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Abstract. Under ideal circumstances the problem of tomographic reconstruction is well-posed, and measured data
are sufficient to obtain accurate estimates of volume densities. In such cases segmentation and surface estimation
from the reconstructed volume are justified. In other situations the reconstructed volumes are not suitable for sub-
sequent segmentation. This can happen in the case of incomplete sinograms, noise in the measurement process, or
misregistration of the views. This paper presents a direct approach to the segmentation of incomplete and noisy
tomographic data. The strategy is to impose a fairly simple model on the data, and treat segmentation as a prob-
lem of estimating the interface between two substances of somewhat homogeneous density. The segmentation is
achieved by simultaneously deforming a surface model and updating density parameters in order to achieve a best
fit between the projected model and the input sinograms. The deformation is implemented with level-set surface
models, calculated at the resolution of the input data. Several computational innovations make the approach feasi-
ble with state-of-the-art computers. The usefulness of the approach is demonstrated by reconstructing the shape of
spiny dendrites from electron microscope tomographic data.

1 Introduction

Certain kinds of tomographic reconstruction problems are ill-posed due to incomplete sinogram data. Difficulties
in reconstructing volumes from such data are aggravated by noise in the measurements and misalignments among
projections. This paper addresses the problem of segmentation in the context of such difficult tomography problems
in biology and medicine. The usual approach for segmentation (indeed, any kind of post processing) in such cases
is to reconstruct the volume, as best as possible, from the measured data using standard techniques such as filtered
backprojection. Segmentation is then performed based on the grey-scale properties of that volume. However, the
ill-posed nature of the reconstruction problem tends to produce various kinds of grey-scale artifacts, which state-of-
the-art segmentation techniques cannot overcome. This paper presents a direct approach to segmentation, which uses
the information in the sinograms instead of working with the reconstructed volumes and their associated artifacts.
This direct strategy alleviates the effects of noise and misregistration and provides surface models of objects from
incomplete sinograms directly.

The application studied in this paper is electron microscope tomography (EMT). While this data serves to motivate
and demonstrate the proposed method, the characteristics of EMT are not unique, and the principles developed in this
paper are applicable to a variety of clinical and biological problems. EMT data, which deals with structures of very
small dimensions—on the order of few micrometers, has several inherent problems. First, there are technical limits to
the projection angles from which data can be measured. These limits are due to the mechanical apparatus used to tilt
the specimens and the tradeoff between the destructive effects of electron energy and the effective specimen thickness,
which increases with tilt angle. Usually, the maximum tilt angle is restricted to about

�
60–70 degrees. Figure 1 (a)

shows an illustration of the geometry of this limited-angle scenario. The second problem with EMT data is the degree
of electron scattering that results in projection images (sinograms) that are noisy relative to many other modalities,
e.g. X-ray CT. Finally, due to the flexible nature of biological objects and the imperfections in the tilting mechanism,
the objects undergo some movements while being tilted. Manual alignment procedures used to account for this, tend
to produce small misregistration errors. The segmentation approach described in this paper works well despite these
limitations in the data.

Typically EMT data is produced using some kind of a contrast-enhancing mechanism (a dye) which highlights
regions of interest, e.g. the interior of a cell. Thus, an ideal measurement and reconstruction would present a volume
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Fig. 1. (a) Illustration of limited-angle tomography, data missing in the shaded region (b) Schematic of the proposed method

with two distinct densities (or electron opacities); one for the undyed regions (the background) and another for the
dyed region (the foreground, or object). In practice, the densities are not homogeneous for either the object or the
background. However, to the extent that the inhomogeneities are random and small relative to the contrast between the
object and the background, the problem can be posed as estimating the interface between the object and the surrounding
tissue and the densities of those two materials.

