
J Sci Comput
DOI 10.1007/s10915-011-9535-x

Efficient Implementation of Smoothness-Increasing
Accuracy-Conserving (SIAC) Filters for Discontinuous
Galerkin Solutions

Hanieh Mirzaee · Jennifer K. Ryan · Robert M. Kirby

Received: 12 May 2011 / Revised: 1 August 2011 / Accepted: 25 August 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The discontinuous Galerkin (DG) methods provide a high-order extension of the
finite volume method in much the same way as high-order or spectral/hp elements extend
standard finite elements. However, lack of inter-element continuity is often contrary to the
smoothness assumptions upon which many post-processing algorithms such as those used
in visualization are based. Smoothness-increasing accuracy-conserving (SIAC) filters were
proposed as a means of ameliorating the challenges introduced by the lack of regularity at
element interfaces by eliminating the discontinuity between elements in a way that is consis-
tent with the DG methodology; in particular, high-order accuracy is preserved and in many
cases increased. The goal of this paper is to explicitly define the steps to efficient compu-
tation of this filtering technique as applied to both structured triangular and quadrilateral
meshes. Furthermore, as the SIAC filter is a good candidate for parallelization, we provide,
for the first time, results that confirm anticipated performance scaling when parallelized on
a shared-memory multi-processor machine.

Keywords High-order methods · Discontinuous Galerkin · SIAC filtering · Accuracy
enhancement

H. Mirzaee · R.M. Kirby
School of Computing, University of Utah, Salt Lake City, Utah, USA

H. Mirzaee
e-mail: mirzaee@cs.utah.edu

R.M. Kirby
e-mail: kirby@cs.utah.edu

J.K. Ryan (�)
Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands
e-mail: J.K.Ryan@tudelft.nl

mailto:mirzaee@cs.utah.edu
mailto:kirby@cs.utah.edu
mailto:J.K.Ryan@tudelft.nl

J Sci Comput

1 Introduction

The discontinuous Galerkin (DG) methods provide a high-order extension of the finite
volume method in much the same way as high-order or spectral/hp elements [17, 27]
extend standard finite elements. The DG methodology allows for a dual path to conver-
gence through both elemental h and polynomial p refinement, making it highly desirable
for computational problems which require resolution fidelity. In the overview of the de-
velopment of the discontinuous Galerkin method, Cockburn et al. [4] trace the develop-
ments of DG and provide a succinct discussion of the merits of this extension to finite vol-
umes.

The primary mathematical advantage of DG is that unlike classic continuous Galerkin
FEM that seeks approximations which are piecewise continuous, the DG methodology only
requires functions which are L2 integrable. Much like FEM, DG uses the variational form;
however, instead of constraining the solution to being continuous across element interfaces,
the DG method merely requires weak constraints on the fluxes between elements. This fea-
ture provides a discretization flexibility that is difficult to match with conventional continu-
ous Galerkin methods.

Lack of inter-element continuity, however, is often contrary to the smoothness assump-
tions upon which many post-processing algorithms such as those used in visualization are
based. A class of post-processing techniques was introduced in [7, 22] as a means of gain-
ing increased accuracy from DG solutions through the exploitation of the superior conver-
gence rates of DG in the negative-order norm; these filters have as a secondary consequence
that they increase the smoothness of the output solution. Building upon these concepts,
in [25, 28] smoothness-increasing accuracy-conserving (SIAC) filters were proposed as a
means of ameliorating the challenges introduced by the lack of regularity at element inter-
faces while at the same time maintaining accuracy constraints that are consistent with the
verification process used in the original simulation. In essence, in the application domain,
one seeks to increase smoothness without destroying (i.e. by maintaining) the order of accu-
racy of the original input DG solution.

The basic operation performed to gain the smoothness and accuracy benefits is convo-
lution of the DG solution against a judiciously constructed B-spline based kernel. The goal
of this paper is to explicitly define the steps to efficient computation of the post-processor
applied to different mesh structures. In addition, we explain how well the inexact post-
processor (see [18, 19]) performs computationally comparing to the exact scheme. Further-
more, as the SIAC filter is a good candidate for parallelization, we provide, for the first time,
results that confirm anticipated performance scaling when parallelized on a shared-memory
multi-processor machine. We further note that in the following sections the terms filter and
post-processor are used interchangeably.

We begin by reviewing the basics of the discontinuous Galerkin method. In Sect. 3
we provide an overview of the SIAC filter. We continue this section by explaining how
to construct the convolution kernel in Sect. 3.1. The implementation of the SIAC filter
will be discussed in Sect. 3.2 in one-dimension. Moving on to higher dimensions, we pro-
vide implementation details for quadrilateral, triangular and hexahedral mesh structures in
Sects. 3.2.1, 3.2.2 and 3.2.3 respectively. We continue by explaining how to modify the ex-
act post-processor in order to achieve the inexact scheme in Sect. 4. In Sect. 5 we provide
performance analysis as well as the parallel implementation of the post-processor. Finally,
Sect. 6 concludes the paper.

J Sci Comput

2 The Discontinuous Galerkin Method

In this paper, we focus our attention on simulation results that arise as solutions of the linear
hyperbolic equation

ut + � · (a(x, t)u) = 0, x ∈ � × [0, T],
u(x,0) = uo(x), x ∈ �,

(1)

where x ∈ � and t ∈ R. We also assume smooth initial conditions are given along with
periodic boundary conditions. The DG formulation for this equation has been well-studied
in the series of papers [2, 3, 5, 9–12]. Here we present a brief introduction.

We use the weak form of (1) to derive our discontinuous Galerkin approximation. That
is, we multiply by a test function v to obtain

d

dt

∫
�

u(x, t)vdx +
∫

�

(a(x, t)u) · n̂vd� −
∫

�

(a(x, t)u) · �vdx = 0, (2)

where n̂ denotes the unit outward normal to the boundary and � the boundary of our do-
main, �.

We can now define our discontinuous Galerkin approximation to (1) using (2). We begin
by defining a suitable tessellation of the domain �, T (�) = �̃. We note that the current form
of the post-processor requires using a rectangular domain in two-dimensions. However, it
was also computationally extended to structured triangulations in [18]. Secondly, we define
an approximation space, Vh, consisting of piecewise polynomials of degree less than or
equal to k on each element of our mesh. Our discontinuous Galerkin approximation will
then be of order k + 1. Using the variational formulation and taking our test function vh

from our approximation space we obtain

d

dt

∫
�̃

u(x, t)vh dx +
∑
e∈∂�̃

∫
e

(a(x, t)u) · n̂e,�̃vh d� −
∫

�̃

(a(x, t)u) · �vh dx = 0, (3)

where n̂e,�̃ denotes the outward unit normal to edge e. We then obtain the numerical scheme

d

dt

∫
�̃

uh(x, t)vh dx +
∑
e∈∂�̃

∫
e

h
(
uh(x−, t),uh(x+, t)

)
vh d� −

∫
�̃

(a(x, t)uh) · �vh dx = 0

(4)
for all test functions vh ∈ Vh, where h(u(x−, t),u(x+, t)) is a consistent two-point monotone
Lipschitz flux as in [2] and uh is the DG approximations of degree k.

We note that this scheme and its implementation have been well studied. Therefore we
concentrate on the details of efficient computational implementation of the post-processor
itself.

3 Smoothness-Increasing Accuracy-Conserving Filter

Smoothness-Increasing Accuracy-Conserving (SIAC) filters were first introduced as a class
of post-processors for the discontinuous Galerkin method in [6, 7]. The filtering technique
was extended to a broader set of applications such as being used for filtering within stream-
line visualization algorithms in [8, 13, 21, 22, 25, 28]. Given a sufficiently smooth exact

J Sci Comput

solution, the rate of convergence of a DG approximation of degree k is k + 1 (see [2, 20]).
However, after convolving the approximation against a filter constructed from a linear com-
bination of B-splines of order k + 1, we can improve the order of convergence to 2k + 1.
Additionally, we filter out the oscillations in the error and restore the Ck−1-continuity at the
element interfaces. Here we present a brief introduction to this post-processing technique.
For a more detailed discussion of the mathematics of the post-processor see [1, 7, 13, 22].

The post-processor itself is simply the discontinuous Galerkin solution at the final time
T , convolved against a linear combination of B-splines. That is, in one-dimension,

u�(x) = 1

h

∫ ∞

−∞
Kr+1,k+1

(
y − x

h

)
uh(y)dy, (5)

where u� is the post-processed solution, h is the characteristic length and

Kr+1,k+1(x) =
r∑

γ=0

cr+1,k+1
γ ψ(k+1)(x − xγ), (6)

is the convolution kernel. ψ(k+1) is the B-spline of order k + 1 and cr+1,k+1
γ represent the

kernel coefficients. xγ represent the positions of the kernel nodes and are defined later in
this section along with cr+1,k+1

γ . The superscript r + 1, k + 1 typically represent the number
of kernel nodes as well as the B-spline order. In the following discussions we shall drop this
superscript for the sake of a less cluttered explanation.

