
A Software Framework for Solving Problems of Bioelectricity Applying

High-Order Finite Elements

M. Cole1, F. B. Sachse2, D. M. Weinstein1, M. Kirby1, S. Parker1

1Scientific Computing and Imaging Institute
2Nora Eccles Harrison Cardiovascular Research and Training Institute,

University of Utah, UT, USA

Abstract—Electrical activity in biological media can
be described in a mathematical way, which is applica-
ble to computer-based simulation. Biophysical based
mathematical descriptions provide important insights
in the electrical and electrophysiological properties of
cells, tissues, and organs. Examples of these descrip-
tions are Maxwell’s and Poisson’s equations for elec-
tromagnetic and electric fields. Commonly, numeri-
cal techniques are applied for calculation of electrical
fields, e.g. the finite element method. Finite elements
can be classified on the order of the underlying in-
terpolation. High-order finite elements provide en-
hanced geometrical flexibility and can increase accu-
racy of a solution. Aim of this work is the design of a
framework for describing and solving high-order finite
elements in the software package SCIRun/BioPSE,
which allows geometric modeling, simulation, and vi-
sualization for solving bioelectric field problems. Cur-
rently, only low-order elements are supported. Our
design for high-order elements concerns interpolation
of geometry and physical fields. The design is il-
lustrated by an exemplary implementation of one-
dimensional elements with cubic interpolation of ge-
ometry and field variables.

Keywords— Finite element method, bioelectricity,
SCIRun, Poisson equation, numerical techniques,
high-order elements

I. Introduction

Neurons and myocytes show a prominent electri-
cal activity, which is closely related to their function.
Measurement of the electrical activity is the basis
of several diagnostic techniques, e.g. electrocardio-
graphy (ECG), electromyography (EMG), and elec-
troencephalography (EEG). These diagnostic tech-
niques are not only used in clinical routine to obtain
information concerning the state of a patient, but
also serve as working horses in medical research and
development.

The electrical activity in biological media can be
described in a mathematical way, e.g. with Maxwell’s
and Poisson’s equations for electromagnetic and elec-
tric fields, respectively, as well as the Hodgkin-
Huxley equations for current flow through a neuron
membrane [1], [2]. Different numerical techniques
can be applied to solve these equations.

Commonly, finite element, finite difference and
boundary element methods are employed for nu-

This work was supported by a grant from the DARPA,
executed by the U.S. Army Medical Research and Ma-
teriel Command/TATRC Cooperative Agreement, Contract #
W81XWH-04-2-0012. Frank B. Sachse thanks for the support
by the Richard A. and Nora Eccles Fund for Cardiovascular
Research and the Nora Eccles Treadwell Foundation.

merical solution of the partial differential equations,
which describe electrical fields in biological media.
Each of these methods includes some kind of interpo-
lation, wherefore different levels of approximation are
applicable. In the finite element methods the inter-
polation concerns primarily the electrical potential
inside of an element and is carried out by so-called
shape-functions [3], [4].

A large family of shape-functions is based on poly-
nomial functions for interpolation of the solution
function. Commonly, polynomials of order 1 to 3 are
found for electrical field problems and the polyno-
mial order corresponds to the number of node points
describing the finite element. Higher order elements
provide an enhanced freedom to describe the solution
function and thus will generally improve the accuracy
of a solution, but increase organizational complexity
and computational demands of the solution process.

In this work a software framework for apply-
ing high-order finite elements to numerically calcu-
lated electrical fields in biological media is described.
The software framework is developed on basis of
SCIRun/BioPSE, which allows geometric modeling,
simulation, and visualization for solving bioelectric
field problems [5], [6]. Currently, SCIRun/BioPSE
includes already low-order finite elements, i.e. of first
order, which were available in tetra- and hexahedral
meshes.

II. Methodology

A. Stationary Electrical Current Fields

Stationary electrical current fields can be de-
scribed with Poisson’s equation, which is a simpli-
fication of the more general Maxwell’s equations for
electro-magnetic fields. The equation quantifies the
flow of current in materials owning electric conduc-
tivity. Further material properties are ignored, e.g.
electric permittivity and magnetic permeability. A
detailed description of the applicability of Poisson’s
in biological materials is given in [7].