Our strategy, therefore, is to estimate the interface between two relatively homogeneous materials directly from
the sinogram data, by deforming a surface model so that its forward projection is a best fit to the input data. For
this work, the “best fit” is the sinogram that minimizes the mean square difference to the input. Other statistically-
based metrics can be easily incorporated into this formulation, but that subject is beyond the scope of this paper.
The relationship between surface shape and the associated projections is nonlinear, and we therefore use an iterative
approach that deforms a surface model to achieve incrementally better fits. This requires a surface representation
which is sufficiently expressive to capture complex shape while allowing incremental, local deformations. For this we
use a level-set surface model, which is a volume with grey-scale values that change according to a partial differential
equation that controls surface movements. We consider the densities of the object and background as unknowns and
estimate them simultaneously with the surface fitting. Refer to figure1b for a schematic of the approach. We apply
the proposed method to limited-angle, noisy, misregistered EMT data of a small section of a spiny dendrite. However,
the basic assumptions of the approach are consistent with tomographic imaging modalities that are characterized by
contrasting foreground and background, such as SPECT or PET.

The remainder of this paper is as follows. Section 2 gives a brief account of related work. Section 3 lays out
the mathematical formulations of our segmentation strategy, the resulting surface deformation, the level-set evolution
equations and the computational innovations that result in a fast and accurate implementation. Sections 4 and 5 give
experimental results and conclusions.

2 Related Work

Several tomographic reconstruction methods are described in the literature [2], [3], and the method of choice depends
on the quality of projection data. Filtered backprojection (FBP), the most widely used approach, works well in the
case of the full-data reconstruction problem, where one is given enough high-quality projections over 180 degree an-
gular range. Statistical, iterative approaches such as maximum-likelihood (ML) and maximum a posteriori (MAP)
estimation have been proved to work well with noisy projection data, but generally rely on complete data sets. Some
hybrid approaches [4], [5] have been specifically designed to deal with limited-angle tomography by “guessing” miss-
ing sinogram data via some extrapolation technique. A few researchers have proposed direct surface estimation using
the projection data. For instance, Battle et al. [14], [15] use geometric deformable models for 3D tomographic recon-
struction of objects of constant interior density in the context of SPECT imaging. They pose the inverse problem in a
Bayesian framework and used a MAP estimate to compute the reconstruction of the shape of synthetic heart and lung
phantoms represented as triangulated surface meshes. The fitting is accomplished by progressive surface refinement,
but is limited in fidelity by the formulation and the surface representation. They demonstrate robustness to noise, but
show results only for simulated data and do not study the effects of incomplete data.

The literature describes many examples of level sets as curve and surface models for image segmentation [7], [10],
[11], [12]. The authors have examined their usefulness for 3D segmentation of EMT reconstructions [1], the results of
which are limited in quality due to reconstruction artifacts. We assert that while level sets are an interesting technology



for modeling deformable surfaces, they are only as good as the data that drives their deformation—better results can
be obtained by better formulations of the relationship between the models and the data.

Several authors have proposed solving inverse problems using level sets, with a more direct relationship between
the data and the model. Santosa [13] lays out this basic strategy and demonstrates the idea on some small problems
such as de-blurring 2D, binary images. Dorn et al. [16], [17] use this strategy to solve for permittivity using a sequence
of electromagnetic measurements, and show examples for simulated data in a 2D domain.

This paper makes several important contributions; first we describe a specific formulation of the direct surface
estimation problem for tomographic data, second we present a level-set implementation of this formulation that is
practical on large data sets, and third we demonstrate, using real data sets, the effectiveness of direct surface estimation
for a specific class of tomographic problems that are subject to noise, limited-angle sinograms, and misregistration.

3 Mathematical Formulation

For brevity we give the basic formulation in two dimensions, the extension to three dimensions is different only in
the mechanism for incorporating priors, or surface smoothing, which we describe later. The projection of a 2D signal���������
	

produces a sinogram given by the radon transform as� �������	��������� � ������ � ���������	 ����!#"%$'&(�)	 *+�,*+�-�
(1)
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is a rotation and projection of a point
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onto the imaging plane associated
with

�
. The 3D formulation is the same, except that the signal

��������,�=<�	
produces a collection of images which we

denote by � �:>?�@�����+	
.

