
Simulation Steering with SCIRun in a

Distributed Memory Environment

Michelle Miller, Charles D. Hansen, Steven G. Parker, Christopher R. Johnson
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

fmmiller, hansen, sparker, crjg@cs.utah.edu
http://www.cs.utah.edu/�sci

Abstract

SCIRun is a shared memory problem solving environment (PSE) that provides the ability to
guide or steer a running computation. Extending such a tightly-integrated, performance-critical
framework to enable pieces of the computation to run on di�erent memory architectures all within
the same computation would prove very useful. In this way, many di�erent machines could execute
this framework, as well as permitting con�gurations of heterogeneous machines to work synergis-
tically on computations, farming o� compute-intensive pieces to the \big iron." In this paper, we
describe a distributed version of the SCIRun problem solving environment.

1 Introduction

Large-scale scienti�c computations require multiprocessors of some form due to the vast amount of
data inherent in these applications/simulations. However, the computer architecture of multipro-
cessors varies greatly, di�ering in the number of processors, communication mechanism, operating
system, and memory model (among other things). In particular, hiding, through abstraction, the
underlying details of the memory model (i.e., shared memory versus distributed memory) from the
application should allow us to take advantage of the range of machine types, from shared memory
multiprocessors to massively parallel processors. However, such an abstraction creates extra lay-
ers in the software infrastructure that generally result in increased software overhead. One must
strike a balance of exposing enough details to e�ciently tune the application, but not too many
architecturally-speci�c details, lest the application lose portability.

1.1 SCIRun: User Interaction and Steering a Computation

To achieve execution speeds needed for interactive three-dimensional problem solving and visual-
ization, a multi-threaded problem solving environment and computational steering system, called
SCIRun [1, 2], was built to make use of a shared memory multiprocessor, notably the SGI Power
Challenge and SGI Origin 200/2000. The SCIRun scienti�c problem solving environment (PSE)
is a computational steering system [3] that allows the interactive construction, debugging, and
steering of large-scale scienti�c computations. SCIRun can be conceptualized as a computational
workbench, in which a scientist can design via a data
ow programming model and modify simula-
tions interactively. SCIRun enables scientists to modify geometric models and interactively change
numerical parameters and boundary conditions, as well as to modify the level of mesh adaptation
needed for an accurate numerical solution.

An example of the SCIRun system interface is shown in Figure 1. The center of the picture
displays a graphical representation of the data
ow network. The boxes represent computational
algorithms (modules), with the lines representing data connections between the modules. Each
module may have a separate user interface, such as the matrix solver interface at the left, that
allows the user to control various parameters. The window in the upper right hand corner is
an interactive three-dimensional viewer that combines visualization output with data probes for
exploring the data and model.

When the user changes a parameter in any of the module user interfaces, the module is re-
executed, and all changes are automatically propagated to all downstream modules. The user is
freed from worrying about details of data dependencies and data �le formats. The user can make
changes without stopping the computation, thus \steering" the computational process. As opposed
to the typical \o�-line" simulation mode - in which the scientist manually sets input parameters,
computes results, visualizes the results via a separate visualization package, then starts again at the
beginning - SCIRun \closes the loop" and allows interactive steering of the design, computation,
and visualization phases of a simulation.

The ability to steer a large-scale simulation provides many advantages to the scienti�c program-
mer. As changes in parameters become more instantaneous, the cause-e�ect relationships within
the simulation become more evident, allowing the scientist to develop more intuition about the
e�ect of problem parameters, to detect program bugs, to develop insight into the operation of an
algorithm, or to deepen an understanding of the physics of the problem(s) being studied.

1

Figure 1: An example SCIRun network, showing the data
ow programming interface, user inter-
faces for controlling simulation parameters, and results from an large �nite element model.

1.2 Interactivity Requires E�ciency

Interactive scienti�c visualization and computational steering requires low-latency and high band-
width computation in the form of model generation, solvers, and visualization. Latency is par-
ticularly a problem when analyzing large datasets, constructing and rendering three-dimensional
models/meshes, and allowing a scientist to alter the parameters of the computation interactively
(thus \steering" the computation). However, the scaling ability of shared memory systems (or dis-
tributed shared memory systems) is limited, motivating closer investigation of meeting these same
needs with combined shared memory and distributed memory machines.

Currently, SCIRun manages machine resources to maximize computational e�ciency. In a
sophisticated simulation, each of the individual components (modeling, mesh generation, nonlin-
ear/linear solvers, visualization, etc.) typically consumes a large amount of memory and CPU
resources. When all of these pieces are connected into a single program, the potential computa-
tional load is enormous. In order to use the resources e�ectively, SCIRun adopts a role similar
to an operating system in managing these resources. SCIRun manages scheduling and prioritiza-
tion of threads, mapping of threads to processors, inter-thread communication, thread stack growth,
memory allocation policies, and memory exception signals (such as segmentation violations). These
become important issues as we distribute part of the computation to another machine.