We wish to point out that a more local kernel is used in the interior of the domain, which
has a symmetric form. For the symmetric kernel we use r + 1 = 2k + 1 B-splines. However,
near boundaries and shocks the symmetric kernel can not be used if there are non-periodic
boundary conditions as the symmetric kernel requires an equal amount of information from
both sides of the point that is being post-processed. In this case, we apply a one-sided (or
position-dependent) form of the kernel, proposed by Slingerland et al. [24], which requires
r + 1 = 4k + 1 B-splines. Following [24], we combine the kernels in the interior and at the
boundaries through a convex combination:

u�
h(x) = θ(x)(u�

h(x))r=2k + (1 − θ(x))(u�
h(x))r=4k. (7)

In this formulation, θ ∈ Ck−1 and is equal to one in the interior of the domain where the
symmetric kernel is used.

In this paper, we concentrate on the implementation issues and strategies that are useful
for a numerical practitioner to apply the post-processor effectively. Therefore, in the sections
that follow, we investigate how the post-processed solution given in (7) can efficiently be
implemented in multi-dimensions.

3.1 Construction of the Kernel

We remind the reader that the convolution kernel used in the SIAC filter is formulated as

K(x) =
r∑

γ=0

cγ ψ(k+1)(x − xγ), (8)

where

xγ = − r

2
+ γ + λ(x), γ = 0, . . . , r (9)

J Sci Comput

represent the positions of the kernel nodes. As in [24], λ(x) is defined as a shift function
that depends upon the evaluation point, x, and is given by

λ(x) =
{

min{0,− r+k+1
2 + x−xL

h
}, x ∈ [xL,

xL+xR

2),

max{0, r+k+1
2 + x−xR

h
}, x ∈ [xL+xR

2 , xR], (10)

where xL and xR denote the left and right boundaries of the domain. We note that for λ(x) =
0 and r = 2k, we produce the symmetric kernel used in the interior of the domain. In order
to construct the kernel we define the B-splines, ψ(k+1), and then demonstrate both how to
implement this in the construction of the kernel, which includes calculating the coefficients
used in the kernel.

The convolution kernel used in the SIAC filter is a linear combination of B-splines. The
B-spline is of order k + 1, and for efficient computation is obtained using the recursion
relations

ψ(1)(x) = χ[−1/2,1/2],

ψ(k+1)(x) = 1

k

((
k + 1

2
+ x

)
ψ(k)

(
x + 1

2

)
+

(
k + 1

2
− x

)
ψ(k)

(
x − 1

2

))
,

(11)

where χ[−1/2,1/2] is the characteristic function defined over [−1/2,1/2].
A B-spline of order k + 1 is a piecewise polynomial of degree k over each individual

interval separated by the B-spline knots. Using (11), one can also calculate the polynomial
coefficients as fractions, a priori, store them in a matrix and then use some polynomial
evaluation scheme such as Horner’s method to evaluate the B-spline at some arbitrary point.
As an example, for k = 2 the B-spline has the form

ψ(3)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 x2 + 3

2x + 9
8 , x ∈ [− 3

2 ,− 1
2),

−x2 + 3
4 , x ∈ [− 1

2 , 1
2),

1
2 x2 − 3

2x + 9
8 , x ∈ [1

2 , 3
2],

0, otherwise.

(12)

We should also note that from the aforementioned definitions, it is obvious that the B-
splines have compact support, meaning that a B-spline ψ(k+1)(x) of degree k with knots
x0 < · · · < xk+1 is zero outside of [x0, xk+1], where x0 = − (k+1)

2 and xk+1 = (k+1)

2 . This leads
to a more efficient scheme for B-spline evaluations since the points outside this interval
simply result in a zero value. Algorithm 1 depicts the pseudo-code for evaluating the B-
spline at a particular point x. We further note that B-splines have been well-studied, and we
refer the interested reader to [14, 16, 23] for a more thorough discussion.

Algorithm 1 Evaluating ψ(k+1)(x)

1: if x in [x0, xk+1] then
2: Find the interval of x, call it [xj , xj+1]
3: ψ(k+1)(x) = value of the corresponding polynomial over [xj , xj+1] (as in (11)) at x

4: else
5: ψ(k+1)(x) = 0
6: end if

J Sci Comput

Now that the B-splines are defined, they can be used to construct the convolution kernel
in the SIAC filters. However, the kernel coefficients cγ remain to be defined.

One of the important properties of the kernel as mentioned in [22], is that it reproduces
polynomials up to a certain degree, r , which equals 2k for the symmetric kernel and 4k for
the one-sided kernel. This means that the convolution of the kernel with a polynomial of
degree less than or equal to r is equal to that polynomial itself. In addition, it guarantees
that the accuracy of the DG approximation is not destroyed by the convolution. Using the
monomials we obtain the following linear system for the kernel coefficients:

r∑
γ=0

cγ

∫
R

ψ(k+1)(y)(y − x − xγ)mdy = xm, m = 0,1, . . . , r. (13)

To calculate the integral in (13), we use Gaussian quadrature with k+m
2 +1 quadrature points

[17]. As an example for k = 1 and the symmetric kernel, (13) gives

⎡
⎣ 1 1 1

x + 1 x x − 1
x2 + 2x + 7

6 x2 + 1
6 x2 − 2x + 7

6

⎤
⎦

⎡
⎣c0

c1

c2

⎤
⎦ =

⎡
⎣ 1

x

x2

⎤
⎦ . (14)

Equation (14) must hold for all x, we simply set x = 0 and obtain the coefficients

⎡
⎣c0

c1

c2

⎤
⎦ =

⎡
⎢⎣

− 1
12

7
6

− 1
12

⎤
⎥⎦ . (15)

The linear system in (13) is a non-singular system. Hence, the existence and uniqueness of
the kernel coefficients is guaranteed (see [7] for a proof). Linear algebra routines provided
by the LAPACK library can be used for solving the system (visit www.netlib.org/lapack/).
Algorithm 2 provides the pseudo-code for constructing the matrix of the linear system men-
tioned in (13). Note that for calculating the integral in (13) (Line 12 in Algorithm 2), the
integration region R actually reduces to [−(k + 1)/2, (k + 1)/2], and that we need to di-
vide this region into subintervals that respect the continuity breaks in the B-splines. This
is required for the integral to be evaluated exactly to machine precision using Gaussian
quadrature.

As we mentioned earlier in this section, for the one-sided kernel the position of the kernel
nodes depend on the evaluation point x through a continuous shift function λ(x) (see (10)).
This means that the kernel coefficients change depending on the current evaluation point.
Therefore, contrary to the symmetric kernel case, the kernel coefficients for the one-sided
kernel need to be re-calculated for each evaluation point.

Having defined the kernel, we continue by demonstrating how to implement the post-
processor operator by evaluating the integral in (5).

3.2 Evaluation of the Convolution Operator

Traditionally, SIAC filters are implemented as small matrix-vector multiplications [22]. That
is, considering a fixed number of evaluation points per element, a number of coefficient
matrices are produced. These are computed one time and stored for future use. The post-
processing is then implemented in a simple manner via these small matrix-vector multipli-
cations of the pre-stored coefficient matrices and the coefficients of the numerical solution.

http://www.netlib.org/lapack/

J Sci Comput

Algorithm 2 Constructing the B-spline coefficient matrix
1: λ = λ(x) (Given by (10))
2: rowSize = r + 1
3: colSize = r + 1
4: LinMatrix[rowSize][colSize]
5: bsplineKnots = [− k+1

2 ,− k+1
2 + 1, . . . , k+1

2]
6: for row = 0 to rowSize do
7: for col = 0 to colSize do
8: LinMatrix[row][col] = 0
9: γ = col

10: xγ = − r
2 + γ + λ

11: {Evaluate the integral in (13)}
12: for i = 0 to size(bsplineKnots) − 1 do
13: � = [bsplineKnots[i],bsplineKnots[i + 1]]
14: x = map the Gaussian quadrature points obtained over [−1,1] to �

15: LinMatrix[row][col]+ = ∫
�

ψ(k+1)(x)(x + xγ)rowdx using Gaussian quadrature
16: end for
17: end for
18: end for

However, as this approach is not suitable for the more general case of unstructured meshes
or for the one-sided kernel, we discuss in this section how the integral in Equation (5) can
be evaluated directly.

