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Abstract

Recent research on point-based surface representations
suggests that point sets may be a viable alternative to
parametric surface representations in applications where
the topological constraints of a parameterization are un-
wieldy or inefficient. Particle systems offer a mechanism
for controlling point samples and distributing them accord-
ing to needs of the application.Furthermore, particle sys-
tems can serve as a surface representation in their own
right, or to augment implicit functions, allowing for both
efficient rendering and control of implicit function param-
eters. The state of the art in surface sampling particle sys-
tems, however, presents some shortcomings. First, most of
these systems have many parameters that interact with some
complexity, making it difficult for users to tune the sys-
tem to meet specific requirements. Furthermore, these sys-
tems do not lend themselves to spatially adaptive sampling
schemes, which are essential for efficient, accurate repre-
sentations of complex surfaces. In this paper we present a
new class of energy functions for distributing particles on
implicit surfaces and a corresponding set of numerical tech-
niques. These techniques provide stable, scalable, efficient,
and controllable mechanisms for distributing particles that
sample implicit surfaces within a locally adaptive frame-
work.

1. Introduction

Implicit surfaces are used for surface modeling [2], point
set reconstruction [7], animation [5], and visualization [22].
The widespread use of implicit surfaces is due to several de-
sirable features of the surface representation, such as a sim-
ple, homogeneous representation (e.g. volumes), the abil-
ity to model deformations without reparameterization, and
flexible topology. However, these advantages come at a
cost. Implicit surfaces are inefficient to render directly and
unintuitive to control.

Figure 1. A curvature dependent sampling of
the dragon (Figure 5 in the color plate).

In 1994, Witkin and Heckbert [23] introduced a novel
approach to sampling and controlling implicit surfaces in
which they constrain a system of interacting particles to lie
on the implicit surface. Each particle repels nearby particles
to minimize a Gaussian energy function. The Gaussian en-
ergy has a characteristic length, which is adapted for each
particle to suit the distribution of its neighbors. Simultane-
ously the particles are constrained and reprojected onto the
implicit surface. The Witkin and Heckbert (W-H) method
includes approximately 10 free parameters, and when they
are carefully tuned ([23] gives an effective set of guide-
lines), the resulting system produces a homogeneous distri-
bution of particles on the surface. Many applications, how-
ever, require inhomogeneous distributions based on cur-
vature, such as using particles to polygonalize [11] or to
parametrize [24] the surface. Several authors [16, 3] have
attempted to enhance the W-H method for locally adaptive
sampling , but have noted the difficulty of tuning such a
complicated system of parameters.



The difficulty with the W-H method is twofold. The
first is the presence of the characteristic length in the inter-
particle distances σ, which is the standard deviation of the
Gaussian. The Gaussian energy has a preferred value, and
particles that are not situated at a distance of approximately
σ move very slowly relative to those that are. To account
for this, the W-H method adapts the σ on a per particle ba-
sis according to a set of heuristics that involve several free
parameters. The σ adaptation is intimately tied to an inser-
tion and deletion of particles when σ becomes too large or
too small, respectively, and thus the equilibrium requires a
particular number of particles, which is determined by the
system, rather than the user. The second issue is the nu-
merical algorithm. The W-H method relies on a gradient
descent for both particle repulsion and σ adaptation. Dis-
cretized gradient descent algorithms invariably introduce a
critical free parameter (the descent rate, or unit change per
iteration), and the system can easily become either too slow
or unstable if the parameter is improperly tuned. As a re-
sult, changes to the W-H system often entail careful retun-
ing of the corresponding gradient descent parameter.

This paper addresses both of these issues. The effects of
the characteristic length are alleviated by introducing an en-
ergy function that is (approximately) scale invariant. Thus,
particles interact in a similar fashion over a wide range of
distances without adapting or tuning parameters. To address
the limitations of gradient descent we propose a inverse-
Hessian minimization scheme, which automatically tunes
the descent rate to accommodate the curvature of the energy
surface. The result is a robust system with relatively few pa-
rameters that provides a new capability: a locally adaptive
distribution of particles on implicit surfaces. Mechanisms
such as neighborhood size and deletion/insertion of parti-
cles can now be adapted to meet other constraints, such as
the total number of particles in the system, the average par-
ticle density, the efficiency of the computation, or update
and rendering times.