Poisson’s equation for stationary current fields is
a partial differential equation:

∇ · (σ∇φ) = f in Ω (1)

with the scalar potential φ, the conductivity tensor
σ, the scalar current source density f , and the spatial
domain Ω. Commonly, the conductivity tensor σ is
of zeroth or second order. Commonly in applications



of the equation, boundary conditions are added, e.g.
Dirichlet and Neumann boundary conditions.

Equation (1) can be transformed to an equivalent
integral representation [4], [8], describing the electri-
cal power Π in a unit domain Ω0:

Π =

∫

Ω0

(

1

2
(∇0 φ)T σ(∇0 φ) + fφ

)

J dΩ0 (2)

with the Jacobian of the coordinate transformation
J .

B. Finite Element Methods

The ideas underlying the finite element method
were introduced with the classical work of Ritz and
Galerkin. The first step of application of finite ele-
ment methods to solve Poisson’s equations for elec-
trical current fields is a subdivision of the spatial
domain Ω into finite elements. Commonly, in these
elements the solution function, i.e. electrical poten-
tial φ, is interpolated by basis or shape-functions H,
which are selected dependent on the element’s geom-
etry as well as the order and type of interpolation.
In the domain Ω(m) of the m-th element the solution
function φ is given by:

φ = H(m) T φ(m) (3)

with the N -dimensional vector of node variables
φ(m). Commonly, these node variables describe the
solution function, i.e. electrical potential, at node
points. This assumption leads to requirements for

the shape-functions H
(m)
i determining their values

at the node points x
(m)
i :

H
(m)
i (x) =

{

1 : x = x
(m)
i

0 : x = x
(m)
j , j 6= i

(4)

A further, pragmatic requirement is, that the sum

of the shape-functions H
(m)
i at an arbitrary point is

given by:
N

∑

i=1

H
(m)
i (x) = 1 (5)

In some cases spatial derivatives of the solution
function, i.e. electrical field strength, enhance the de-
scription at node points. Commonly, the attributed
shape-functions fulfill also (4). Different kinds of
continuity of the interpolated function at the border
of elements can be provided depending on the order
of derivatives given at node points. Lagrangian el-
ements, which include no derivatives, guaranty C0

continuity. N-th order Hermitian elements provide
Cn continuity. The nodal concept can be extended
by defining variables at edge, face and element level
in combination with suitable shape-functions.

Solving electrical field problems as described by (2)
necessitates knowledge concerning the gradient of the

potential ∇φ. Spatial derivation of (3) delivers this
gradient:

∇φ = ∇
(

H(m) T φ(m)
)

=
(

∇H(m) T
)

φ(m) (6)

with the gradient of the shape-function’s vector
∇H(m).

The element-wise definition of (2) and combination
with (3) and (6) leads to:

Π(m)=

∫

Ω0

(
1

2
(∇0 H(m) T φ(m))T σ(∇0 H(m) T φ(m))

+f H(m) T φ
(m)) J dΩ0 (7)

with the transformed gradient operator ∇0 = J−1∇

and the Jacobian matrix J . In a similar manner,
conductivity σ and current source density f can be
interpolated inside of an element.

For each element a system of linear equations can
be be created by derivation of (7) concerning the
node variables. The unknowns of this system are
the node variables, i.e. the description of the solu-
tion function at node points. Finally, the element-
wise linear equations are assembled into the system
equations, boundary conditions are incorporated and
the system is solved with numerical techniques, e.g.
conjugate gradient and multigrid methods.

C. Status Quo of SCIRun/BioPSE

SCIRun includes classes for describing meshes and
fields, which are extensively used in BioPSE for cal-
culating of electrical fields. The field classes are de-
rived from a mesh class and include a single data
collection (Fig. 1a). Field classes are templated on
these two parameters. Similar to the concepts im-
plemented in the C++ Standard Template Library
[9], the classes fields and meshes were designed to
allow general algorithm coding. It is possible to im-
plement an algorithm for fields such that it com-
piles and executes correctly with any specific type.
The concept specifies the interface that all fields and
meshes classes must have. It is the uniformity of in-
terface that allows algorithms to be written once for
the general case, and compiled for each specific field
type. SCIRun has many such examples of generic
algorithms. Most of the modules are written as
generic algorithms and dynamically compiled at run-
time based on the exact field input type [10].