We begin by introducing the notion of a standard region (sometimes referred to as the
reference element). In order to evaluate a DG approximation at an arbitrary point or to
compute an integral using Gaussian quadrature, we often first need to map the points to a
standard region (see [17]). In this section we introduce the 1D standard element, �st such
that

�st = {ξ | − 1 ≤ ξ ≤ 1} . (16)

Therefore, to evaluate our DG approximation uh(x) in (5) at a point x defined on the interval
Ii = [xa, xb], which we refer to as the local region, we have

uh(x) =
k∑

l=0

u
(�)
i φ�(μ−1(x)), (17)

where u
(�)
i are the local polynomial modes on Ii resulting from a discontinuous Galerkin

approximation, φ� are the polynomial basis functions of degree � defined over the standard
region and μ(ξ) is the affine mapping from the standard to local region given by

μ(ξ) = xa

1 − ξ

2
+ xb

1 + ξ

2
. (18)

To evaluate the post-processed solution at an isolated point x ∈ Ii by directly evaluating
the integral in the convolution operator, we have,

u�(x) = 1

h

∫ ∞

−∞
K

(
y − x

h

)
uh(y)dy = 1

h

∑
Ii+j ∈Supp{K}

∫
Ii+j

K

(
y − x

h

)
uh(y)dy, (19)

J Sci Comput

Fig. 1 A possible kernel-mesh overlap in one dimension. Upper line represents the kernel, middle line de-
picts a DG mesh and the lower line (dashed red) represents the integration mesh

where the second equation is due to the compact support property of the kernel. In order to
evaluate the integral in (19) exactly, we need to divide the interval Ii+j to subintervals over
which there is no break in regularity in the integrand. We then use Gaussian quadrature with
sufficient quadrature points to evaluate the integration. Figure 1 shows how the integration
regions are constructed from the intersection of the kernel knots and the DG element inter-
faces. As the figure demonstrates, in the final integration mesh (red line) each DG element
is divided into two subintervals so that there is no break in continuity. The integration will
then be carried out over these subintervals.

Formulating this we have

u�(x) = 1

h

∫ ∞

−∞
K

(
y − x

h

)
uh(y)dy,

= 1

h

∑
Ii+j

∫
Ii+j

K

(
y − x

h

)
uh(y)dy,

= 1

h

∑
Ii+j

[∫ 1

−1
K

(
μs1(ξ) − x

h

)
uh(μs1(ξ))|J1|dξ

+
∫ 1

−1
K

(
μs2(ξ) − x

h

)
uh(μs2(ξ))|J2|dξ

]
, (20)

where s1 and s2 are the two aforementioned subintervals within each DG element, i.e., s1 ∪
s2 = Ii+j . In addition, μs1(ξ) and μs2(ξ) represent the mappings from the standard to local
regions s1 and s2 and |J1| and |J2| are the Jacobians of these mappings. Moreover, the
number of quadrature points should be enough to integrate polynomials of degree at least
2k. In addition, similar to (17), we evaluate the DG approximation in (20) as

uh(x) =
k∑

l=0

u
(�)
Ii+j

φ�(μ−1
Ii+j

(x)), (21)

where in this case x = μs1,2(ξ) and belongs to element Ii+j .
We note that the support of the kernel is given by

[
Ka = x + h

(
− (r + �)

2
− λ(x)

)
,Kb = x + h

(
(r + �)

2
− λ(x)

)]
, (22)

where x is the evaluation point, � = k + 1, and λ(x) is the shift function in (10). Conse-
quently, the position of the kernel breaks are given by,

Ka + h,Ka + 2h, . . . ,Kb. (23)

J Sci Comput

It is clear from (22), that the one-sided kernel (r = 4k) has a larger support than the
symmetric one (r = 2k). Moreover, in Sect. 3, we mentioned that we combine the symmetric
and one-sided kernels through a coefficient function θ . We do so in order to have a smooth
transition between these two kernels. We note that if one is only concerned about accuracy
and not smoothness, this step can be avoided. One choice of the coefficient function θ is

θ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ∈ [xL, a1),

p(x), x ∈ [a1, a2],
1, x ∈ (a2, b2),

q(x), x ∈ [b2, b1],
0, x ∈ (b1, xR],

(24)

where,

a1 = xL + 3k + 1

2
h, a2 = xL +

(
3k + 1

2
+ 2

)
h,

b1 = xR − 3k + 1

2
h, b2 = xR −

(
3k + 1

2
+ 2

)
h,

and where p and q are polynomials of degree 2k + 1. We further require that p(a1) = 0,

p(a2) = 1, and dnp

dxn (a1) = dnp

dxn (a1) = 0 for all n = 1, . . . , k. A similar definition holds for q.

We remark that other choices for θ may also work in practice.
From (24), we understand that we only need to calculate the convex combination when

θ assumes a value other than 0 or 1, namely, when x ∈ [a1, a2] or x ∈ [b2, b1]. In these tran-
sition regions, a smooth transition happens between the one-sided kernel and the symmetric
kernel over two mesh elements.

Algorithm 3 provides a pseudo-code for implementing the convolution operator in a one-
dimensional field. We again emphasize, depending on the evaluation point, we either cal-
culate the post-processed solution using the one-sided kernel, the symmetric kernel or both
when x is in a transition region. In line 8, it is stated that the subintervals are the result of the
kernel and DG mesh intersection, which is a geometric problem. This is not addressed in this

Algorithm 3 1D-Convolution
1: for each evaluation point x do
2: Ii = the element to which x belongs
3: h = the size of the element Ii

4: if one-sided then
5: Calculate the one-sided kernel coefficients
6: end if
7: {Find the integration subintervals}
8: S = kernel and mesh intersection
9: {The following for loop implements the third line in (20)}

10: for each s in S do
11: intg+ = Evaluate

∫ 1
−1 K

(
μs(ξ)−x

h

)
uh(μs(ξ))|J |dξ

12: end for
13: u�(x) = intg/h

14: end for

J Sci Comput

paper for complex mesh structures. In one dimension, this problem is fairly straightforward
as it is the result of the sorted merge of the kernel breaks and the mesh element interfaces
that are (partially) covered by the support of the kernel (note that kernel breaks and element
interfaces are already sorted lists). For a uniform mesh, the footprint of the kernel can be
found in constant computational time. For a non-uniform mesh structure, the footprint can
be found in O(log(N)), N being the number of elements in one direction (or total number
of elements in 1D). Moreover, for uniform meshes, h represents the uniform mesh spacing.
For non-uniform meshes, we simply consider h as being the size of the element (length
of element in 1D and length of element sides in 2D). For a more thorough discussion on
post-processing over non-uniform mesh structures we refer the reader to [13].

We further note that the post-processed polynomial is of degree at least 2k+1. Therefore,
if we want to post-process a DG approximation of degree k over the entire field so that a
transformation to a modal representation is feasible, we need to evaluate the post-processor
at 2k + 2 collocating points per element. Moreover, in our initial DG approximation space,
we have N × (k + 1) degrees of freedom (N being the number of elements in the field),
whereas in the post-processed solution space, there are N × (2k + 2)−N × (k − 1) degrees
of freedom. The first term is due to higher order polynomials and the second term is due to
what is removed (constrained) due to continuity.

In the following sections we explain how this implementation of the post-processor ex-
tends to two and three dimensions, considering the common DG element types, triangles
and quadrilaterals in 2D and hexahedra in 3D.

3.2.1 Quadrilateral Mesh Implementation

In two dimensions the convolution kernel is a tensor product of the one dimensional kernels

K̄(x, y) =
r1∑

γ1=0

r2∑
γ2=0

cγ1cγ2ψ
(k+1)(x − xγ1)ψ

(k+1)(y − xγ2) (25)

=K(x) × K(y),

where xγ1 and xγ2 are the position of the kernel nodes in the x1- and x2-directions and the
two-dimensional coordinate system is denoted with (x1, x2). Furthermore, r1, r2 are either
2k or 4k, depending on whether we use a symmetric or one-sided kernel in each direction.

The two-dimensional convolution over quadrilateral mesh structures is therefore,

u�(x, y) = 1

h1h2

∫ ∞

−∞

∫ ∞

−∞
K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2,

= 1

h1h2

∑
Ii+d1,j+d2 ∈Supp{K̄}

∫ ∫
Ii+d1,j+d2

K

(
x1 − x

h1

)

× K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2 (26)

which evaluates the post-processed solution at (x, y) ∈ Ii,j . Notice that the scaling of the
kernel does not require h1 = h2.

Once again to evaluate the integral in (26) exactly to machine precision, we need to divide
the integration region Ii+d1,j+d2 which has a quadrilateral shape to subregions over which
there is no break in regularity.

J Sci Comput

Fig. 2 A possible kernel-mesh
overlap in two dimensions.
Dashed lines represent the kernel
patch and solid line represent the
DG mesh. Red lines depict
possible integration regions over
one element

Figure 2 demonstrates a possible kernel-mesh intersection over a quadrilateral mesh. As
shown in the figure, the post-processing kernel can be viewed as a two-dimensional patch
which is the immediate result of the tensor product of the one-dimensional kernels on each
direction.