2 Distributing SCIRun

To meet the demand for growing computational problem sizes, as well as meet the needs of the
computational community who use large distributed memory machines, we have extended the ex-
isting communications infrastructure within SCIRun to include cross-machine communications and
execution. In this way, we can preserve existing system functionality for shared-memory executions,
as well as providing more architectural
exibility. In constructing a distributed system, de�ned as
a collection of independent computers that appear to users of the system as a single computer [4],

2

our goal is to provide SCIRun users with the illusion of running on a single computer, while they
are really utilizing several computers with very di�erent characteristics. Distributing SCIRun has
been largely motivated by large-scale computational needs and usage of remote computing facilities
necessitated by the Utah DOE ASCI Alliance Center and the NCSA PACI Alliance.

Interactive rates for �nal solution, visualization, and steering interaction must be maintained.
Tying together very di�erent machines to work together on pieces of the same computation at
interactive rates is challenging. By building an underlying base, or infrastructure, to support fast,
e�cient communication of application-speci�c data and control within the PSE, we can maintain
acceptable interactive rates.

This work demonstrates the feasibility of combining a high-end, graphics-capable shared memory
machine, in this case an SGI Origin 2000, with a distributed memory machine, in this case an IBM
SP-2, for the use of an interactive computational steering and visualization system, namely SCIRun.
Other hardware con�gurations, such as a workstation/supercomputer con�guration, could be used
to run this version of SCIRun. We have extended the SCIRun problem solving environment without
drastic e�ects on existing code. We achieve this by extending the existing communications layer
and converting multi-threading capabilities into directives recognizable by large MPPs. We have
designed a layered architecture for SCIRun that abstracts away the machine-dependent details,
although we would like the user to be able to steer the performance aspects of each execution.
Figure 2 shows an example of such a layered architecture.

Requirements of a distributed version of SCIRun include limited performance degradation, and
minimal source code changes in the domain-speci�c modules (application code). In addition, sup-
porting large parallel machines could allow the problem size to scale upwards, permitting solutions
of larger problems than currently possible using a shared memory machine.

2.1 Methodology

The model for running SCIRun on heterogeneous machines calls for the user to initiate the compu-
tation (i.e., start SCIRun) on a graphics-capable machine, to compose an application from existing
SCIRun components (modules), to specify which of these should run remotely, and then to start
execution of the computation (network). Interacting with modules, viewing the rendered visual-
ization, and interacting with three-dimensional data probes (widgets) within the visualization all
occur on the initiating machine. The compute-intensive data
ow subnetwork executes on the re-
mote machine, potentially a distributed memory architecture. Data locality for the remote modules
is maintained and remote inter-module communication is optimized through the abstract layers.

We achieve the abstraction by modifying the scheduling, inter-module communication, user
interface mechanisms, and other \internal" portions of SCIRun that an application writer would
typically never see. Making modi�cations to the infrastructure allows programs that have been
designed for the SCIRun problem solving environment to function in either a networked, distributed
memory environment or a shared memory environment.

2.1.1 Architectural Software Changes

The software architecture, shown in Figure 3, depicts this solution for a computation distributed
across two machines. This architecture is based on a master/slave model. Steering and visualization
will take place on the local machine, the user's computational workbench, which becomes the
Master SCIRun instance. The remote instance of SCIRun will be the Slave. The application
writer con�gures a program by connecting together existing modules, some of which will be run
remotely. In Figure 3, the application program (network) consists of reading in data using a Reader

3

Application

Application Development Interface

Modules and Components

Data Management Infrastructure

UI

Visualization

Disk I/O

Physical
Layer

compute
resource

compute
resource

compute
resource

compute
resource

Run−time System/Networking

Figure 2: A layered architecture that hides the details of the number and type of machines being
used while providing mechanisms for user interaction with a running computation.

module, then executing RMod1, RMod2, and �nally Salmon to render the visualization, in that order.
Modules to be run remotely have a skeleton module (copy) remain on the Master side to keep
the state and run information needed for the scheduler to perform its task, while the real module
is instantiated on the Slave. The architecture of the Slave will consist of a daemon, the Slave
Controller, which listens on a communication channel for directives from the Master, keeping track
of the modules on the remote side. These directives follow:

� Instantiate a module.

� Destroy a module.

� Instantiate a connection between two modules.

� Destroy a connection between two modules.

� Execute a module.

� Re-execute some portion of the remote network.

4

Master
SCIRun

SGI Remote Machine

init. modules &
connections, control
commands

Input port data

module communications
channel,, state vector

Scheduler

Slave
SCIRun

internal
connection

handle

RMod2

RMod1

Salmon

RMod1

RMod2

Reader Slave
Controller

Output port dara

Figure 3: Software architecture for partitioning a SCIRun data
ow network across two machines.
Communications paths are shown. The Slave Controller acts as a daemon listening on a communi-
cations channel for commands from the Master SCIRun scheduler. It creates modules, connections
between modules, and destroys both. It also forwards control messages, such as execute() and
resend(), to the proper module. Data
ows in and out of modules through the typical input and
output port mechanism, although a special communication channel will be established for remote
module-to-module communication.