2. Related Work

Modeling surfaces with particles was first proposed
in computer graphics by Szeliski and Tonnesen [18, 19],
by developing an oriented particle system to sample de-
formable surface models. They employ an energy function
from the molecular dynamics literature, which causes par-
ticles to exert short-range repulsion and long-range attrac-
tion, keeping particles at an appropriate distance from each
other. Turk [21] uses repelling particles to re-sample polyg-
onalized static surfaces using curvature measurements,
while De Figueiredo et al. [4] proposes a physically-based
particle method to polygonalize implicit surfaces by
modeling particles with a mass-spring system. Build-
ing on these ideas, Witkin and Heckbert [23] propose a

novel, physically-based system that uses repulsive parti-
cles to not only sample, but also deform, implicit surfaces.
Other work presents ideas for sampling implicit sur-
faces for animation [6] and texture mapping [24]. Also, a
large body of work has been developed in the mathemat-
ics community that studies the discretization of surfaces
via energy minimizations [17, 8].

Heckbert [10] extends the original W-H method by de-
veloping a spatial binning optimization that determines the
radius of influence of a particle and only calculates forces
for neighboring particles within this radius. The radius of
influence varies from particle to particle, so the bounding
sphere must be computed for each particle. Another exten-
sion is proposed by Hart et al. [9] to sample more complex
surfaces. They describe an object-oriented system that nu-
merically differentiates implicit surfaces comprised of large
numbers of control parameters. Rösch et al. [16] introduce
a curvature dependency into the W-H method for sampling
unbounded surfaces and singularities. Similarly, Crossno et
al. [3] propose modifying the W-H scheme to accommodate
local curvature of extracted isosurfaces. Research in point-
based graphics, [1, 14, 7] builds, in part, upon ideas from
particle systems. Point-based methods fit an implicit sur-
face to a point cloud and then utilize particle system tech-
niques to refine the point representation.

3. The Witkin-Heckbert Method

The W-H method constrains n repulsive particles p(t) to
lie on an implicit surface of the function F (q), which is con-
trolled by parameters q(t). That is,

F (p(t), q(t)) = 0. (1)

In [23], particles provide not only a way to visualize the im-
plicit surface in real time, but also provide a handle through
which surface deformations are controlled by updating the
parameters q(t). This paper is concerned with only the par-
ticle placement, and thus, to simplify the discussion, we ig-
nore the surface deformation terms from the original W-H
formulation.

Particles distribute themselves homogeneously across
the surface by exerting an inter-particle repulsion force on
neighboring particles, resulting in a repulsion velocity vi

for each particle. The surface constraint is enforced by pro-
jecting vi onto the local tangent plane and then reproject-
ing the updated particle position onto the zero set of F us-
ing a Newton-Rhapson technique. That is,

ṗi =

(

I −
∇Fi ⊗∇Fi

∇Fi · ∇Fi

)

vi − φFi

∇iF

∇Fi · ∇Fi

, (2)

where I is the identity matrix,∇Fi is the spatial gradient of
F at the particle pi, and ∇Fi ⊗ ∇Fi is the projection op-
erator formed by the vector direct product of the gradient.



The last term in (2) is the reprojection onto the implicit sur-
face (the feedback term in [23]), which is scaled by a free
parameter φ. A fraction of ṗi is added to the current po-
sition in the manner of a finite forward difference scheme,
i.e. pi ← pi + cṗi, where c is the gradient descent constant
mentioned previously. The particle is then rendered using a
disk oriented to lie in the local surface tangent plane [18].

Each particle maintains an adaptive repulsion radius, σi,
which grows and shrinks based on the local energy val-
ues. The W-H method also includes a target radius, σ̂, that
controls the insertion and deletion of particles in the sys-
tem. When a particle’s σi drops below some fraction of σ̂
it is removed, and when it goes above some multiple of σ̂,
a new particle is inserted nearby. The system can quickly
move particles into sparse regions by growing σi for parti-
cles in underpopulated regions, and then inserting new par-
ticles when σi becomes too high. The system forms homo-
geneous distributions of particles over the surface by adapt-
ing σi until all particles have similar energy measures.

Several extension to the original W-H particle system
have been proposed in order to accommodate increased
sampling in areas of high curvature [16, 3, 11]. All three
extensions apply an adaptive, per-particle, curvature depen-
dency to either the repulsion radius, σi, or to the target ra-
dius, σ̂i. We have found these extensions do not provide ad-
equate curvature dependent distributions for complex sur-
faces with large variations in curvature values, confirming
the difficulties mentioned by Rösch et al. [16] and Karka-
nis et al. [11].