For the example in Fig. 2, we can see that it is necessary to break down the DG element
to four subelements in order to evaluate the integration in (26) exactly, i.e.,

∫ ∫
Ii+d1,j+d2

K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2

=
3∑

n=0

∫ ∫
sn

K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2

=
3∑

n=0

∫ 1

−1
K

(
μsn2

(ξ2) − y

h2

)
|J2|

×
(∫ 1

−1
K

(
μsn1

(ξ1) − x

h1

)
uh1,h2(μsn1

(ξ1),μsn2
(ξ2))|J1|dξ1

)
dξ2, (27)

where sn indicates the integration region resulting from the kernel-mesh intersection. Fur-
thermore, the third equation is obtained using the tensor product property of the two-
dimensional kernel. This allows us to write the two-dimensional integration as a product of
one-dimensional integrations. μsn1

(ξ1) and μsn2
(ξ2) are used to denote the one-dimensional

mappings from the standard element to the local regions, in this case are the sides of the
subelement sn in the x1 and x2 directions. |J1| and |J2| are the Jacobians of these trans-
formations. In addition, the number of quadrature points required for integration should be
chosen to exactly integrate polynomials of degree 2k in each direction.

Another point that we would like to mention here, is the evaluation of our DG approxi-
mation, uh1,h2(x, y). To evaluate the DG approximation at an arbitrary point(x, y) ∈ Ii,j , we
have

uh1,h2(x, y) =
k∑

p=0

k∑
q=0

u
(pq)

Ii,j
φ(pq)(ξ1, ξ2), (28)

where ξ1 and ξ2 are obtained using the appropriate one-dimensional inverse mappings from
local to standard regions (see Sect. 3.2).

J Sci Comput

If we define our two-dimensional basis function φ(pq)(ξ1, ξ2) as the tensor product of
one-dimensional basis functions (see [17])

φpq(ξ1, ξ2) = ψa
p(ξ1)ψ

b
q (ξ2), (29)

with ψa
p and ψb

q being the modified or orthogonal basis functions as in [17], then we can
evaluate the DG approximation in (28) as

uh1,h2(x, y) =
k∑

p=0

ψa
p(ξ1)

k∑
q=0

u
(pq)

Ii,j
ψb

q (ξ2). (30)

This is the so-called sum-factorization technique introduced in [17]. Using this approach the
number of operations needed to evaluate the DG approximation at O(k2) quadrature points
formed by the tensor product of one-dimensional points, reduces from O(k4) to O(k3).

This aids the numerical practitioner in saving on the overall computational cost of the post-
processor. Algorithm 4 provides a pseudo-code for the two-dimensional convolution over
quadrilateral mesh structures. Lines 12 and 13 are implemented the same way as the one-
dimensional case explained in the previous section. Consequently, S1 and S2 are integration
sets that represent the one-dimensional integration regions on each direction. This means
that the tensor product of these two sets produces the two-dimensional integration regions as
shown in Fig. 2. In addition, in lines 3 and 4, if we are dealing with a uniform mesh, h1 = h2

and is equal to the uniform mesh spacing on each direction. Otherwise as we mentioned in
the previous section, we choose the length of the element size on each direction for h1 and
h2, respectively (Fig. 2).

Algorithm 4 2D quadrilateral mesh convolution
1: for each evaluation point (x, y) do
2: Ii,j = the element to which (x, y) belongs
3: h1 = length of Ii,j side in direction x1

4: h2 = length of Ii,j side in direction x2

5: if one-sided in x1-direction then
6: Calculate the one-sided kernel coefficients for x1-direction
7: end if
8: if one-sided in x2-direction then
9: Calculate the one-sided kernel coefficients for x2-direction

10: end if
11: {Find the 1D integration subintervals on each direction}
12: S1 = kernel and mesh intersection in direction x1

13: S2 = kernel and mesh intersection in direction x2

14: for s1 in S1 do
15: for s2 in S2 do
16: intg+ = Evaluate the outer integral in (27)
17: end for
18: end for
19: u�(x, y) = intg/(h1h2)

20: end for

J Sci Comput

Fig. 3 Transition regions in a
two-dimensional field. S
indicates the symmetric kernel
and O is the one-sided kernel

Similar to the one-dimensional case explained in the previous section, in order to have a
smooth transition between the one-sided and the symmetric kernel, we use a convex combi-
nation. In two dimensions, the convex combination has the following form

u�(x, y) = θ(x)θ(y)u�
Sx,y

(x, y) + (1 − θ(x))θ(y)u�
Ox,Sy

(x, y)

+ θ(x)(1 − θ(y))u�
Sx ,Oy

(x, y) + (1 − θ(x))(1 − θ(y))u�
Ox,y

(x, y), (31)

where u�
Sx,y

(x, y) indicates the post-processed value at (x, y) using the symmetric kernel
in both directions, and u�

Ox,y
(x, y) is the post-processed value using the one-sided kernel in

both directions. However, it is not necessary to evaluate all four post-processed values men-
tioned in (31) whenever we are in a transition region (see (24) for the definition of a transition
region). Usually, we only evaluate two post-processed values. Figure 3 depicts the transition
regions for a two-dimensional field. In the striped green regions we only evaluate two post-
processed values whereas in the red regions we need to calculate four post-processed values
for a smooth transition.

3.2.2 Structured Triangular Mesh Implementation

In this section we discuss post-processing over structured triangular meshes. For this, we
simply take the quadrilateral mesh implementation and apply the same kernel for struc-
tured triangular meshes. This means that we still use the kernel definition given in (25) and
evaluate the integral in (26). However, now this is over a triangular region. The accuracy-
enhancement capabilities of the SIAC filter over structured triangular regions has been thor-
oughly discussed in [18]. In general we are able to observe the 2k + 1 convergence order for
post-processing over structured triangular grids. Here, we further explain the details of the
implementation.

Figure 4 depicts a possible kernel-mesh intersection for a structured triangular mesh.
As was done in the quadrilateral mesh case, we note that it is necessary to divide the ele-
ment into subregions that respect both the element interfaces and kernel breaks, in order to
perform the integrations exactly to machine precision. Moreover, we choose to further di-
vide these subregions into triangles as shown in red in Fig. 4. Therefore, the post-processed
solution at (x, y) ∈ Ii,j becomes

u�(x, y) = 1

h1h2

∫ ∞

−∞

∫ ∞

−∞
K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2,

J Sci Comput

Fig. 4 A possible kernel-mesh
overlap in two dimensions over a
structured triangular mesh (left).
Dashed lines represent the kernel
patch and solid lines represent the
DG mesh. In the right image, red
lines depict possible integration
regions over the upper element

= 1

h1h2

∑
Ii+d1,j+d2 ∈Supp{K̄}

[∫ ∫
U(Ii+d1,j+d2)

K

(
x1 − x

h1

)

× K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2

+
∫ ∫

L(Ii+d1,j+d2)

K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2

]
. (32)

In (32), we have simply modified (26) in Sect. 3.2.1 by dividing the integration over a quadri-
lateral element into two triangular elements U(Ii+d1,j+d2) and L(Ii+d1,j+d2). We refer to the
quadrilateral element in this case a super-element, a term used by Mirzaee et al. in [18]
to indicate the quadrilateral combination of the two diagonally aligned triangles in the DG
structured mesh.

We consider one of the integrals in (32), and explain how this integration can be evaluated
exactly to machine precision. After triangulating the integration regions as shown in Fig. 4,
we arrive at

∫ ∫
U(Ii+d1,j+d2)

K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2

=
3∑

n=0

∫ ∫
τn

K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2

=
∫ 1

−1

∫ −ξ2

−1
K

(
μ1(ξ1, ξ2) − x

h1

)

× K

(
μ2(ξ1, ξ2) − y

h2

)
uh1,h2(μ1(ξ1, ξ2),μ2(ξ1, ξ2))|Jξ |dξ1dξ2, (33)

where τn is the triangular subelement in U(Ii+d1,j+d2), μ1 and μ2 are the appropriate map-
pings from the standard to local triangular region which are defined later in the section and
|Jξ | = | ∂(x1,x2)

∂(ξ1,ξ2)
|.

In (33), the third equation is derived by mapping the standard triangular element defined
as

Tst = {(ξ1, ξ2)| − 1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0} (34)

to the local region τn. We also note that in order to have the triangular expansion be as
efficient as the quadrilateral one, we want to be able to define the two dimensional basis
functions used to evaluate our DG approximation, in terms of a tensor product of one-

J Sci Comput

Fig. 5 Triangle to rectangle transformation

dimensional basis functions. Consequently, we define a mapping from the Cartesian co-
ordinate system to the so-called collapsed coordinate system such that

η1 = 2
1 + ξ1

1 − ξ2
− 1, η2 = ξ2, (35)

with the inverse transformation

ξ1 = (1 + η1)(1 − η2)

2
− 1, ξ2 = η2. (36)

These new local coordinates (η1, η2) define the standard triangular region by

Tst = {(η1, η2)| − 1 ≤ η1, η2 ≤ 1} . (37)

The transformation in (35) can be interpreted as a mapping from the triangular region to a
rectangular one as seen in Fig. 5. This transformation is also known as the Duffy transforma-
tion (see [15]). Furthermore, for more information regarding tensorial basis functions and
the collapsed coordinate system we refer the interested reader to [17].