This set of directives was based on control commands in the current shared-memory version of
SCIRun, extending existing messages and functionality of the scheduling code to support a remote
machine.

Control communications is largely uni-directional, moving from the Master to the Slave, using
a �re and forget communications strategy. The need for messages from the Slave to Master is
mitigated by having all user interactions initiated on the Master, with the Master then sending
noti�cation to the Slave of any changes needed.

In addition, most module-to-module communications are one-way communications. For exam-
ple, Figure 3 shows module Reader connected to module RMod1. Data
ows from the output port of
Reader to the input port of RMod1. In most cases, this communication happens after the module,
Reader, has �nished executing, when resulting data is passed out its output port. For remote
communications, then, the communications channel must be set up before Reader has started to
execute.

Designing and implementing support for utilizing distributed memory environments into the
existing SCIRun architecture can be broken down into three separate phases.

1. Design and implement distributed control infrastructure to be integrated within existing
SCIRun control mechanisms (speci�cally the scheduler).

2. Design and implement module-to-module communications that span machines.

3. Parallelize modules to run on multiple nodes of a distributed memory machine. Build a
central module controller that decides how many nodes and which ones should run the code,

5

and handles the data communication issues.

2.1.2 Distributed Control Infrastructure

To permit modules to run on two di�erent machines, the SCIRun scheduling mechanism was ex-
tended. The scheduler keeps track of how modules are arranged in a data
ow network (i.e., exe-
cution order), and which modules need to execute. The shared memory version of SCIRun collects
all those modules which need to execute in a �rst pass through the data
ow network, then it calls
the execute() method of those modules in the second pass. The distributed version of SCIRun
must signal remote modules to execute in the second pass. It also permits user restart of parts of
the computation (steering) by signaling an output port to resend its data downstream after a user
has modi�ed parameters associated with the module below the output port, thus re-calculating.
It is important to maintain just one locus of control, the scheduler, but a software daemon is also
needed on the remote side to control modules executing there.

2.1.3 Remote Module-to-Module Communication

In SCIRun, modules are connected by data pipes through which data
ows as the computation
proceeds and control moves from an upstream module to a downstream one. The data pipes are
connected to modules at an input or output port, consistent with the direction of data
owing
from the top to bottom of the network. The data are bundled into a message and sent from an
output port for a given module to an input port for the following module(s). These messages
are sent by an output port writing directly into a public mailbox for the input port. In the
current shared-memory implementation, data are passed using pointers to globally-known data.
In the cross-platform model, this mechanism is replaced by streaming a copy of the data across a
machine-to-machine communication channel, requiring marshaling and unmarshaling of the data
on either side. We have chosen TCP/IP sockets as the communications channel to simplify our
prototyping work.

2.1.4 Parallelize Modules

A subset of computationally-intensive modules have been targeted to run on a distributed memory
machine. The parallel shared memory version of these modules partitions data in a data parallel
fashion, spawning the desired number of threads to operate on each data partition, typically one
thread per processor. Threads communicate via mailboxes. To leverage this parallelizing mecha-
nism to work with distributed memory, we have built a central module controller that acquires the
number of nodes needed to achieve the speci�ed level of parallelism, segments the data accordingly,
and sends code and data to the nodes, using typical scatter/gather techniques. This work utilizes
MPI for communication.

2.2 Results

To evaluate the e�ect of combining machines, in the �nal paper we will benchmark two di�erent
SCIRun scienti�c application codes using both architectures, the original SCIRun architecture
using shared memory and the new heterogeneous, distributed architecture. We will have achieved
low-latency, high-bandwidth communications.

6

3 Conclusions

We have demonstrated an e�ective architecture for steering computations with SCIRun using a
combination of a graphics-capable workstation, or shared-memory multiprocessor, and a distributed
memory parallel multiprocessor. While this work can be considered preliminary, we have shown
that by modifying the underlying control mechanisms and thread-to-thread communications (i.e.,
mailboxes) of SCIRun, the user need not be concerned with the details of inter-machine communi-
cation.

References

[1] S.G. Parker, D.M. Weinstein, and C.R. Johnson. The SCIRun computational steering software
system. In E. Arge, A.M. Bruaset, and H.P. Langtangen, editors, Modern Software Tools in
Scienti�c Computing, pages 1{44. Birkhauser Press, 1997.

[2] S.G. Parker and C.R. Johnson. SCIRun: A scienti�c programming environment for computa-
tional steering. In Supercomputing `95. IEEE Press, 1995.

[3] S.G. Parker, M. Miller, C.D. Hansen, and C.R. Johnson. An integrated problem solving en-
vironment: The SCIRun computational steering system. In Proceedings of the 31st Hawaii
International Conference on System Sciences (HICSS-31). IEEE Computer Society Press, Jan.
1998.

[4] A.S. Tanenbaum. Distributed Operating Systems. Prentice-Hall, Inc., Englewood Cli�s, NJ,
1995.

7