These difficulties arise because σi will grow and shrink
regardless of the underlying curvature value, and σ̂i does
not control the behavior of a particle apart from its split-
ting and dying. For example, consider a particle in a high
curvature area with a relatively low σ̂i. As σi increases this
particle splits at faster rates than particles in nearby flatter
areas. However, these new particles will merely be pushed
out onto flat areas, which will, in turn, become too crowded,
resulting in the deletion of particles. Meanwhile, the high-
curvature particle, missing the fleeing particles it recently
created, will continue to split—a never ending cycle of in-
sertion and deletion. In our experiments, when we tuned pa-
rameters to stop the insertion-deletion cycle by expanding
the hysteresis of insertion and deletion we found that the
particle distributions did not reflect the desired differences
in particle densities—the W-H scheme tends toward homo-
geneous distributions despite variations in σ̂. Local adapta-
tion in the W-H scheme is significantly more complex than a
single parameter; it also requires modifications to the parti-
cle radii interactions with the per-particle energy functions.

This paper proposes a new approach to distributing par-
ticles across an implicit surface, allowing for a wide range
of distribution patterns, from homogeneous to highly adap-
tive. The proposed system is general across a broad range

of shape complexity and size, and requires minimal param-
eter tuning from surface to surface. We build upon the con-
strained particle system developed by Witkin and Heckbert,
but introduce a new class of energy functions accompa-
nied by a single, global radius σ that virtually eliminates
the need for insertion-deletion to ensure even distributions
of particles across the entire surface. We apply particle in-
sertion and deletion to add global particle density control,
and create a curvature-based repulsion amplitude parame-
ter that causes particles to distribute with higher densities in
regions of interest.

4. A New Particle Energy Scheme

At the heart of the proposed particle system is the com-
putation of the potential energy associated with particle-
particle interactions. The minimization of this energy de-
fines the algorithm for distributing particles across the sur-
face and leads to a quantifiable notion of an ideal distribu-
tion. Each particle, pi, creates a potential field, which is a
function of the distance |pi−pj | between pi and all neigh-
boring particles that lie within the potential field. We define
the energy at a particle pi to be the sum of potentials of the
m particles that interact with pi:

Ei =
1

2

m,j 6=i
∑

j=1

Eij(| rij |), (3)

where rij = pi − pj . The global energy of the system is
the sum of all the individual particle energies. Because the
pairwise energies, Eij , are symmetric we have

E =

m
∑

j=1

n
∑

i=j+1

Eij(| rij |). (4)

The derivative of the system energy with respect to a par-
ticle position gives rise to the repulsive force that defines the
desired velocity direction (steepest descent):

vi = −
∂E

∂xi

= −
∂Ei

∂xi

= −

m,j 6=i
∑

j=1

∂Eij

∂ | rij |

rij

| rij |
. (5)

By iteratively moving the particles along the energy gradi-
ent, we find a global minimum when particles are evenly
distributed across the surface.

The pairwise potential energy Eij is the most impor-
tant aspect of any such particle system. A bad energy func-
tion can lead to numerical instabilities and uneven parti-
cle distributions, and a good function results in a homoge-
neous steady state. We have experimented with several po-
tential energy functions from the literature and have identi-
fied three important characteristics of a well behaved poten-
tial energy function. Energies should be continuous func-
tions of particle distance. The energy functions should be
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Figure 2. Plots of energy functions (E ) and
the corresponding force functions (F ) : (a)
Gaussian energy, exhibiting a characteris-
tic length; (b) Electrostatic energy, exhibit-
ing a necessary truncation; (c) Cotangent en-
ergy, exhibiting compactness and approxi-
mate scale invariance.

compact to avoid global influences and allow for efficient
computation. And to avoid characteristic lengths, and the
associated parameter tuning, the energy must be scale in-
variant. That is, two particles at different distances should
have the same ratio of energies regardless of the choice of
units of our system.