Using the collapsed coordinate system, the integral in (33) now becomes

∫ 1

−1

∫ −ξ2

−1
K

(
μ1(ξ1, ξ2) − x

h1

)
K

(
μ2(ξ1, ξ2) − y

h2

)
uh1,h2(μ1(ξ1, ξ2),μ2(ξ1, ξ2))|Jξ |dξ1dξ2

=
∫ 1

−1

∫ 1

−1
K

(
μe

1(η1, η2) − x

h1

)

× K

(
μe

2(η1, η2) − y

h2

)
uh1,h2(μ

e
1(η1, η2),μ

e
2(η1, η2))|Jξ ||Jη|dη1dη2 (38)

where |Jη| = | ∂(ξ1,ξ2)

∂(η1,η2)
|.

Equation (38) results in the value of the two-dimensional integral over the triangular
region τn. We note that since the kernel is a function of both variables in the standard as well
as the collapsed coordinate systems, we can not separate the two-dimensional integration
in terms of one-dimensional integrations as we did in (27). Consequently, the number of
quadrature points required for integration should be enough to integrate polynomials of
degree 3k exactly. Furthermore, if we denote the vertices of τn as xA

i , xB
i and xC

i then we
have

xi = μi(ξ1, ξ2) = xA
i

−ξ2 − ξ1

2
+ xB

i

1 + ξ1

2
+ xC

i

1 + ξ2

2
, i = 1,2. (39)

J Sci Comput

Substituting ξ1 and ξ2 using (36) we arrive at

xi = μe
i (η1, η2) = xA

i

1 − η1

2

1 − η2

2
+ xB

i

1 + η1

2

1 − η2

2
+ xC

i

1 + η2

2
, i = 1,2. (40)

We can also use a similar procedure to (28) to evaluate the DG approximation at (x, y) ∈
U(Ii,j). That is,

uh1,h2(x, y) =
k∑

p=0

k−p∑
q=0

u
pq

U(Ii,j)φ
pq(ξ1, ξ2), (41)

with the difference that the basis functions are given by

φpq(ξ1, ξ2) = ψa
p(η1)ψ

b
pq(η2), (42)

with ψa
p and ψb

pq being the orthogonal or modified basis functions for triangular elements
defined in [17]. In (41), U(Ii,j) represents the DG triangular element that contains (x, y) and
η1 and η2 are obtained by first applying an inverse mapping that maps U(Ii,j) to the standard
triangular region given in (34), and then using (35). The use of the sum-factorization tech-
nique mentioned in the previous section, is not beneficial here, since the quadrature points
obtained as a result of several mappings do not necessarily follow a tensor-product form.

Algorithm 5 provides a pseudo-code for implementing the convolution operator over
structured triangular meshes. As we mentioned earlier, for implementation purposes, we
consider the kernel in two dimensions as a patch or a two-dimensional matrix of squares.
Therefore, to find the intersection region of a triangle with the kernel, we simply find the
intersection of the triangle with these squares (line 16 and 22 in Algorithm 5). For this
we have used the Sutherland-Hodgman polygon clipping algorithm from computer graphics
(see [26]). Moreover, similar ideas discussed in the previous section, apply to the scaling pa-
rameters h1 and h2 for the non-uniform mesh structure. For general unstructured grids these
parameters as well as the kernel definition need to be modified properly to gain optimal error
convergence. However, the general implementation scheme for unstructured triangular grids
will be similar to that of the structured ones. Once we identify the elements covered by the
kernel support, we solve a series of geometric intersection problems using our clipping algo-
rithm to recognize the integration regions (similar to Fig. 4). As the unstructured mesh will
be more complex, we are likely to get more integration regions comparing to the structured
mesh. Investigation of the SIAC filter for unstructured triangular meshes is the subject of an
ongoing research

We further note that in this paper, when choosing a distribution of points for integration,
we prefer the Lobatto-type quadrature. Particularly, for triangular regions, we choose Gauss-
Lobatto-Legendre (GLL) points on the x1-direction and Gauss-Radau-Legendre (GRL) on
the x2-direction. GRL points absorb the Jacobian of the collapsed coordinate transformation
and do not include the singularity at the collapsed vertex. For more information on these
types of quadrature points, we refer the reader to [17].

We conclude this section by adding that the one-sided kernel explained in previous sec-
tions and the convex combination in (31) also apply to the triangular meshes.

J Sci Comput

Algorithm 5 2D triangular mesh convolution
1: for each evaluation point (x, y) do
2: Ii,j = the super-element to which (x, y) belongs
3: h1 = size of Ii,j in direction x1

4: h2 = size of Ii,j in direction x2

5: if one-sided in x1-direction then
6: Calculate the one-sided kernel coefficients for x1-direction
7: end if
8: if one-sided in x2-direction then
9: Calculate the one-sided kernel coefficients for x2-direction

10: end if
11: {This simply gives the super-elements (partially) covered by the 2D kernel}
12: kFootPrint = the footprint of the 2D kernel on the DG mesh
13: for each super-element I in kFootPrint do
14: {lower triangle}
15: L(I) = lower triangle
16: intgRegions = intersection of L(I) with each square in the 2D kernel patch
17: for each triangle τ in intgRegions do
18: intg + = Result of the integral in (38)
19: end for
20: {upper triangle}
21: U(I) = upper triangle
22: intgRegions = intersection of U(I) with each square in the 2D kernel patch
23: for each triangle τ in intgRegions do
24: intg + = Result of the integral in (38)
25: end for
26: end for
27: u�(x, y) = intg/(h1h2)

28: end for

3.2.3 Hexahedral Mesh Implementation

Similar to the two-dimensional case, the convolution kernel in three dimensions, can also be
formed by performing the tensor product of one-dimensional kernels. That is,

K̂(x, y, z) =
r1∑

γ1=0

r2∑
γ2=0

r3∑
γ3=0

cγ1cγ2cγ3ψ(x − γ1)ψ(y − γ2)ψ(z − γ3), (43)

=K(x) × K(y) × K(z),

where xγ1 , xγ2 , and xγ3 are the position of the kernel nodes in x1-, x2- and x3-directions and
we have denoted the three-dimensional coordinate system with (x1, x2, x3). Furthermore, rd ,
d = 1,2,3 is either 2k or 4k, depending on whether we use a symmetric or one-sided kernel
in the xd -direction.

From (43), it is clear that the three-dimensional post-processor over hexahedral meshes
will be a natural extension of the two-dimensional quadrilateral post-processor given in
Sect. 3.2.1 and therefore, we will not provide further detail for this type of the post-
processing.

J Sci Comput

In general, the three-dimensional post-processor can also be applied to other types of
mesh elements in three dimensions such as tetrahedra, prisms and pyramids. However, the
process of finding the geometric intersections of the mesh with the convolution kernel will
be significantly more complex. In addition, as we mentioned earlier, kernel modification is
required to make the post-processor suitable for general unstructured grids.

4 Post-Processing Using Inexact Integration

In Sect. 3.2 it was noted that in order to evaluate the integral involved in the convolution
exactly to machine precision one needs to respect the breaks in continuity in the integrand.
We explained how four integration regions can be formed for quadrilateral and triangular
elements as a result of kernel-mesh intersection. However, the integration regions can be
much greater than this when we consider totally unstructured grids. Numerical integration
is quite costly and therefore in this section we use the idea of inexact integration to overcome
this issue by ignoring the breaks in regularity of the kernel—so called kernel breaks—in the
integration regions. This was demonstrated to be effective in [18, 19]. The idea is that at the
DG element interfaces there is a lack of continuity, whereas at the kernel breaks there exist
Ck−1-continuity. Gaussian quadrature can overcome the higher-order continuity of the kernel
breaks, but not the weak continuity of the DG breaks. Here we discuss the implementation
details for the triangular mesh given in [18].