There are currently sixteen field and mesh classes
implemented all supporting the mesh concept. These
implement very different topologies and dimensions.
Fields classes range from structured to partially
structured to unstructured. LatticeVol is an exam-
ple of a structured field class. Nodes in the mesh are
specified simply by a spacing and an extents num-
ber of nodes in x,y, and z. TetVol is an example of
an unstructured field, where explicitly the node po-
sitions and all connectivity information is stored. In
all cases the mesh handles the topology. The field



<<SCIRun::Field>>
GenericField<Mesh, FData>

Mesh = CurveMesh
FData = vector<double>

<<SCIRun::Mesh>>
CurveMesh

<<std::vector>>
vector<T>

T = Scalar, Vector, Tensor

(a)

<<SCIRun::Field>>
GenericField<Mesh, Basis, FData>

Mesh = CurveMesh<CubicHermite1d<Point> >
Basis=CubicHermite1d<double>
FData = vector<double>

<<SCIRun::Mesh>>
CurveMesh<Basis>

Basis = CubicHermite1d<Point>
<<std::vector>>
vector<T>

T = Scalar, Vector, Tensor

<<SCIRun::Mesh>>
CubicHermite1d<T>

T = Point, Scalar, Vector, Tensor

(b)

Fig. 1. (a) Old and (b) new version of mesh and field concepts. The concepts differ concerning the availability of an arbitrary
interpolation basis in the new version.

owns both a mesh and a set of data that is speci-
fied to exist at node, edge, face, or cell centers. In
each case within cells the basis was linear, which has
influence on some part of the concepts.

D. New Field/Mesh Concept

While generality was achieved in the interface, field
and mesh interpolation were forced to be of low order
within elements. Allowing the greater accuracy and
flexibility of higher order basis functions, we designed
new field and mesh concepts, which accommodate in
a general way different kinds of basis. Here, meshes
were only responsible for the topological organization
of the nodes. A template parameter for describing
the interpolation basis was added to the mesh classes,
and all responsibility for how data changes within
an element is calculated in the class basis. Fields
similarly added a template parameter for describing
the interpolation basis. Field variables can have a
different interpolation basis than the mesh. Higher
order basis require additional variables stored within
the element, so memory savings can be employed by
mixing these basis without sacrificing accuracy.

E. Interpolation Basis

An interpolation basis concept defines the role of
the interpolation basis classes within interaction of
the field, mesh, and interpolation basis classes. This
interaction allows for generic algorithms to be com-
piled for any combination of the field, mesh, and in-

terpolation basis classes. Fig. II-E shows an example
of a general algorithm for interpolating a value at a
given point in space.

An interpolation basis class has a template param-
eter of its own, that describes the type of values in-
terpolated within the elements. In the case of meshes
the parameter is typically a class describing points.
For fields the parameter is commonly of type scalar,
vector, or tensor, but can be any concrete type. In-
terpolation basis classes provide methods to inter-
polate values and first and second order derivatives,
determining the parametric coordinates of a point,
piecewise linear approximate edges and faces for an
element, as well as interface to get the shape function
values separately for a given coordinate for interpo-
lation, first and second derivative. The interpolation
basis class stores any additional data required to sup-
port the basis functions, apart from the data meshes
or fields store, like derivatives for example. The in-
terpolation basis has no information concerning the
field or mesh that own them, but need to know val-
ues stored in these. To satisfy this some interface in
the interpolation basis have an additional template
argument. This additional parameter holds the in-
terface to get values held by a field or mesh. Even
within mesh type that it is easy to see that the mesh
knows how to provide these values. The LatticeVol
mesh has to calculate a point, where a TetVol can
do a lookup to return the point. A single interpola-
tion basis class type can be used for any mesh having



template <class FLD>

void interp(typename FLD::value_type &val, Point p, typename FLD::handle_type fld)
{

typedef typename FLD::mesh_type Msh;

typename FLD::mesh_handle_type mh = fld->get_typed_mesh();
typename Msh::Elem::index_type ei;

// The mesh finds the element that holds (or is nearest to) point p
mh->locate(ei, p);

// This vector of double accomodates any dimension
vector<double> coords(3, .0L);

// From the mesh and its basis find the parametric coordinates within the element
mh->get_coords(coords, p, ei);

// Ask the field to use its basis to calculate the field variable value at the parametric coordinate

fld->interpolate(val, coords, ei);
}

Fig. 2. Exemplary general algorithm for interpolating a value given some point in space. Similar algorithms are available for
interpolation of derivatives and for integration.

the same topology. A LatticeVol has the same topol-
ogy as a an unstructured volume based on Cubes.
Both can use the same set of basis implementations.
Changes in dimension require different basis imple-
mentations.