The Gaussian energy used in the W-H method is smooth
and nearly compact because the function can be truncated
in a manner that does not significantly affect its behav-
ior. However, the Gaussian has a characteristic length and
is not scale invariant. A particularly interesting example
of a scale-invariant energy is the electrostatic potential,
Eij = 1/|rij |. The electrostatic function is smooth, except
at the origin (which can be fixed by adding adding a small
constant to the denominator), but does not fall off quickly
enough to provide local behavior. As a result, particles do
not remain on flat regions but instead concentrate exclu-
sively on convex, high-curvature areas—a well-known phe-
nomenon from electrostatics. Furthermore, truncating the
electrostatic potential yields unreliable results, and the con-
figurations of particle steady states are very sensitive to the
distance of truncation. Thus, the electrostatic function is not
approximately compact. Figures 2a-b show graphs of the
Gaussian and electrostatic energy functions, respectively.

A particularly desirable energy function, which estab-
lishes a good compromise between approximate scale in-
variance and compactness, is a modified cotangent:

Eij =

{

cot
(

|rij |
σ

π
2

)

+
|rij |

σ
π
2
− π

2
|rij | ≤ σ

0 |rij | > σ
(6)

which is shown graphically in Figure 2c. This potential has
one free parameter σ, which establishes the farthest dis-
tance at which particles interact. The derivative of this en-
ergy with respect to particle distance is:

∂Eij

∂ | rij |
=

{

π
2σ

[

1− sin−2
(

|rij |
σ

π
2

)]

|rij | ≤ σ

0 |rij | > σ
(7)

The derivative shows an analogous relationship to the elec-
trostatic potential. When the distance between particles is
small relative to σ, sin(|rij |/σ) ≈ |rij |/σ, and the force
behaves like −1/r2, which is invariant to scale.

Our experiments show that the cotangent energy homo-
geneously distributes particles across the surface, freeing up
the need to modify σ on a per particle basis or to imple-
ment a parameter sensitive particle insertion and deletion
algorithm. The particles distribute themselves in a nearly
hexagonal packing, which is the general pattern for optimal
configurations [17]. The system is well behaved due to the
lack of a characteristic length in the energy or force func-
tion, and works across a broad range of surface shapes and
sizes with no modifications. Because of this robust behav-
ior, σ can be treated as an application dependent parame-



n σ = 1 m σ = 1

6
m σ = 1

9
m σ = 1

12
m

300 150.3 8.5 5.8 1.1

600 302.1 18.9 6.6 5.8

Table 1. The effects of varying the one free parameter, σ, in the cotangent energy function. The to-
tal number of particles, n, is constant along the rows, and the value of σ is the fraction of the to-
tal domain. The average number of influenced neighbors, m, is given for each variation. The upper
right example illustrates the one constraint on σ – σ must be large enough to ensure adequate dis-
tributing forces at a particle.

ter which can be tuned in accordance with the desired den-
sity of particles and the run-time requirements of the appli-
cation, as we will discuss in Section 6.

Table 1 illustrates the robustness and generality of the
cotangent energy function. For these examples we start with
a random placement of particles, then iteratively move these
particles using a simple gradient descent until the system
converges to a homogeneous distribution. We vary the value
of σ under two different scenarios: a sparsely packed sys-
tem of 300 particles, and a densely packed system of 600
particles. When σ = 1 (where σ is the fraction of the do-
main size), the energy has a global influence over the en-
tire surface function domain. The particle distributions con-
tinue to be homogeneous as we reduce σ, demonstrating
that the cotangent energy is approximately invariant over a
wide range of scales. The only restriction is that σ must be
large enough so that particles interact with a ring of neigh-
bors at the steady state (m ≈ 6 for this example). The up-
per right example in Table 1 shows how the system breaks
down when σ is too small to provide sufficient interaction.
As discussed in later sections, this condition can be met au-
tomatically by either increasing σ or adding more particles.

5. Moving Particles

Integrating the particles towards a progressively lower
energy state can introduce numerical challenges. A gradient
descent requires careful tuning of the step size parameter,
which can vary from surface to surface, and even particle to
particle. Improper values can lead to very long convergence
times if the step size is too small, or irreconcilable oscilla-

tions around the minimum if the step size is too large. To
avoid these problems we have implemented a Levenberg-
Marquardt integration scheme that does not require any tun-
ing of parameters (described in the following subsection).

We propose a Gauss-Siedel update strategy, in which
particle positions are updated one at a time, and each parti-
cle update relies on the most recent positions of its neigh-
bors. Moving particles in this method, versus finding all par-
ticle movements before making positional updates, allows
us to avoid large matrix operations for global minimization,
and instead works locally on small matrices using a global
metric to define convergence.