The goal is to estimate the shapes of regions that have a density ACB , which is different from the background, with
density AED . We denote the (open) set of points in those regions as F , the closure of that set, the surface, as G , and the
projection of the model and background as H� �I�����+	

. The goal is to find F , A�D , and A�B to minimizeJLKNM�O�M �QPR SUT BWVRX T BZY � ���� � � ���� � ���������
	[���!\"�][$'&.� X 	[*��,*��^& � �� X ��� S 	I_a`#�
(2)

where
� B �Nb%bNb%��� P are the angles at which projections are taken and

� B �%bNb%bN�=� V are the samples taken for each projec-
tion angle. If we let c �������
	

be a binary inside-outside function on F , then we have the following approximation to���������
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and the energy becomes PR SfT BgVRX T BhY A D?i �I� X ��� S 	�5j� A B & A D 	 �lk ���! " ]m$n&(� X 	[*�$'& � �I� X ��� S 	 _ ` �
(4)

where i �� X ��� S 	 depends on the geometry of the region over which the data is taken, and is independent of the surface
estimate.

We use a gradient descent minimization approach for finding local deformation of the surface with respect to an
evolution parameter o , which gives F1p and G�p , and we denote the movement of a point

$
on the surface as qNrq p . The

first variation of equation (4) with respect to a small movement of the surface
�s$

is� J K%M O�M �ut PR SfT Bev H� ��! " ]m$6��� S 	�& � �! " ]m$6��� S 	mw9x�yz��$�	�{?�s$��
(5)

where
y|��$�	

is the surface normal at a point
$�} G p . Thus the surface deformation is~ $~ o � t PR SUT B v H� �! " ][$6��� S 	�& � ��! " ]m$6��� S 	�w x y|�$�	eb

(6)



Because the data are noisy and incomplete it is useful to impose some other considerations on the surface estimate
to maintain smoothness. This can be considered as a kind of regularization or as a prior—if one prefers a statistical
formulation. One choice of a prior that is described in the literature is to penalize the surface area, in which case the
first variation is the mean curvature. An alternative prior [11], used in this paper, is to use a weighted sum of principal
curvatures that does not penalize linear structures such as cylinders. Curvature motion is in the normal direction, and
the surface motion becomes ~ $~ o �ut PR SfT Bev H� ��! " ][$6��� S 	�& � �! " ]m$6��� S 	mw�5������$�	mx�y|��$�	6�

(7)

where
�

is a user-specified constant that controls the influence of the smoothness term relative to the data, and
�

denotes a curvature-based smoothing term.

3.1 The Level-Set Deformation

The level-set method, proposed by Osher and Sethian [7], [8], relies on an implicit representation of a deformable
surface model G�p : G�p ��� $�� �C��$6� o 	 �
	�� �

(8)

where
$W}���

,
���$ � o 	�������� ���� 

, and
	

, usually set to be zero, is arbitrary and does not affect the formulation.
Models evolving in this manner are not limited by topological considerations and can take a wide range of possible
shapes. The evolution of

�
that corresponds to the surface motion is~ �~ o �;&����-{ ~ $~ o b

(9)

Substituting the expression for q%rq p , with
yQ�
����� � ���!�

, gives~ �~ o � &"� ���#�lt PR SfT Bev H� ��! " ]m$6��� S 	�& � ��! " ]m$6��� S 	�w
5$������$�	[x b
(10)

This equation is solved by finite differences on a discrete grid, i.e. a volume. Osher and Sethian [8] have proposed
an up-wind method for solving these equations in a stable fashion, and a variety of researchers have proposed compu-
tationally efficient algorithms. We use the sparse-field algorithm [9], which computes updates on a (relatively) small
set of grid points, called the active layer, which is only one point wide, and can position level-set surface models to
sub-voxel accuracy.1 The curvature,

�
, is computed as described in the literature [7], [11] using central differences on

the discrete approximation to
�

.

