table 4, Figure 2). 
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When placed in zygosity groups (without the additional factor of chorionicity), MZ twins 

had birth weight discordance comparable to that of DZ twins (MZ: 243.31g ± 179.04; DZ: 

241.46 g ± 188.32; p = 0.9630) while having lower intracranial volume discordance (MZ: 

20473.91 mm3 ± 12838.63; DZ: 33364.16 mm3 ± 24541.19; p = 0.0039).   

We sought to determine if relative discordance in head size was related to relative 

discordance in body size.  There were no significant correlations between discordance of EFW 

and discordance of head size metrics (BPD, HC) in the second or third trimester (Table 5), 

although there were significant correlations between discordance of EFW and discordance of 

other measures of body size (AC, FL) in some or all three zygosity-chorionicity groups (data not 

shown).  Postnatally, there was no significant correlation between birth weight discordance and 

birth head circumference discordance in any zygosity/chorionicity group (Table 5).  

Longitudinal analysis of discordance of weight and head circumference at second 

trimester ultrasound, third trimester ultrasound, and birth was performed for the subset of twins 

with scans at all three visits (N=41 pairs).  There were no significant differences in the changing 

pattern of weight discordance (heterogeneity of slopes = 0.50; p = 0.7383) or head circumference 

discordance (heterogeneity of slopes = 1.29; p = 0.2826) over time between the MZ-MC, MZ-

DC, and DZ groups. 

There were no significant differences in the rates of prenatal complications, including 

preterm labor, preterm premature rupture of membranes, pregnancy hypertension, perinatal 

diabetes, bleeding, placenta previa, infection during pregnancy, and advanced maternal age, 

between the MZ-MC, MZ-DC, and DZ groups (data not shown).  There was also no significant 

difference in the distribution of pairs with birth weight discordance <15% and ≥15% between the 

three groups.  (% ≥ 15% MZ-MC: 68.18%; MZ-DC: 88.24%; DZ: 81.63%; p = 0.3244).  The 
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rates of the same prenatal complications were then compared in groups of <15% and ≥15% birth 

weight discordant pairs rather than zygosity-chorionicity groups.  The rate of pregnancy 

hypertension differed between groups (BWD <15%: 8 with pregnancy hypertension (11.43%); 

BWD ≥15%: 6 (33.33%); p=0.0342).  There were no significant differences in rates of perinatal 

complications and proxies for prematurity, including total number of perinatal complications for 

pair, gestational age at birth, total days in NICU, total days of supplemental oxygen, and total 

days of intubation, between the three zygosity-chorionicity groups.  
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Discussion 

The primary goal of our study was to examine the effects of zygosity and chorionicity on 

discordance of brain size in twins before and in the first weeks after birth.  We found that there 

were no significant differences between MZ-MC, MZ-DC, and DZ twins in discordance of brain 

and body size measures in the second or third trimester or at birth.  There were no significant 

correlations between discordance of brain and body size measures before or at birth in any 

zygosity-chorionicity group.  Longitudinally, there were no differences in the changing pattern of 

weight or head circumference discordance over time between the MZ-MC, MZ-DC, and DZ 

groups.  Rates of most prenatal and perinatal complications were similar for zygosity-

chorionicity groups and birth weight discordance groups.  Finally, we found head circumference 

and intracranial volume were significantly more discordant in DZ twins at the term MRI visit. 

The similarity of discordance of HC and BPD across twin groups is consistent with 

previous studies (Persson and Grennert, 1979; Gilmore et al., 1996; Charlemaine et al., 1997, 

Charlemaine et al., 2000).  MZ-MC twins had greater relative discordance of birth weight 

compared to the other groups; while not statistically significant in our study, this is consistent 

with previous studies (Corey et al., 1979; Dube et al., 2002; Gonzalez-Quintero et al., 2003; 

Race et al., 2006; Hack et al., 2008).   