A two-step update scheme keeps the moving particles on
the surface. First, particle positions are updated based on
the repulsion velocity in the tangent plane:

pi ← pi +

(

I −
∇Fi ⊗∇Fi

∇Fi · ∇Fi

)

vi, (8)

which is the result of a Lagrangian formulation of the con-
strained optimization that keeps particles on the zero sets of
F . However, movements in the tangent plane can push par-
ticles off of the surface, especially in areas of high curva-
ture. Therefore one must follow up with a reprojection:

pi ← pi − Fi

∇Fi

∇Fi · ∇Fi

, (9)

which is a Newton-Rhapson approximation to the nearby
roots (zero sets) of F .



Levenberg-Marquardt

Positioning particles across the surface is a nonlinear
optimization problem, and the inverse-Hessian techniques,
such as the Levenberg-Marquardt algorithm, are often very
effective at producing stable results in a timely manner [15].
Levenberg-Marquardt (L-M) works by varying between an
inverse-Hessian when the energy is locally quadratic or a
gradient descent when the inverse-Hessian fails. We begin
with an expression for the Hessian of the particle potential.
The Hessian of a particle is a 3× 3 matrix composed of the
summed second derivatives of the energy with respect to a
particle’s position:

Hi =
∂2Ei

∂xi∂xi

=

m
∑

j=1

[

∂2Eij

∂|rij |2
(nij ⊗ nij)

+
1

| rij |

∂Eij

∂ | rij |
(I − nij ⊗ nij)

]

(10)

where nij is the normalized rij vector. When computing a
particle’s Hessian in the L-M algorithm, we ignore the sec-
ond term of (10), which corresponds to the second deriva-
tives of xi, because inclusion of these second derivative
terms can often be destabilizing [15]. This is justified nu-
merically by noting that the sum of first derivatives for any
one particle must be zero as it approaches equilibrium.

The L-M method adaptively conditions the Hessian by
increasing the diagonal matrix elements with a factor λ:

H̃ab =

{

Haa(1 + λ)
Hab a 6= b

(11)

The desired velocity due to tangential repulsive forces is
then determined by solving the system

vi = −
(

H̃i

)−1

Di, where Di =
∂Eij

∂|rij |

rij

|rij |
. (12)

When λ is large, H̃ becomes diagonally dominate and a par-
ticle moves in small steps in order to not over step the min-
imum, but when λ is small, the particle moves much faster,
using a full quadratic approximation to the energy surface.

Each particle maintains a λ value, which is initialized to
1.0 (the system is insensitive to this value) and modified by
factors of 10 as the system converges to an even distribu-
tion. Modifying λi is an iterative process governed by en-
ergy computations and comparisons, and works as follows
for one particle’s position update:

Step 1: Compute Di and Ei.

Step 2: Compute H̃i, solve (12), and compute the new en-
ergy value, Enew

i , at the new particle location pnew
i .

Step 3: If Enew
i ≥ Ei, increase λi by a factor of 10 and go

back to Step 2.

Step 4: If Enew
i < Ei, update pi = pnew

i and Ei = Enew
i ,

(decrease λi by a factor of 10 if this is the first time
through the loop,) and move onto the next particle.

We have found that particles must be on the surface be-
fore computing Enew

i because a particle should not be al-
lowed to move to a lower energy position if that position is
not on the surface. We put a particle back on the surface af-
ter solving (12) using the reprojection given in (9). Also,
the system is slow to converge if the particles are allowed to
jump over one another, and thus we penalize a particle with
a very high energy when it attempts to move a distance far-
ther than its nearest neighbor. The nearest neighbor penalty
forces λ to increase until the motion is on the same scale as
the neighborhood. Each particle is updated and moved in-
dividually so that changes are propagated into subsequent
particle updates. The entire process over all of the particles
is repeated until convergence, which is indicated in the L-M
algorithm by a very large average λ.

The L-M method requires significantly fewer system it-
erations to reach a desirable distribution of particles than
gradient descent, but each iteration takes longer to compute
because of the need to invert the 3× 3 Hessian matrix. The
most important gain of the L-M method is the insensitivity
to the only two free parameters, the initial and final λ val-
ues. We have found the L-M algorithm to converge over a
wide range of surface shapes and sizes with no modifica-
tions.