If we choose to implement the SIAC filter such that we only respect the DG element
breaks, the integral in (33) becomes

∫ ∫
U(Ii+d1,j+d2)

K

(
x1 − x

h1

)
K

(
x2 − y

h2

)
uh1,h2(x1, x2)dx1dx2

=
∫ 1

−1

∫ −ξ2

−1
K

(
μ1(ξ1, ξ2) − x

h1

)

× K

(
μ2(ξ1, ξ2) − y

h2

)
uh1,h2(μ1(ξ1, ξ2),μ2(ξ1, ξ2))|Jξ |dξ1dξ2

=
∫ 1

−1

∫ 1

−1
K

(
μe

1(η1, η2) − x

h1

)

× K

(
μe

2(η1, η2) − y

h2

)
uh1,h2(μ

e
1(η1, η2),μ

e
2(η1, η2))|Jξ ||Jη|dη1dη2, (44)

where μi(ξ1, ξ2) and μe
i (η1, η2), i = 1,2, are defined in (39) and (40) with xA

i , xB
i and xC

i

being the vertices of the DG triangular element U(Ii+r1,j+r2). Moreover, |Jξ | and |Jη| are
the Jacobian of these transformations.

For structured DG triangular meshes, it is possible to have up to seven integration regions
when considering the kernel-mesh intersection. However, the reader should notice that these
integration regions can increase significantly when dealing with unstructured meshes. The
inexact scheme ignores these subregions and only considers the DG element itself. Therefore
the integration regions are reduced to two triangular regions per a super-element.

Algorithm 6 provides a pseudo-code for the inexact post-processor over triangular
meshes. Notice that in lines 16 and 19 we only perform one integration, which is over the
DG element itself. However, we emphasize that in order to compensate for the lack of reg-
ularity in the integrand, one might need to use more quadrature points than what is required

J Sci Comput

Algorithm 6 2D inexact convolution for triangular meshes
1: for each evaluation point (x, y) do
2: Ii,j = the super-element to which (x, y) belongs
3: h1 = size of Ii,j in direction x1

4: h2 = size of Ii,j in direction x2

5: if one-sided in x1-direction then
6: Calculate the one-sided kernel coefficients for x1-direction
7: end if
8: if one-sided in x2-direction then
9: Calculate the one-sided kernel coefficients for x2-direction

10: end if
11: {This simply gives the super-elements (partially) covered by the 2D kernel}
12: kFootPrint = the footprint of the 2D kernel on the DG mesh
13: for each super-element I in kFootPrint do
14: {lower triangle}
15: L(I) = lower triangle
16: intg + = Result of the integral in (44) over L(I)

17: {upper triangle}
18: U(I) = upper triangle
19: intg + = Result of the integral in (44) over U(I)

20: end for
21: u�(x, y) = intg/(h1h2)

22: end for

with the exact scheme to gain the desired accuracy. Moreover, as the integration regions
(DG elements) and hence the quadrature points are known prior to post-processing for this
case, the values of the DG approximation at the quadrature points (x, y), i.e. uh1,h2(x, y),
can be precalculated over the entire domain and reused many times during post-processing.
We further note that the one-sided kernel ideas discussed in the previous sections also apply
to the inexact scheme.

4.1 A Discussion on the Computational Complexity

In this section we discuss the complexity of computational cost for post-processing using
exact quadrature and inexact quadrature.

As mentioned in Sect. 3.2, finding the intersection of the kernel mesh with the DG mesh
is a geometric intersection problem that in general can be quite complex in two and three
dimensions. The complexity increases due to the elements being further tessellated into sub-
elements over which numerical integrations are performed. In our analysis thus far, we have
only considered uniform triangular meshes where at most one kernel break per direction lies
within a super-element. However, in the case of totally unstructured triangular meshes the
number of breaks can be up to several breaks within an element which will result in more
integration regions and therefore more numerical quadratures. Here, we consider the cost
of the convolution operator, assuming that the integration subintervals have already been
found.

The number of elements that are covered by the kernel support is dependent on the extent
(width) of the convolution kernel, which is a function of the polynomial order per element.
Therefore, if we denote the polynomial order as k and assume that all elements have the

J Sci Comput

same polynomial order in both directions, the number of elements that need to be consid-
ered for every evaluation point will be O(k2) in two dimensions. Furthermore, for each of
these elements, depending on the number of integration regions within each element, a series
of numerical quadratures must be performed. After transforming to the collapsed coordinate
system, we evaluate integrals as shown in (38). Gaussian quadrature in two dimensions will
be performed in O(k2) operations. However, we need to evaluate the kernel as well as the
DG approximation at each of the quadrature points used in the integration. The DG approxi-
mation can be calculated at O(k2) quadrature points in O(k3) floating point operations using
the so-called sum-factorization technique when possible, and in O(k4) operations otherwise.
Kernel evaluation can also be performed in O(k3) operations in the case of quadrilateral ele-
ments or in Q(k4) for triangular elements. Hence, the overall cost of performing one numer-
ical integration will be O(k4). Consequently, from (33), the cost of numerical quadrature
on a single triangular element will be O(Mk4), with M being the number of integration
regions within the element. When performing the exact post-processor scheme, M ≥ 1 and
is at most seven per triangular element in the case of a uniform mesh. However, this upper
bound increases in the case of totally unstructured grids and will play a significant role in
the overall performance of the algorithm, especially, when post-processing the entire DG
field such that a transform to the modal representation is feasible. In that case, the total com-
putational cost is O(MNk8), with N being the total number of elements in the field. On the
other hand, the value of M is always one when performing the inexact approach. However,
we note that depending on the accuracy requirements from post-processing when using the
inexact scheme, more quadrature points may be needed when performing numerical inte-
grations. Therefore, computationally, there might be a breakthrough after which the inexact
post-processor will not perform better (if not worse) than the exact scheme. We discuss this
more in the next section.

We also add that whenever the use of the position-dependent kernel is necessary, the
kernel coefficients should be recalculated for the current evaluation point. In Sect. 3.1, we
explained how to compute these coefficients by means of solving a linear system. Form-
ing the matrix of the linear system costs O(k4) floating point operations and solving it is
generally accomplished in O(k3) operations.

5 Performance Analysis of the Post-Processor

In this section we provide performance results for post-processing DG fields using the im-
plementation strategies in Sect. 3.2. The post-processor is a good candidate for paralleliza-
tion because when filtering an entire computational field, evaluating the post-processed
value at one quadrature point is independent of the other. Therefore, having access to a
multi-processor machine, we can have separate threads evaluate the post-processed value
at different points without any communications among them. Using OpenMP, only a
few compiler directives are required to parallelize the execution of the post-processor
and gain proper scaling in the performance on a multi-processor shared-memory ma-
chine.

We note that although we are only considering the performance of the SIAC filter, we
provide the performance when applied to a discontinuous Galerkin solution. For our results,
we consider the traditional second order wave equation,

ηtt − ηxx − ηyy = 0, (x, y) ∈ (0,1) × (0,1), T = 6.28. (45)

J Sci Comput

We rewrite (45) as a system of first-order linear equations,

ηt + ux + vy = 0
ut + ηx = 0
vt + ηy = 0,

(46)

with initial conditions

η(x, y,0) = 0.01 × (sin(2πx) + sin(2πy))

u(x, y,0) = 0.01 × (sin(2πx))

v(x, y,0) = 0.01 × (sin(2πy)),

(47)

and 2π periodic boundary conditions in both directions. We apply the post-processor to the
solutions of this DG problem for the η variable, after one period in time over triangular mesh
structures. The numerical behavior of the SIAC filter for (45) is examined in [18]. From
there, we observe the expected 2k+1 order accuracy for filtering over structured triangular
meshes. Here, we provide a thorough performance analysis of the parallelization.

Algorithm 7 depicts the condensed version of Algorithm 5 presented in Sect. 3.2.2.
The OpenMP directives in lines 1 and 3 are used to parallelize the execution of the post-
processor. As displayed in Algorithm 7, there exist three principle nested for loops in the
code, and we choose to parallelize the outer most one to minimize the overhead due to
initiation of OpenMP directives.

The performance results for post-processing an entire triangular DG field provided in
this section consider six evaluation points per element. Results are provided for both the
uniform and the smoothly-varying triangular meshes shown in Fig. 6, first post-processing
using only the symmetric kernel, and then post-processing using the position-dependent
kernel that uses a convex combination of filter types. Finally, we provide a performance
comparison between the filtering approaches using exact and inexact integration. Note that

Algorithm 7 Parallel-2D-tri-post-processor
1: � pragma omp parallel
2: {
3: � pragma omp for schedule(static/dynamic)
4: for each evaluation point (x, y) do
5: for each super-element I in kFootPrint do
6: {lower triangle}
7: for each triangle in intgRegions do
8: intg + = Result of the integral in (38)
9: end for

10: {upper triangle}
11: for each triangle in intgRegions do
12: intg + = Result of the integral in (38)
13: end for
14: end for
15: {Lines 5–14 will be repeated here if convex combination is needed.}
16: u�(x, y) = intg/(h1h2)

17: end for
18: }

J Sci Comput

Fig. 6 Examples of the (a) uniform and the (b) smoothly-varying triangular meshes used in calculations

the timing results have been gathered on a SGI multi-processor machine with 2.67 GHz
CPUs, using up to 16 threads.