Head circumference and intracranial volume were significantly more discordant in DZ 

twins at the term MRI visit, which occurred on average 5.5 weeks after birth, while there were no 

significant differences in head circumference between groups observed at birth.  This is 

consistent with a previous study that found correlations of head circumference at birth to be 

similar between MZ and DZ twins, while correlations increased in the MZ twins at one month of 

age and thereafter, but did not change for DZ twins (Chen et al., 1990).  A subsequent study 
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found correlations of head circumference at birth to be greater in MZ twins compared to DZ 

twins (Livshits et al., 2000).  Brain growth in the early postnatal period is very rapid, especially 

growth of cortical gray matter (Gilmore et al., 2007).  There is also evidence that the genetic 

contribution to brain size and cerebral cortex thickness increases with age, at least in older 

children (Wallace et al., 2006; Lenroot et al., 2007).  In the weeks between birth and MRI, 

outside of the uterine environment, genetic factors may begin to outweigh environmental factors 

in the developmental trajectory, with the brain size of DZ twins becoming more discordant, and 

that of MZ twins becoming more concordant. 

In the prenatal period and at birth, MZ twins have discordance of brain and body size that 

is similar to that observed in DZ twins, in spite of being genetically identical.  This may be due 

to placental factors that make MZ twins more discordant than one might expect given their 

identical genetic makeup.  MC twins face additional challenges in utero.  Twin-twin transfusion 

syndrome complicates 10-15% of MC twin pregnancies (Duncan et al., 1997).  Placental factors, 

such as unequal placental sharing and “placental crowding,” have been associated with 

discordance and small for gestational age (SGA) size in MC twins (Fick et al., 2006; Blickstein 

et al., 2006; Lewi et al., 2007).  Even DC twins may be affected by placental factors as 

peripheral cord insertion (suggestive of a spatially limited intrauterine compartment) has been 

associated with SGA infants and discordant growth in both MC and DC twins (Redline et al., 

2001). 

Discordant growth of the brain may also arise for other reasons.  Though presumed to be 

genetically identical, MZ twins may have true genetic differences related to epigenetic 

dissimilarity, including DNA methylation (Singh et al., 2002; Fraga et al., 2005, Mill et al., 

2006) or differences in DNA copy number (Bruder et al., 2008). 
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We found no significant correlation between head size discordance and estimated or 

measured weight discordance before or at birth in any zygosity-chorionicity group, although 

there was a significant positive correlation between birth weight discordance and birth head 

circumference discordance in the overall sample.  A past study found no correlation between 

interpair differences of third trimester BPD and birth weight (Persson and Grennert, 1979), while 

another found a significant positive correlation between interpair difference of BPD and percent 

birth weight discordance (Brown et al., 1987).  Sensitivities of 9-35%, 68%, and 35.7-57.1% 

have been reported for a range of values of BPD discordance as predictors of birth weight 

discordance (Erkkola et al., 1985; Brown et al., 1987; Shah et al., 1994), demonstrating the lack 

of a close correlation between BPD discordance and overall growth discordance as seen in our 

findings. 

Our finding of a significantly higher incidence of pregnancy hypertension in twins with ≥ 

15% birth weight discordance concurs with a previous study that found an association between 

twin birth weight discordance and maternal hypertensive disorders, as well as smoking and 

increased maternal age (Sannoh et al., 2003).  Monochorionicity has been associated with 

adverse outcomes such as preterm delivery, increased rates of NICU admission and longer NICU 

stays, neurological and respiratory morbidities, and perinatal mortality (Sebire et al., 1997; 

Victoria et al., 2001; Dube et al., 2002; Acosta-Rojas et al., 2007; Hack et al., 2008).  Birth 

weight discordance has similarly been associated with a greater incidence of adverse perinatal 

outcomes (Hollier et al., 1999; Amaru et al., 2004; Vergani et al., 2004).  We found no 

differences in rates of perinatal morbidities between zygosity-chorionicity groups or birth weight 

discordance groups, but our ability to detect differences was limited by our sample size.   
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In summary, we found that MZ twins had discordance of brain size in the late prenatal at 

birth similar to those observed in DZ twins while after several weeks of postnatal development 

