
DYNAMIC PARTICLES FOR ADAPTIVE SAMPLING OF

IMPLICIT SURFACES

by

Miriah Meyer

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2008

Copyright c©Miriah Meyer 2008

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Miriah Meyer

This dissertation has been read by each member of the following supervisory committee and by
majority vote has been found to be satisfactory.

Chair: Ross Whitaker

Elaine Cohen

Mike Kirby

Hanspeter Pfister

Claudio Silva

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Miriah Meyer in its final form and
have found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the Supervisory Committee and is ready for submission to The
Graduate School.

Date Ross Whitaker
Chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

A ubiquitous requirement in many mathematical and computational problems is a set of

well-placed point samples. For producing very even distributions of samples across complex

surfaces, a dynamic particle system is a controllable mechanism that naturally accommodates

strict sampling requirements. The system first constrains particles to a surface, and then moves the

particles across the surface until they are arranged in minimal energy configurations. Adaptivity

is added into the system by scaling the distance between particles, causing higher densities of

points around surface features. In this dissertation we explore and refine the dynamics of particle

systems for generating efficient and adaptive point samples of implicit surfaces.

Throughout this dissertation, we apply the adaptive particle system framework to several

application areas. First, efficient visualizations of high-order finite element datasets are generated

by developing adaptivity metrics of surfaces that exist in the presence of curvilinear coordinate

transformation. Second, a framework is proposed that meets fundamental sampling constraints

of Delaunay-based surface reconstruction algorithms. In meeting these constraints, the particle

distributions produce nearly-regular, efficient isosurface tessellation that are geometrically and

topologically accurate. And third, a novel analytic representation of material boundaries in

multimaterial volume datasets is developed, as well as a set of projection operators, that allow for

explicit sampling of nonmanifold material intersections. Using a tetrahedral labeling algorithm,

the material intersections are extracted as watertight, nonmanifold meshes that are well-suited for

simulations.

To my cheerleading squad.

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . ix

LIST OF TABLES . xv

ACKNOWLEDGMENTS . xvi

CHAPTERS

1. INTRODUCTION . 1

1.1 Contributions . 5
1.2 Overview . 6

2. TECHNICAL BACKGROUND . 9

2.1 Notation . 9
2.2 Implicit Surfaces . 9
2.3 Distance Transforms . 11
2.4 Reconstruction Kernels . 13
2.5 Mathematical Morphology . 14

2.5.1 Binary Morphology . 15
2.5.2 Tightening . 17

3. DYNAMIC PARTICLE SYSTEMS . 21

3.1 Background . 21
3.2 The Witkin and Heckbert Method . 22
3.3 A New Particle Energy Scheme . 26
3.4 Moving Particles . 30

3.4.1 Adaptive Gradient Descent . 31
3.5 System Control . 33

3.5.1 Global Control of Particles . 33
3.5.2 Locally Adaptive Particle Distribution . 35

3.6 Implementation . 36
3.7 Computational Optimizations . 38
3.8 Rendering . 40
3.9 Results . 41
3.10 Discussion . 44

4. ISOSURFACE VISUALIZATION OF HIGH-ORDER FINITE
ELEMENT DATA . 47

4.1 High-Order Finite Elements . 48
4.2 Background . 50

4.2.1 Direct Visualization of Implicit Surfaces 50
4.2.2 Low-Order Visualization Methods for High-Order Data 51
4.2.3 High-Order Visualization Methods . 54

4.3 Adaptation of the Particle System Framework . 55
4.3.1 Isosurface Geometry in Finite Elements . 55
4.3.2 Reference Space Particles . 58

4.4 Boundary Discontinuities . 59
4.5 Implementation . 60
4.6 Results . 61
4.7 Discussion . 65

5. ISOSURFACE MESHES USING DYNAMIC PARTICLES WITH QUALITY
CONSTRAINTS . 70

5.1 Meshing for Biomedical Simulations . 70
5.2 Background . 72
5.3 Mesh Generation with Particle Systems . 76

5.3.1 Local Feature Size . 76
5.3.2 Sizing Field . 78
5.3.3 Distributing Particles . 80
5.3.4 Triangulation . 83

5.4 Implementation . 84
5.5 Results . 85
5.6 Discussion . 94

6. SAMPLING AND MESHING OF MULTIMATERIAL VOLUMES 96

6.1 Introduction . 96
6.2 Previous Work . 97
6.3 Topology of Multimaterial Interfaces . 99
6.4 Representing and Sampling Junctions . 100

6.4.1 Differentiable Multimaterial Junctions . 101
6.4.2 Sampling Multimaterial Junctions with Particles . 102
6.4.3 Meshing Multimaterial Samples . 105