3.2 Initialization

The deformable model fitting approach requires an initial model, i.e.
���$6� o �&%�	

. One reasonable way to obtain this
is by thresholding the “best” information available prior to our solution, which is a volume reconstructed by filtered
backprojection. In practice we do not require the initial model to be particularly close to the desired solution, and thus
the threshold is not a critical parameter.

3.3 Estimation of Density Parameters

We consider the object and background to be homogeneous substances of unknown densities A B and A D respectively,
and these density parameters affect the error term in equation (4). We update the estimate of the surface model itera-
tively, and at each iteration we reestimate the quantities A B and A D in such a way that the energy,

J K%M OM
is minimized.

Treating F as constant, equation (4) is quadratic in the density parameters. Thus, A B and A D are computed from the
following linear system: ~ JLKNM�O�M~ A D �'% � ~ JLKNM�O�M~ A B �
% b

(11)

Variations in instrumentation can cause variations in the brightness levels of the images taken at different angles. In
such cases we estimate sets of such parameters, i.e., A B �:� S 	 and A D ��� S 	 for ( �&)�bNb%b+*

.
1 The implementation in this paper is built on VISPACK, a C++ open-source software library for processing images, volumes and

level-set surface models. The library is available at http://www.cs.utah.edu/ whitaker.



3.4 Speed and Accuracy Considerations

Because we are combining the reconstruction problem (which is known to be time consuming) with the level set defor-
mation, our approach is computationally intensive. Specifically, computing H� �:>?�@�����+	

is a major bottleneck. Computing
this term involves re-computing the sinogram of our model as it moves. In the worst case, we would re-project the
entire model every time the surface moves.

To address this computational concern, we have designed and implemented a method, that we call incremental
projection update (IPU). Rather than fully recompute H� at every iteration, we maintain a current running version of H�
and update it to reflect the changes in the model as it deforms. Changes in the model are computed only on a small
set of grid points in the volume, and therefore the update time is proportional to the area of the surface, rather than the
size of the volume it encloses.

The IPU strategy works with the the sparse-field algorithm [9] as follows. At each iteration, the sparse-field algo-
rithm updates only the active layer (one voxel wide) and modifies the set of active grid points as the surface moves.
The incremental projection update strategy takes advantage of this to selectively update the model projection to reflect
those changes. At each iteration, the amount of change in an active point’s value determines the direction of motion
of that particular surface point. This quantitative measure determines what portions of the projection H� change (and
by how much), and we can update it accordingly. Thus, the IPU maintains sub-voxel accuracy at a relatively low
computational cost.

4 Experimental Results

In order to verify the correctness of the proposed method we first present results of digitally simulated slices (2D)
for comparison against a ground truth,

���������
	
. The synthesized image is a homogeneous object on a homogeneous

background. Projections of 128 samples each span 134 degrees (limited-angle) at two degree increments for a total
of 67 views. To simulate misregistration errors, we randomly translate the image by plus/minus one pixel before
taking the projections, and we corrupt each projection with additive, independent, Gaussian noise. Figure 2 shows
the segmentation results for one simulated 2D slice. The input image (figure 2a) has three ellipses with two of them
connected to each other. The incomplete, noisy, misaligned sinogram from this simulation (figure 2b) results in a
rather poor backprojection (figure 2d). Figures 2c and 2f show the initial model and the final model after 150 iterations
respectively overlaid on the input data. The initial model obtained from the backprojection is not a good estimate, it
contains parts that do not belong to the object and it is missing some other pieces. The deformation process corrects
these errors, and the final model captures all these connections and accurately estimates the contour corresponding to
the input data. The final estimated sinogram, shown in figure 2e, demonstrates that the proposed method fills in the
missing information in a reasonable way.