MZ twin brain size was significantly less discordant than DZ twins.  Prenatal discordances of 

brain size in MZ twins may be the result of variations in placental blood flow that would tend to 

violate the equal environment assumption of twin studies.  However, discordances of brain size 

after even a few weeks of postnatal brain development appear to reflect “normalization” of 

developmental trajectories, with MZ twins becoming more concordant.  We plan to follow this 

cohort into childhood to better understand the developmental trajectories of brain development in 

twins.  
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Table 1: Sample Demographics  

  MZ-MC MZ-DC DZ(-DC) Overall p-value* 
Number of pairs  22 17 49 88  
Maternal ethnicity 

N (%) White 
17 (77.27%) 11 (64.71%) 35 (71.43%) 63 (71.59%)  

 African-

American or 

Black 

4 (18.18%) 5 (29.41%) 14 (28.57%) 23 (26.14%)  

 Asian 1 (4.55%) 1 (5.88%) 0 (0%) 2 (2.27%) 0.3452 

Gender 

N (%) Male-male 
9 (40.91%) 9 (52.94%) 27 (55.10%) 45 (51.14%)  

 Female-female 13 (59.09%) 8 (47.06%) 22 (44.90%) 43 (48.86%) 0.5456 

Maternal age (years) 

Mean (SD) 

 
31.41 (6.28) 27.71 (4.13) 30.45 (6.67) 30.16 (6.23) 0.1639 

Gestational age at 2nd tr 

ultrasound (weeks) 

Mean (SD) 

 

27.21 (6.09) 28.10 (7.91) 27.05 (6.64) 29.30 (6.70) 0.8581 

Gestational age at 3rd tr 

ultrasound (weeks) 

Mean (SD) 

 

31.70 (1.15) 32.18 (0.89) 31.81 (1.00) 31.84 (1.02) 0.4525 

Gestational age at birth 

(weeks) 

Mean (SD) 

 

34.68 (2.57) 35.67 (2.79) 35.83 (2.31) 35.51 (2.50) 0.1924 

Gestational age at MRI 

(weeks) 

Mean (SD) 

 

40.59 (1.79) 40.61 (1.73) 41.48 (2.27) 41.09 (2.09) 0.1491 

Days from birth to MRI 

(days) 

Mean (SD) 

 

41.41 (19.03) 34.59 (22.36) 39.71 (22.85) 39.15 (21.75) 0.6064 

Average birth weight (g) 

Mean (SD) 

 2152.11 

(540.32) 

2423.35 

(542.8) 
2461.46 (516.24) 

2375.79 

(540.72) 

0.0055** 

 

Average birth length (cm) 

Mean (SD) 

 
44.37 (3.68) 47.26 (2.88) 46.28 (3.33 ) 45.98 (3.48 ) 

0.0006*** 

 

 
* Demographic factors were tested with three-group ANOVA except for maternal ethnicity and 

gender, which were tested with Fisher’s exact test. Overall p-values shown. 
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** Pairwise comparisons: MZ-MC vs. MZ-DC: p=0.0256; MZ-MC vs. DZ-DC: p=0.0015; MZ-

DC vs. DZ-DC: p=0.7179. 