III. Results

The design of the framework was tested by ex-
emplary implementations of high order finite ele-
ments. The programming language C++ was em-
ployed. The previous field and mesh design had no
flexibility with regards to interpolation basis as can
be seen in Fig. 1a, which shows the template param-
eters required to create a one-dimensional field with
a linear basis. The new design given in Fig. 1b shows
a one-dimensional field that has scalar data, i.e. of
type double. The field variables are described by a
cubic hermitan basis. Also, the mesh uses a cubic
hermitan basis for describing its geometry.

Several function were implemented which provide
the basis for setup and solution of finite element mod-
els. Particularly, efficient methods were developed to
calculate first order derivatives, which are fundamen-
tal for setting up system matrices.

IV. Discussion and Conclusion

We presented a software framework for high or-
der finite elements to solve problems of bioelectricity.
The software framework extends the current capabil-
ities of SCIRun/BioPSE in such a manner that ba-
sis interpolation functions can be assigned to meshes
and fields.

The software framework supports not only the
frequently applied isoparametric elements, but also
combinations of different interpolation types for ge-
ometry and fields, e.g. low order geometrical interpo-
lation and high order field interpolation. The frame-
work simplifies the modeling and solution processes
of problems in bioelectricity due its general inter-
face. Independently of the element type, field values
and derivatives can be interpolated, e.g. at Gaussian

point for numerical integration.
he design for addition of higher order basis func-

tions in SCIRun maintains the generality that the
SCIRun fields and meshes have enjoyed. The frame-
work allows users to create their own basis classes
and use them within existing SCIRun field and mesh
classes. The generic algorithms that make up the
core of most SCIRun modules will compile and run
with their basis, assuming that the basis concept was
adhered to.

In future work we will implement a variety of
classes for three-dimensional interpolation of La-
grange and Hermition type. Additionally, methods
for efficient interaction with and visualization of high
order finite elements meshes will be developed. The
framework will be applied in forward calculations,
where the distribution of potentials is determined
from electrical sources, e.g. currents in the heart.

References

[1] J. D. Jackson, Classical Electrodynamics. Berlin, New
York: Wiley Text Books, 3 ed., 1998.

[2] A. L. Hodgkin and A. F. Huxley, “A quantitative de-
scription of membrane current and its application to con-
duction and excitation in nerve,” J. Physiol, vol. 177,
pp. 500–544, 1952.

[3] K.-J. Bathe, Finite-Elemente-Methoden. Berlin, Heidel-
berg, New York: Springer, 1990.

[4] H. R. Schwarz, Methode der finiten Elemente. Stuttgart:
Teubner, 3 ed., 1991.

[5] SCIRun: A Scientific Computing Problem Solv-
ing Environment. Scientific Computing and
Imaging Institute (SCI), University of Utah,
http://software.sci.utah.edu/scirun.html, 2002.

[6] BioPSE: Problem Solving Environment for modeling,
simulation, and visualization of bioelectric fields. Scien-
tific Computing and Imaging Institute (SCI), University
of Utah, http://software.sci.utah.edu/biopse.html, 2002.

[7] R. Plonsey and D. B. Heppner, “Considerations of quasi-
stationarity in electrophysiological systems,” Bulletin of
mathematical biophysics, vol. 29, pp. 657–664, 1967.

[8] F. B. Sachse, Computational Cardiology: Modeling of
Anatomy, Electrophysiology, and Mechanics. LNCS
2966, Berlin, Heidelberg, New York: Springer, 2004.

[9] B. Stroustrup, The C++ programming language. Boston:
Addison-Wesley, 3 ed., 1997.

[10] M. Cole and S. Parker, “Dynamic compilation of C++
template code,” vol. 11, pp. 321–327, IOS Press, 2003.