6.5 Analysis and Correctness of Algorithm . 106
6.5.1 Extension of Sampling Requirements to Include Sharp Features 106

6.5.1.1 Definitions . 106
6.5.1.2 Delaunay Surface Reconstruction in 2D . 107
6.5.1.3 Derivation of of Material Angle Constraints . 107

6.5.1.3.1 Case 1. 108
6.5.1.3.2 Case 2. 108

6.5.2 Angle of Multiple Materials . 110
6.6 System Overview . 114

6.6.1 Preprocessing Data . 114
6.6.2 Distributing Particles on Junctions . 119
6.6.3 Meshing the Surface . 120
6.6.4 Implementation . 121

6.7 Results . 123
6.8 Discussion . 133

vii

7. EXTENSIONS AND FUTURE WORK . 134

APPENDICES

A. 140

REFERENCES . 143

viii

LIST OF FIGURES

1.1 Implicit surfaces are implied bands of some constant value embedded within a
volume, much like lines of constant altitude in a topographic map. 2

1.2 Examples of implicit surface visualizations: (a) a volume rendering of a tumor ex-
tracted from MRI data using a levelset surface deformation technique [85] (image
courtesy of Aaron Lefohn); (b) a raytraced image of a helium plume computed
from a computational fluid dynamics simulation (image courtesy of the University
of Utah Center for Accidental Fires and Explosions (C-SAFE)). 3

1.3 Examples of implicit surface extractions for biomedical applications: (a) vascula-
ture extraction for use in a catheter-placement simulation [34] (image used without
permission); (b) patient-specific model used in an EKG simulation [151] (image
used without permission). 3

2.1 A distance transformation of the black curve, where the shade of gray represents
the signed distance from the curve. 12

2.2 Examples of an isosurface of a distance tranform extracted using (a) an approxi-
mating43 cubic B-spline reconstruction kernel, and (b) an interpolating43 Catmull-
Rom spline reconstruction kernel. 15

2.3 A binary segmentation (a) and results of the fundamental binary morphology op-
erationsdilate (b) anderode(c). 16

2.4 A binary segmentation (a) and results of the binary morphology operationsopen
(b) andclose(c). 16

2.5 Isosurface extractions of the three basic isotropic stencils —plus is a 6-pointed
stencil,ball is a solid cube minus the corners, andcubeis a solid cube. 17

2.6 Isosurface of a brain segmentation [142] at various stages of preprocessing, ex-
tracted using an approximating kernel: (a) the original segmentation; (b) after
opening and closing the volume using a ball stencil; (c) after tightening withr = 1. 18

2.7 The original shape (a) has a mortar shown in gray in (b). The tightened surface,
with r = 40 is shown in (c). (images used without permission) 20

3.1 Adapting the radius of particles based on local surface curvature in the W-H system
results in a cycle of insertion and deletion of particles: (a) a high curvature particle
in red has a low energy value; (b) the high curvature particle splits to increase its
energy, and these new particles are pushed outwards towards a lower curvature
region sampled by the yellow particles; (c) the new particles are deleted as the
lower curvature area becomes over crowded, leaving the high curvature particle
again in a low energy state. 25

3.2 Plots of energy functions (E) and the corresponding force functions (F) : (a) Gaus-
sian energy, exhibiting a characteristic length; (b) electrostatic energy, exhibiting
a necessary truncation; (c) the proposedmodified cotangentenergy, exhibiting
compactness and approximate scale invariance. 28

3.3 When determining the ideal energy at a particle, we want only the 6-ring neighbors
to influence a particle’s energy and force calculations. In this diagram, we want the
distance fromi to j1 to beσ, which makes the distance fromi to j2 approximately
0.57σ. The white particles fall at, or just outside of, the repulsion radius ofpi,
while the gray particles exert forces. 34

3.4 The adaptivity of the particle system is modified from left to right withρ = 0,
ρ = 7, andρ = 15. 36

3.5 Particle distributions over simple surfaces. The surfaces in (a) and (b) are the
zerosets of analytic functions, while (c) is a levelset of the distance transform of a
box. 41

3.6 Comparison of the distribution time of the particle system over a sphere versus the
total number particles in the system. 42

3.7 Particles on a brain reconstructed from a149× 188× 148 binary volume that was
closed then opened with aball stencil, followed by a tightening withr = 1. In (a)
and (b)s = 2, with ρ = 0 in (a) andρ = 5 in (b). 43

3.8 The dragon dataset is a356× 161× 251 distance transform. In (a) and (b)s = 4
ands = 2, respectively, withρ = 0, and in (c) and (d)s = 2 andρ = 7.5. Image
(d) is a splat rendering of the particles in (c). 44

3.9 The griffin dataset is a104× 48× 98 distance transform. In (a) and (b)s = 2 and
s = 1, respectively, withρ = 0, and in (c) and (d)s = 2 andρ = 7.5. Image (d) is
a splat rendering of the particles in (c). 45