*** Pairwise comparisons: MZ-MC vs. MZ-DC: p=0.0003; MZ-MC vs. DZ-DC: p=0.0022; MZ-

DC vs. DZ-DC: p=0.1520.  
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Table 2: Absolute and relative discordance of biometrics at second trimester 
 

 
Discordance 

type 
MZ-MC MZ-DC DZ(-DC) Overall 

p-value 

(ANOVA) 

Number of 

pairs 
 12 9 30* 51  

Absolute (g) 42.25 (24.77) 24.44 (18.89) 37.97 (36.36) 36.56 (31.42) 0.4172 EFW 

Mean (SD) Relative (%) 0.08 (0.05) 0.06 (0.04) 0.07 (0.06) 0.07 (0.05) 0.5455 

Absolute (cm) 0.44 (0.37) 0.59 (0.37) 0.55 (0.37) 0.53 (0.37) 0.6025 HC  

Mean (SD) Relative (%) 0.02 (0.02) 0.03 (0.02) 0.03 (0.02) 0.03 (0.02) 0.6229 

Absolute (cm) 0.16 (0.14) 0.21 (0.17) 0.16 (0.11) 0.17 (0.13) 0.5300 BPD  

Mean (SD) Relative (%) 0.03 (0.03) 0.04 (0.03) 0.03 (0.02) 0.03 (0.02) 0.4895 

Absolute (cm) 0.11 (0.06) 0.14 (0.11) 0.16 (0.15) 0.15 (0.13) 0.4516 FL  

Mean (SD) Relative (%) 0.03 (0.02) 0.04 (0.03) 0.04 (0.04) 0.04 (0.03) 0.5167 

Absolute (cm) 0.90 (0.67) 0.38 (0.27) 0.68 (0.64) 0.68 (0.61) 0.1547 AC 

Mean (SD) Relative (%) 0.05 (0.04) 0.02 (0.02) 0.04 (0.03) 0.04 (0.03) 0.1512 

 
* 29 DZ pairs had EFW and AC measurements.  
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Table 3: Absolute and relative discordance of biometrics at third trimester 
 

 
Discordance 

type 
MZ-MC MZ-DC DZ(-DC) Overall 

p-value 

(ANOVA) 

Number of 

pairs 
 18 11 40 69  

Absolute (g) 171.00 (144.66) 167.73 (141.16) 143.08 (120.21) 154.29 (128.95) 0.7023 EFW 

Mean (SD) Relative (%) 0.09 (0.08) 0.08 (0.07) 0.07 (0.06) 0.08 (0.07) 0.5272 

Absolute (cm) 1.17 (0.73) 0.49 (0.50) 1.00 (1.10) 0.96 (0.95) 0.1681 HC  

Mean (SD) Relative (%) 0.04 (0.02) 0.02 (0.02) 0.03 (0.03) 0.03 (0.03) 0.1099 

Absolute (cm) 0.31 (0.31) 0.23 (0.10) 0.38 (0.27) 0.34 (0.27) 0.2459 BPD  

Mean (SD) Relative (%) 0.04 (0.04) 0.03 (0.01) 0.05 (0.03) 0.04 (0.03) 0.2546 

Absolute (cm) 0.27 (0.18) 0.17 (0.15) 0.20 (0.15) 0.22 (0.16) 0.2455 FL  

Mean (SD) Relative (%) 0.04 (0.03) 0.03 (0.02) 0.03 (0.02) 0.04 (0.03) 0.1980 

Absolute (cm) 1.24 (0.97) 1.45 (0.94) 1.42 (1.48) 1.38 (1.27) 0.8672 AC 

Mean (SD) Relative (%) 0.04 (0.03) 0.05 (0.03) 0.05 (0.04) 0.05 (0.04) 0.9227 
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Table 4: Absolute and relative discordance of biometrics at birth and at MRI visit 
 

 
Discordance 

type 
MZ-MC MZ-DC DZ(-DC) Overall 

p-value 

(ANOVA) 