6. System Control

The scheme described in the previous section ensures
that particles repel each other and reach a uniform distribu-
tion in a reasonable amount of time, without modifying free
parameters, or inserting and deleting particles. The only re-
striction of the scheme is σ must be large enough such that
the given number of particles covers the surface. In prac-
tice, when dealing with unfamiliar or deforming surfaces it
may be necessary to enforce certain relationships between
the particles and the surface. For instance, we might want
to maintain a minimum number of particles, a certain mini-
mum particle density, or a minimum particle radius that cov-
ers the surface with specified number of particles. Meeting
these conditions will require modifying the number of par-
ticles or the radius of the energy function. Furthermore, we
would also like to have particle distributions that adapt to lo-
cal surface features.

6.1. Global Control of Particles

As with the W-H method, the particle energy quantifies
the density of particles in the neighborhood of a single par-



ticle, while the system energy provides information on the
global density of particles. The system energy measure pro-
vides further insight to the efficiency of the system and the
locality of the particle influences. Based on energy mea-
sures, several techniques can be used to ensure an efficient
and effective system.

The energy of a particle quantifies the amount of in-
teraction the particle has with its neighbors, where a low
energy implies too few neighbors, and high energy indi-
cates to many. To determine whether the particle system
contains enough energy to enforce even particle distribu-
tions without incurring unnecessary particle-particle com-
putations, the system energy measure is compared against
an ideal energy measure, Eideal. In our system, we define
Eideal to be a hexagonal packing of particles, similar to the
distribution described in the W-H method. The hexagonal
configuration represents a natural, low local energy distri-
bution [17], and is illustrated in Figure 3. When the sys-
tem energy is below Eideal, particles will generally not have
enough neighbors to reach an acceptable distribution. Con-
versely, when the system energy is greater than Eideal, par-
ticles are influencing more neighbors than necessary, result-
ing in extraneous particle-particle computations and slower
global convergence.

i

j1j2

Figure 3. When determining the ideal energy
at a particle, we want only the 6-ring neigh-
bors to influence a particle’s energy and force
calculations. In this diagram, we want the dis-
tance from i to j1 to be σ, which makes the
distance from i to j2 approximately 0.57σ. The
shade of the particles specifies the relative
energy and force influence to the center par-
ticle.

To achieve the Eideal, several mechanisms exist to mod-
ify the system energy. Particles can be inserted or deleted
to increase or decrease the system energy respectively, or σ
can grow or shrink. These mechanisms can be used sepa-
rately or in combination, depending on the goals of the ap-
plication.

Inserting and deleting particles drives the system
to maintain a specific surface density of particles, de-
fined by the value of σ. For a specific σ value, the system
energy specifies the approximate local density of neighbor-
ing particles across the entire surface. If the local densities
contain more particles than the defined ideal packing, par-
ticles can be deleted, either randomly across the surface,
or in a biased approach similar to the W-H deletion cri-
teria. Conversely, low local energies can be adjusted by
splitting particles in the local tangent plane.

Adjusting σ can be used when a specific number of par-
ticles is desired. The σ value grows and shrinks to en-
sure that particles interact with only the ideal neighborhood
distribution. Growing σ is important when the system en-
ergy is too low to ensure an even distribution of particles,
while shrinking σ when the system energy is too high pro-
duces the most computationally efficient system by keep-
ing inter-particle calculations as local as possible. Changes
in σ are carried out iteratively using either a gradient de-
scent, inverse-Hessian, or some other one-dimensional op-
timization technique.

For our system, we utilize a combination of insertion and
deletion of particles, and growing and shrinking σ to main-
tain a lower bound on the number of particles and an upper
bound on σ. This combination of constraints ensures a min-
imum number of particles in the system at all times, and a
cap on the complexity of the inter-particle calculations.

6.2. Locally Adaptive Particle Distribution

The local density of particles can be controlled to achieve
an adaptive sampling by introducing a repulsion amplitude,
αi, for each particle. The symmetric form of the pair-wise
potential functions associated with this modification is:

Ei =
m

∑

j=1

(αi + αj)

2
Eij . (13)

The repulsion amplitude parameter terms are then propa-
gated into the force and Hessian equations, (5) and (10).