4.1 A 2D schematic of the finite element subdivision scheme. Inreference space,
elements are defined as identical squares. These squares are transformed into
world spaceby a mapping functionT that can stretch, skew, shrink, or even
collapse edges. 48

4.2 An isosurface of a finite element fluid simulation pressure field sampled with a
particle system. The color indicates the relative direction of the surface normal at
the particle (blue indicatesoutwardand red indicatesinward). 49

4.3 Marching cubes surfaces of a sphere mapped through quadratic b-spline func-
tions: (a) the transformed elements; (b-d) surfaces generated using an adaptive
subdivision root-trapping scheme; (e-g) surfaces generated using Newton-Raphson
root-trapping. Grid dimensions, number of forward evaluations, and timings are
given Table 4.1. 54

4.4 Particles move from element to element by utilizing neighboring element informa-
tion (dashed lines) and linear interpolation of the reference space element vertices
to determine the coordinates of the particle in the neighboring element. 59

4.5 Artifacts due to boundary discontinuities where disks (left) or splats (right) inter-
sect each other. 60

x

4.6 A sphere defined in reference space (left) is mapped to a teardrop in world space
(right). The mapping function induces a curvature variation to the surface, and the
particles adapt accordingly. 62

4.7 The particle system converges to an even distribution in world space (right) re-
gardless of the shape of the surface in reference space (left). 63

4.8 The data set from Figure 4.3 sampled with a particle system. Theright column
images are splat renderings of the particles in theleft column: (a) 1280 particles
distributed in 16 seconds with 1.1 million forward evaluations; (b) 3232 particles
distributed in 36 seconds with 2.5 million forward evaluations; (c) 8647 particles
distributed in 70 seconds with 4.8 million forward evaluations. 64

4.9 The zeroset of an eighth-order implicit function defined within a single hexahedral
element: (a) 500 particles, with a distribution time of 4 seconds; (b) 6800 particles,
with a distribution time of 3 minutes; (c) A GPU-based splat rendering of the 6800
particles that is visually indistinguishable from the512 × 512 raytraced image in
(d) that required 6 minutes to render. 66

4.10 The isosurface of pressureC = 0 for a CFD simulation over 5736 elements with
a third-order polynomial implicit function in each element: (a) Schematic for the
fluid simulation; (b) 5000 particles, 55 seconds; (c) 13,000 particles, 3.4 minutes;
(d) 28,000 particles, 15 minutes; (e) 59,000 particles, 39 minutes. 67

4.11 The distribution from Figure 4.10(d), color-mapped based on the radii of the par-
ticles. The colorbar provides the range of values of the radii. 68

4.12 The isosurface of pressureC = −0.1 for a CFD simulation over 11,004 elements
with a third-order polynomial implicit function in each element: (a) Schematic for
the fluid simulation; (b) 43,000 particles, 25 minutes. 69

5.1 A curve (shown in black), with anǫ-sampling of points (also shown in black), and
its MA is (shown in red). Theǫ-sampling requirements state that a point on the
surface,s, cannot be further away from a sample point thanǫ times the LFS ats. . . 75

5.2 The proposed mesh generation pipeline using a dynamic particle system. First, a
medial axis is computed from a distance transform of an implicit surface; next,
an initial sizing field is built from the local feature size and radius of curvature;
a smoothed sizing field is then generated by limiting the gradient of the initial
sizing field; particles sample the sizing field and distribute themselves accordingly;
and finally, the particles are triangulated using a Delaunay surface reconstruction
algorithm. 77

5.3 Illustrative comparison of mesh quality and number of triangles for varying values
of ǫ andδ, the user defined parameters in Equations 5.1 and 5.2, respectively. The
ǫ values vary down the columns while theδ values vary across the rows. 81

5.4 The effects of curvature cause the two-ring neighboring particles to become closer
than2d (left). This effect is bounded byǫ, which allows for a scaling parameter
to be introduced into the system. We empirically determined this value by study-
ing histograms of the triangle edge lengths versush, such as that of the pelvis
reconstruction (right). 83

5.5 A tessellation of a pelvis segmentation [10]. 88

xi

5.6 Particles on the brain and the resulting tessellation. The surface is a reconstruction
of a white-matter segmentation [142]. 89

5.7 The skull mesh is generated by reconstructing a level-set of a gray-scale CT image.
Close-ups are from triangulations generated using the proposed particle system
method, an advancing front technique [129], and a marching cubes algorithm. 90

5.8 The vessel mesh represents the zero-set of a distance transform generated using an
anisotropic smoothing algorithm [104]. 91