Number of 

pairs 
 22* 17** 49*** 88  

Absolute (g) 271.14 (193.57) 207.29 (156.57) 241.46 (188.32) 242.29 (183.16) 0.5633 Birth 

weight 

Mean (SD) Relative  0.12 (0.08) 0.08 (0.06) 0.09 (0.07) 0.10 (0.07) 0.2880 

Absolute (cm) 1.85 (1.60) 2.09 (1.97) 1.51 (1.30) 1.70 (1.51) 0.3835 Birth 

length 

Mean (SD) Relative  0.04 (0.03) 0.04 (0.04) 0.03 (0.03) 0.04 (0.03) 0.4509 

Absolute (cm) 1.19 (1.10) 0.86 (0.66) 0.96 (0.89) 1.00 (0.91) 0.5051 Birth HC 

Mean (SD) Relative  0.04 (0.03) 0.03 (0.02) 0.03 (0.03) 0.03 (0.03) 0.3692 

Absolute 

(mm3) 

21716.66 

(13131.61) 

18865.64 

(12659.92) 

33364.16 

(24541.19) 

27651.44 

(21112.94) 
0.01431

ICV 

Mean (SD) 
Relative  0.05 (0.03) 0.04 (0.03) 0.07 (0.05) 0.06 (0.04) 0.03342

Absolute (cm) 0.45 (0.43) 0.57 (0.58) 0.87 (0.75) 0.71 (0.67) 0.03103HC at 

MRI 

Mean (SD) Relative  0.01 (0.01) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.04214

* 21 MZ-MC pairs with birth length and birth head circumference  

** 15 MZ-DC pairs with birth length; 16 MZ-DC pairs with birth head circumference 

*** 48 DZ pairs with birth weight; 47 with birth length and birth head circumference 

1 Pairwise: MZ-MC vs. MZ-DC: 0.6650; MZ-MC vs. DZ: 0.0281; MZ-DC vs. DZ: 0.0131 

2 Pairwise: MZ-MC vs. MZ-DC: 0.6306; MZ-MC vs. DZ: 0.0578; MZ-DC vs. DZ: 0.0235 

3 Pairwise: MZ-MC vs. MZ-DC: 0.5658; MZ-MC vs. DZ: 0.0138; MZ-DC vs. DZ: 0.1068 

4 Pairwise: MZ-MC vs. MZ-DC: 0.5638; MZ-MC vs. DZ: 0.0183; MZ-DC vs. DZ: 0.1298 

 
 

 25



 
 
Table 5: Correlation of relative discordance of weight and head size at second trimester, third 
trimester, birth, and term MRI.  
 
  MZ-MC MZ-DC DZ(-DC) Overall 

EFW discordance vs. HC discordance 0.1486 0.6074 0.1986 0.2100 2nd 

trimester EFW discordance vs. BPD discordance 0.2291 0.8251 0.9480 0.4755 

EFW discordance vs. HC discordance 0.3587 0.3901 0.1661 0.2286 3rd 

trimester EFW discordance vs. BPD discordance -0.1640 0.3906 0.0207 -0.0375 

Birth/Term 

MRI 

BW discordance vs. birth HC discordance 
0.4072 0.4546 0.1923 0.31631

Pearson correlation coefficients are shown; statistically significant coefficients are in bold type.  

1p=0.0034; N=84 
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Figure 1a:  Discordance of head circumference.  There were no significant differences in 

absolute intrapair discordance of head circumference at 2nd trimester, 3rd trimester, or birth 

between groups.  Data shown in Tables 2-4.  

 

 
 
Figure 1b:  Discordance of estimated fetal weight and birth weight.  There were no significant 

differences in absolute intrapair discordance of weight at 2nd trimester, 3rd trimester, or birth 

between groups.  Data shown in Tables 2-4. 
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Figure 2a: Discordance of head circumference at MRI.  ANOVA: p = 0.0310; *DZ-DC vs MZ-

MC: p = 0.0138. 

 

 
Figure 2b: Discordance of intracranial volume at MRI visit.  Overall ANOVA: p = 0.0143; 

*DZ-DC vs. MZ-MC: p = 0.0281; **DZ-DC vs. MZ-DC: p = 0.0131.  
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