5.1 Symmetric Kernel

The timing results for the symmetric kernel post-processing are given in Table 1 (uniform
mesh) and Table 2 (smoothly-varying mesh). We note that the workload for the uniform
mesh is statically assigned to each thread, as each thread performs an equal amount of work.
However, for the smoothly-varying mesh, we have used dynamic scheduling to simulate an
equal workload for each thread. Figures 7 and 8 demonstrate the performance scaling plots
for the uniform and smoothly-varying meshes respectively. The scaling results have been
calculated from the following,

scaling = Tserial

Tparallel
(48)

where Tserial represents the serial execution time and Tparallel is the parallel execution time.
Ideally, this parameter should result in the number of threads used in the parallel execu-
tion. We see that as we increase the order of the polynomial, the scaling approaches the
theoretically desired scaling.

5.2 Position-Dependent Kernel

Applying the position-dependent SIAC filter allows for post-processing up to boundaries and
allows for non-periodic boundary conditions. This position-dependent kernel uses a convex
combination of kernels (see (31)) to allow for a smooth transition between the one-sided
kernel and the symmetric kernel. The timing results for this position-dependent kernel are
given in Table 3 for the uniform mesh and in Table 4 for the smoothly-varying mesh. We
remind the reader that the difficulty in implementing the kernel near the boundary is that in
each iteration of the OpenMP for loop, we need to re-calculate the kernel coefficients for the
one-sided kernel. Moreover, if we are in a transition region, we need to calculate the convex
combination of different kernel types. Consequently, the timing results are larger than the
results for the symmetric kernel. In addition, the one-sided kernel has a wider support, which

J Sci Comput

Table 1 Timing results in
seconds for symmetric kernel
post-processing over the entire
domain for the uniform triangular
mesh considering P

2, P
3 and P

4

polynomials. th represents the
number of threads used in the
parallel execution

Mesh th = 1 th = 2 th = 4 th = 8 th = 16

P
2

202 × 2 8.68 4.39 2.19 1.13 0.63

402 × 2 34.74 17.70 8.85 4.48 2.47

802 × 2 137.85 68.92 34.61 17.68 9.53

P
3

202 × 2 39.76 19.98 10.00 5.02 2.64

402 × 2 159.68 79.68 40.04 20.22 10.47

802 × 2 632.34 316.43 158.77 80.45 40.39

P
4

202 × 2 154.76 77.05 38.69 19.35 9.81

402 × 2 617.32 310.56 155.65 78.27 39.43

802 × 2 2455.01 1238.38 622.12 311.82 157.08

Table 2 Timing results in
seconds for symmetric kernel
post-processing over the entire
domain for the smoothly-varying
triangular mesh considering P

2,
P

3 and P
4 polynomials. th

represents the number of threads
used in the parallel execution

Mesh th = 1 th = 2 th = 4 th = 8 th = 16

P
2

202 × 2 13.74 6.95 3.46 1.78 0.94

402 × 2 52.77 26.51 13.28 6.80 3.51

802 × 2 208.10 104.59 52.40 26.84 13.92

P
3

202 × 2 59.39 29.77 14.90 7.59 3.84

402 × 2 223.59 112.04 56.14 28.57 14.64

802 × 2 853.65 426.84 213.43 106.72 53.37

P
4

202 × 2 202.85 101.81 51.06 25.72 12.98

402 × 2 765.83 384.75 192.09 96.83 48.71

802 × 2 2960.00 1483.83 742.29 372.28 188.58

results in more floating point operations near the boundaries. Dynamic scheduling has been
used in this case.

Figures 9 and 10, provide the performance scaling plots when the position-dependent ker-
nel is used. We again notice that as we increase the order of the polynomial, the scaling gets
closer to the theoretical scaling. We further add that the behavior of the position-dependent
kernel over the triangular mesh structure when using higher order polynomials (P4 in this
case) has not yet been fully investigated and is the subject of an ongoing research. Moreover,
for the coarsest smoothly-varying mesh (N = 202 × 2), the width of the one-sided kernel
close to the boundaries exceeds the width of the domain. We do not consider this as a valid
scenario, therefore, the timing results have not been provided for this case.

We note here that Algorithm 7 can also be used for single-point post-processing. Where
the super-elements over which the integrations are performed (line 5) will be divided among
the threads. Similarly, we would expect to gain proper performance scaling when using
multiple threads.

J Sci Comput

Fig. 7 Symmetric kernel post-processor performance scaling for the uniform triangular mesh. N represents
the number of elements in the field

Fig. 8 Symmetric kernel post-processor performance scaling for the smoothly-varying triangular mesh.
N represents the number of elements in the field

Table 3 Timing results in
seconds for post-processing the
entire domain for the uniform
triangular mesh considering P

2

and P
3 polynomials.

A position-dependent filter has
been used to allow for
post-processing near the
boundaries. th represents the
number of threads used in the
parallel execution

Mesh th = 1 th = 2 th = 4 th = 8 th = 16

P
2

202 × 2 16.74 8.39 4.20 2.12 1.10

402 × 2 51.45 25.74 12.89 6.48 3.36

802 × 2 170.82 85.22 42.69 21.50 11.14

P
3

202 × 2 83.92 41.94 21.00 10.54 5.33

402 × 2 251.86 126.02 63.00 31.63 15.93

802 × 2 819.21 409.33 204.92 102.79 52.00

5.3 Inexact quadrature

In Sect. 4, we discussed one effective strategy for overcoming the computational cost of
post-processing discontinuous Galerkin approximations, through the use of inexact quadra-
ture. In the inexact post-processing scheme, we try to overcome the lack of regularity in the
integrand by increasing the number of quadrature points required for integration.

Table 5 presents the timing results for post-processing the solutions to the DG problem
in (45) using inexact quadrature and the symmetric kernel, over the uniform and smoothly-
varying triangular meshes. We have measured two different timings for these results. As we
increase the number of quadrature points, t1 represents the first execution time after which
the post-processed solution has an L2-error value better than the initial DG approximation. t2
represents the execution time to get similar error values to the exact post-processing scheme.

J Sci Comput

Table 4 Timing results in
seconds for post-processing the
entire domain for the
smoothly-varying triangular
mesh considering P

2 and P
3

polynomials. A
position-dependent kernel has
been used to allow for
post-processing near the
boundaries. th represents the
number of threads used in the
parallel execution

Mesh th = 1 th = 2 th = 4 th = 8 th = 16

P
2

402 × 2 156.11 77.95 39.11 19.59 9.98

802 × 2 514.80 257.47 128.96 64.65 32.74

P
3

402 × 2 963.90 481.94 241.20 120.79 60.84

802 × 2 3112.99 1556.49 777.81 388.71 194.97

Fig. 9 Post-processor
performance scaling for the
uniform triangular mesh when
the position-dependent kernel is
used to allow for post-processing
near the boundaries. N represents
the number of elements in the
field

Fig. 10 Post-processor
performance scaling for the
smoothly-varying triangular
mesh when using a
position-dependent SIAC filter.
N represents the number of
elements in the field

From Table 5 it is obvious that the inexact scheme is more efficient when post-processing
over a uniform mesh. For the smoothly-varying mesh, the inexact scheme is still a good
choice for the coarser mesh structure. However, we notice that t2 increases substantially
compared to the exact post-processing execution time for the finer mesh. This is due to
the increased number of quadrature points in the inexact scheme which in turn makes the
evaluation of integrations an expensive task.

Let us look more closely at the results obtained for the smoothly-varying mesh. For this
type of mesh, finding the integration regions (solving the geometric intersection problem
mentioned in the earlier sections) does not take more than 5% of the overall computational
time when performing the exact post-processing. Therefore, the major computational bot-
tleneck is due to the several numerical quadratures evaluated per element. From our analysis
of the smoothly varying mesh case, there are at most fifteen integration regions that can
occur within an element as the result of kernel-mesh overlap. In addition, for quartic poly-
nomials we need fifty-six quadrature points per integration region to evaluate the integrals
over the triangular mesh exactly to machine precision. This means that we process at most
15 × 56 = 840 quadrature points per element when applying the exact post-processor. How-
ever, for the inexact case and N = 402 × 2 mesh elements, we need at least 3306 quadrature
points per element to get similar results to the exact scheme, which renders the inexact post-

J Sci Comput

Table 5 Serial execution timing results in seconds for inexact post-processing over the entire domain, using
only the symmetric kernel, for the uniform and smoothly-varying triangular meshes, considering P

2, P
3 and

P
4 polynomials. t1 represents the time where the inexact scheme yields results better than the DG initial ap-

proximation. t2 represents the computational time spent to produce results similar to the exact post-processor.
texact is the exact post-processing execution time