Applications that entail complex implicit surfaces ben-
efit from increased sampling density near high-curvature
features. To accomplish this curvature dependent sampling
within the proposed framework, αi is scaled by the inverse
of the local curvature norm, κi, at pi. In order to keep a
minimum distribution in flat regions and to prevent surface
creases from attracting too many particles, we put a soft
minimum and maximum on this scaling:

αi = γ +
1

κd
i + ν

. (14)

The upper bound on αi is 1/ν, and the lower bound is γ.
We find that ν = 0.75, γ = 0.1, d = 2 and a curvature



range of [0, 20] works well and distributes particles with a
strong curvature dependence. To increase the curvature de-
pendence, d can be increase in (14), or to smooth out the
dependency, d < 1 can be used. We calculate the curva-
ture of the implicit surface from the derivatives of F using
the method described by Kindlmann et al. [12]. By adding
αi into the energy, force, and Hessian equations, the influ-
ence of particles in regions of high curvature is reduced,
causing particles to form denser configurations near these
surface features.

7. Implementation and Results

In our implementation of the proposed curvature based
sampling method we eliminate divisions by zero by adding
a very small value to all denominators. For all of the re-
sults presented in this paper we initialized our system with
the number of particles the system is required to maintain,
in random positions within the 3D domain of the implicit
surface, and the σ value is set as a fraction of the domain.
The system then iterates until the particle distribution con-
verges by repeating the following steps:

1. For each particle:

(a) Compute vi and Ĥi.

(b) Find Ei and the new particle position using the
two-step particle motion and reprojection (Sec-
tion 5), combined with the L-M algorithm (Sec-
tion 5) for computing velocities. Because of the
finite region of influence of the energy function,
we compute pairwise relationships for only those
particles that are within the radius σ. For effi-
ciency we use a spatial binning structure as de-
scribed by Crossno et. al [3].

(c) Update the particle’s position and check whether
the particle has moved to a new spatial bin.

2. Decide whether the system is at a steady state by
checking that the average log10(λi) is greater than
λmax (for our system we use λmax = 14). If the sys-
tem is still moving, go back to the particle update in
Step 1.

3. If the system is not moving, check whether we have
a desirable configuration by comparing the system en-
ergy to Ê using a relative difference threshold. If we
do not have an acceptable energy insert or delete parti-
cles, or change σ, to meet the application-specific sys-
tem requirements described in Section 6, and then go
back to the particle updates in Step 1 and continue it-
erating.

4. If the energy is acceptable, stop iterating.

The three examples in Figure 4 (and Figure 7 in the color
plate) are generated as the zero set of the quartic function:

F = x4 − 10r2x2 (15)

with r = 0.13, and centered in the domain [0, 1]3. All three
examples are initialized with 1000 particles and σ = 0.125,
and required to maintain the initial number of particles. The
left image is generated by setting αi = 1. The middle and
right images use (14) with d = 1 and d = 3 respectively.
On a 1.7GHz P4 processor with 1GB of memory, all three
examples converge in 15 to 18 seconds.

Figure 4. A quartic function with varying
equations for the repulsion amplitude, α (Fig-
ure 7 in the color plate).

Figure 1, Figure 5 and Figure 6 show several other ex-
amples of our system. The torus and box are represented as
zero sets of scalar trivariate B-splines, and each contain ap-
proximately 1250 particles. The dragon and griffin contain
approximately 7000 particles each, and are represented as
distance fields. The particles have been colored and scaled
according to the repulsion amplitude parameter, αi, of each
particle. The results illustrate the method for clustering par-
ticles around regions of high curvature.

8. Conclusions and Future Work

In this paper we have presented a new particle system for
robust, adaptive sampling of complex implicit surfaces. We
have developed a new class of energy functions and applied
several numerical techniques to generalize, stabilize, and
control the distribution of particles. The physically-based
nature of the particle system inherently incurs a high com-
putational cost, and our system provides the tools necessary
to automate the particle convergence reliably.

The feature-based sampling of the particle system al-
lows for more numerically sophisticated techniques to be
applied to implicit models. Deformations of the underly-
ing implicit function can be made more efficient and effec-
tive by concentrating computations and functional control
in regions of interest. The potential energy of the particles
can also be used to optimize the sampling of polynomials



across the surface [20]. Coupling the particle system with
a point based surface splatter, finite element data can ben-
efit from the nature of the surface constrained particle sys-
tem to improve the accuracy and efficiency of visualizing
higher order surfaces [13].
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Figure 5. A curvature dependent sampling of the dragon and griffin distance fields.

Figure 6. A curvature dependent sampling of the zero sets of scalar trivariate B-splines.

Figure 7. A quartic function with varying equations for the repulsion amplitude, α.