We also applied our algorithm to 3D EMT data obtained from a 3 MeV UHVEM. This 3D data set consists of
67 tilt series images, each corresponding to one view of the projection. Each tilt series image is of size 424x334.
The volume reconstructed by FBP is of size 424x424x334. Figure 4a and 4b show the sinogram corresponding to a
single slice of this data set and the estimate of the same sinogram created by the method. Figure 4e shows the surface
estimate intersecting this slice overlaid on the backprojected slice. Some structures not seen in the backprojection are
introduced in the final estimation, but the orientation of the structures introduced suggests that these structures were in
the original object but were lost in the reconstruction artifacts during the backprojection. This hypothesis is consistent
with the results of the simulated data. Also, the proposed method captures line-by-line brightness variations in the
input sinogram (as explained in section 3.3). This suggests that the density estimation procedure is correct. Figure 5
shows the 3D initialization and the final 3D surface estimate. The figure also shows enlarged initial and final versions
of a small section of the surface. The enlarged versions clearly illustrate the missing structures getting filled in.

Figure 3a shows a plot of the percentage error, relative to the RMS magnitude of the input sinogram, versus number
of iterations. The error converges to a constant value within approximately 50 iterations for the simulated data, whereas
it takes about 150 iterations for the real dendrite data. This is justified by the complexity of the real data compared to
the simulated data. Also, the percentage error is lower for simulated data, which suggests the higher degree of noise
and inhomogeneities in the EMT data. Figure 3b shows the convergence of the average value of the density parameterA B �:� S 	 for a single slice of the EMT dendrite data. The final surface estimate for the EMT dendrite data required 250
iterations, which took approximately 5 hours on a single processor of Silicon Graphics Onyx2 workstation.
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Fig. 2. Results of a 2D simulation: (a) Digitally simulated input image (b) limited-angle, noisy, misaligned sinogram created by
projecting the input image (c) Initial model obtained by thresholding the backprojection (d) Backprojection showing artifacts (e)
Sinogram estimated by the proposed method (f) Final model showing the correct segmentation of the input (Note: The initial and
final contours are overlaid on the input data)

5 Conclusions

We have demonstrated direct segmentation and surface modeling using sinograms for difficult tomography problems.
Our results show that this approach is better than working with reconstructed volumes and their associated artifacts.
In the particular case EMT dendrite data, the method appears superior to the current practice of hand segmentation,
which requires more time and fails to capture the same level of detail.

This work promises a number of interesting future directions. One direction is to extend the method to work for non
homogeneous substances or multiple densities. In principle, one can modify the level-set equations to accommodate
non-homogeneous density functions, that could also be estimated simultaneously with the surface estimate. Also, one
could have several, interacting surface models, each one enclosing a different substance. Another direction is to apply
the approach to other kinds of tomography which have the similar problems. For example, a limited-angle problem
occurs in cardiac CT imaging, where the carriage containing X-ray emitters and detectors can only travel part of
the way through the full angular range before significant heart motion occurs. Finally, preliminary results show that
the method can reconstruct surface shapes even in the extreme case of very few projections. This suggests that the
approach could have applications in angiography and fluoroscopy.
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Fig. 3. Convergence plots: (a) Percentage error versus number of iterations for simulated and dendrite data. (b) The estimated object
density parameter (average of
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over all angles) for the EMT dendrite data versus the number of iterations
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Fig. 4. 2D slice of dendrite data: (a) Sinogram of one slice (b) Sinogram estimated by the method for the same slice (c) Backprojec-
tion showing artifacts (d) Initial model obtained by thresholding the backprojection overlaid on the backprojection (e) Final model
overlaid on the backprojection

(a) (c)

(b) (d)

Fig. 5. 3D results: (a) Surface initialization (b) Final surface estimated after 250 iterations (c) A portion of the initial surface enlarged
(d) The corresponding portion in the final surface