Mesh t1 t2 texact

P
2

202 × 2 2.26 3.15 8.68

402 × 2 8.79 22.13 34.74

P
3

202 × 2 10.01 10.01 39.76

402 × 2 40.20 40.20 159.68

P
4

202 × 2 30.54 30.54 154.76

402 × 2 123.27 123.27 617.32

Uniform mesh

Mesh t1 t2 texact

P
2

202 × 2 4.80 34.54 13.74

402 × 2 50.06 1696.98 52.77

P
3

202 × 2 19.75 74.16 59.39

402 × 2 297.41 3200 223.59

P
4

202 × 2 71.97 224.00 202.85

402 × 2 800.00 9300.00 765.83

Smoothly-varying mesh

Table 6 Serial execution timing results in seconds for inexact post-processing over the entire domain, using
the position-dependent kernel near the boundaries, for the uniform triangular mesh, considering P

2, P
3 and

P
4 polynomials. t1 represents the time where the inexact scheme yields results better the DG initial approx-

imation. t2 represents the computational time spent to produce results similar to the exact post-processor.
texact is the exact post-processor execution time

Mesh t1 t2 texact

P
2

202 × 2 7.78 15.39 16.74

402 × 2 24.71 49.62 51.45

P
3

202 × 2 40.88 40.88 83.92

402 × 2 126.52 126.52 251.86

Uniform mesh

processor inefficient in this case. Therefore, for fine mesh structures, unless the cost of find-
ing the geometric intersections accounts for the majority of the computational complexity,
the inexact post-processor performs worse than the exact post-processor in terms of compu-
tational cost. Nonetheless, post-processing that uses inexact integration is still a good choice
for uniform meshes or non-uniform meshes with coarser mesh structures. Similar conclu-
sions can be drawn for inexact post-processing when using the position-dependent kernel
near the boundaries. Table 6, provides the timing results when using the position-dependent
kernel. The inexact post-processor is not efficient for the smoothly-varying mesh structure
and the position-dependent kernel, and therefore we neglect to provide timing results for
this case.

J Sci Comput

6 Summary and Conclusions

This paper presents the explicit steps a numerical practitioner should use in order to imple-
ment the Smoothness-Increasing Accuracy-Conserving (SIAC) filters in an efficient manner.
We consider quadrilateral and triangular element shapes in two-dimensions and hexahedra in
three-dimensions for both uniform and smoothly-varying mesh structures. We address the
computational tasks performed when post-processing discontinuous Galerkin (DG) fields.
As the conventional way of post-processing through the use of matrix-vector multiplications
has limited applicability, we provide a more general scheme to calculate the post-processed
value, by directly evaluating the convolution operator of the post-processor. We demonstrate
that when evaluating the convolution operator exactly to machine precision, we need to re-
spect the breaks in continuity over the integration regions which are due to the element
interfaces and kernel breaks. Consequently, the number of numerical quadratures can in-
crease significantly when dealing with general mesh structures. In an attempt to overcome
the cost of several numerical quadratures we discuss how using inexact quadrature in the
post-processing step can be applied by ignoring the breaks in continuity of the convolution
kernel, when performing the integrations. Furthermore, we provide results for the first time,
that demonstrate the efficiency of the post-processor when parallelized on a shared-memory
multi-processor machine, considering both the symmetric and the one-sided implementation
of the post-processor. Moreover, we compare the performance of the inexact post-processor
with the exact approach. In general these points can be drawn from our analysis:

• Calculating the post-processed values at a set of quadrature points within the computa-
tional field are independent of each other. Therefore, we expect to get close to perfect
scaling by simply parallelizing this task on a multi-processor machine. This is indeed
demonstrated in Figs. 7 through 10 in Sect. 5.

• In terms of computational time, the post-processor using inexact quadrature performs
noticeably faster than the exact approach when implemented for a uniform mesh structure.

• For the smoothly-varying mesh, the post-processor using inexact quadrature is not bene-
ficial for finer mesh structures, as a prohibitive number of quadrature points is needed for
the integrations before we obtain results similar to those using exact quadrature.

As the post-processor using inexact quadrature performs more efficiently than the ex-
act scheme when applied to uniform meshes, it can be used when performing local post-
processing (not over the entire computational field).

Acknowledgements The first and third authors are sponsored in part by the Air Force Office of Scientific
Research (AFOSR), Computational Mathematics Program (Program Manager: Dr. Fariba Fahroo), under
grant number FA9550-08-1-0156. The second author is sponsored by the Air Force Office of Scientific Re-
search, Air Force Material Command, USAF, under grant number FA8655-09-1-3055. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Bramble, J., Schatz, A.: Higher order local accuracy by averaging in the finite element method. Math.
Comput. 31, 94–111 (1977)

J Sci Comput

2. Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: High-Order
Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9.
Springer, Berlin (1999)

3. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite ele-
ment method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

4. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation
and Applications. Springer, Berlin, (2000)

5. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin fi-
nite element method for conservation laws. III. One dimensional systems. J. Comput. Phys. 84, 90–113
(1989)

6. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Post-processing of Galerkin methods for hyperbolic prob-
lems. In: Proceedings of the International Symposium on Discontinuous Galerkin Methods. Springer,
Berlin (1999)

7. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element
methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)

8. Cockburn, B., Ryan, J.K.: Local derivative post-processing for discontinuous Galerkin methods. J. Com-
put. Phys. 228, 8642–8664 (2009)

9. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)

10. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P 1-discontinuous-Galerkin finite element
method for scalar conservation laws. Modél. Math. Anal. Numér. 25, 337–361 (1991)

11. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws.
V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

12. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

13. Curtis, S., Kirby, R.M., Ryan, J.K., Shu, C.-W.: Post-processing for the discontinuous Galerkin method
over non-uniform meshes. SIAM J. Sci. Comput. 30(1), 272–289 (2007)

14. de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)
15. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J.

Numer. Anal. 19(6), 1260–1262 (1982)
16. Schoenberg, I.J.: Cardinal Spline Interpolation. Conference Board of the Mathematical Sciences Re-

gional Conference Series, vol. 12. Society for Industrial Mathematics, Philadelphia (1987)
17. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp element methods for CFD, 2nd edn. Oxford University

Press, London (2005)
18. Mirzaee, H., Ji, L., Ryan, J.K., Kirby, R.M.: Smoothness-increasing accuracy-conserving (SIAC) post-

processing for discontinuous Galerkin solutions over structured triangular meshes. SIAM J. Num. Anal.
(2011, in press)

19. Mirzaee, H., Ryan, J.K., Kirby, R.M.: Quantification of errors introduced in the numerical approximation
and implementation of smoothness-increasing accuracy-conserving (SIAC) filtering of discontinuous
Galerkin (DG) fields. J. Sci. Comput. 45, 447–470 (2010)

20. Ritcher, G.: An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput. 50,
75–88 (1988)

21. Ryan, J.K., Shu, C.-W.: On a one-sided post-processing technique for the discontinuous Galerkin meth-
ods. Methods Appl. Anal. 10, 295–307 (2003)

22. Ryan, J.K., Shu, C.-W., Atkins, H.: Extension of a post-processing technique for the discontinuous
Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci.
Comput. 26, 821–843 (2005)

23. Schumaker, L.: Spline Functions: Basic Theory. Wiley, New York (1981)
24. Slingerland, P.V., Ryan, J.K., Vuik, C.: Position-dependent smoothness-increasing accuracy-conserving

(SIAC) filtering for improving discontinuous Galerkin solutions. SIAM J. Sci. Comput. 33, 802–825
(2011)

25. Steffen, M., Curtis, S., Kirby, R.M., Ryan, J.K.: Investigation of smoothness enhancing accuracy-
conserving filters for improving streamline integration through discontinuous fields. IEEE Transactions
on Visualization and Computer Graphics 14(3), 680–692 (2008)

26. Sutherland, I.E., Hodgman, G.W.: Reentrant polygon clipping. Commun. ACM 17(1), 32–42 (1974)
27. Szabó, B.A., Babuska, I.: Finite Element Analysis. Wiley, New York (1991)
28. Walfisch, D., Ryan, J.K., Kirby, R.M., Haimes, R.: One-sided smoothness-increasing accuracy-

conserving filtering for enhanced streamline integration through discontinuous fields. J. Sci. Comput.
38, 164–184 (2009)

	Efficient Implementation of Smoothness-Increasing Accuracy-Conserving (SIAC) Filters for Discontinuous Galerkin Solutions
	Abstract
	Introduction
	The Discontinuous Galerkin Method
	Smoothness-Increasing Accuracy-Conserving Filter
	Construction of the Kernel
	Evaluation of the Convolution Operator
	Quadrilateral Mesh Implementation
	Structured Triangular Mesh Implementation
	Hexahedral Mesh Implementation

	Post-Processing Using Inexact Integration
	A Discussion on the Computational Complexity

	Performance Analysis of the Post-Processor
	Symmetric Kernel
	Position-Dependent Kernel
	Inexact quadrature

	Summary and Conclusions
	Acknowledgements
	Open Access
	References