5.9 The edge length versush ratios for the four data sets. Values greater than1.0 were
encountered at a frequency of less than0.01% in the brain, skull, and vessel meshes. 92

5.10 The radius ratios for the four data sets, all with an average ratio of∼ 0.94. 93

5.11 A high-quality mesh of a spinny dendrite segmentation [51]. The triangulation
contains over 400,000 elements, and has a minimum radius ratio of 0.38. 95

6.1 In 2D, a 3-material junction is generic and forms a 0-cell (a); it maintains its
topology under small perturbations (b). A 4-material junction (c), however, is a
nongeneric case, and is anihilated under small perturbations (d) to form generic 2-
and 3- material junctions. 99

6.2 Material interfaces in multimaterial datasets exist where a volumetric model of the
data transitions from one maximal material to another, shown by the dotted lines
for a set of three indicator functions. 101

6.3 When a curve is sampled densely enough, thecrust exists as a subset of edges
of a Delaunay triangulation of the surface sample points and their Vornoi vertices
(image used without permission). 107

6.4 The sampling assumptions for the 2D proof. The pointp2 explicitly samples the
tip of the sharp feature,|p1p2| = |p3p2|, |p4p1| = |p5p3|, and|p1p2| ≤ |p4p1|. . 108

6.5 The case where90◦ ≤ θ ≤ 180◦. 109

6.6 The case where0◦ < θ < 90◦. 109

6.7 Shown here, the Voronoi vertexv2 will never be closer to the pointc thanv1. 110

6.8 Forθ < 45◦, the Voronoi vertexv1 will fall outside the smallest circumcircle of
p1p3. 110

6.9 Isosurface extractions of analytic distance transforms of a wedge dataset of (a)10◦,
and (b)120◦. 111

6.10 Plots of the wedge experiment that indicate the IO function angles increase as
a three material point is approached: (top) as the intersecting circle radiusR
decreases, the material angles for a range of wedge angles increase to values
over 100◦; (bottom) material angles computed at a small intersecting circle tend
to values over100◦, regardless of the amount of tightening used. 113

6.11 The geometry for the wedge data, where blue is the original wedge with a material
angle ofθ, green is the wedge tightened with a radius ofr, and yellow is the
reconstructed IO function. 114

xii

6.12 The geometry for the wedge data, where blue is the original wedge with a material
angle ofθ, green is the wedge tightened with a radius ofr, and yellow is the
reconstructed IO function. 114

6.13 The original multilabel torso dataset, where segmentations indicate (from darkest
to lightest) air, torso tissue, lung, heart, and bone. In this data set, the heart was
handsegmented while all other materials were automatically segmented. 115

6.14 Segmentation artifacts show up in an isosurface extraction of the heart material (a).
Binary morphology operations can eliminate many of the small features and gaps
(b), while tighteningsmooths the surface by controlling the minimum feature size
(c). 116

6.15 The multilabel torso dataset after binary morphology is performed on the individ-
ual materials, followed by a downsampling. The materials are recombined in (a)
where the black pixels indicate an empty region where no materials are specified.
The downsampled data aftervoting (b) which applies heuristics to fill in empty
regions. 117

6.16 Segmentation and/or binary morphology can create unrealistic material boundaries
(a), such as the bone/air boundary circled in red. To remedy this, the segmentation
can be fixed by hand (b). 117

6.17 The torso data set at various stages of preprocessing, where white indicates ma-
terial and black indicates nonmaterial. The materials from top to bottom are the
outside, torso tissue, bone, lung, and heart: (a) the original data after each material
have been isolated from the multilabeled volume; (b) the downsampled materials
after performing binary morphology on each material; (c) the final, tightened
materials which become the inputindicator functions. 118

6.18 When materials have thin regions,tighteningcan remove a large amount of mate-
rial to obtain the required minimum radius of curvature. In (a), an isosurface of
the binary heart volume is shown for a thin region of the material. After tightening
with r = 1 (b), a large portion of the heart wall is eroded. In these situations it can
be useful to tighten the material at a higher resolution (c) with a smaller tightening
radius (r= 0.6 in this image). 119

6.19 A poor triangulation from TIGHT COCONE of the torso tissue material. 121

6.20 Multimaterial surfaces of a torso extracted from an MRI scan, with closeups of
meshes generated using dynamic particle systems. 126

6.21 Meshes of the white matter and cerebral spinal fluid (CSF) of a brain dataset
generated from an MRI scan. 127

6.22 Meshes of the frog dataset generated from an MRI scan. 129

6.23 Screen shots from a point-based physics simulation. In the top row, all of the
materials were assigned the same material properties, while in the bottom row, the
bones and internal organs were assigned stiffer properties. 130

6.24 A synthetic example of two intersecting spheres, illustrating the consistency of the
meshes along the shared boundary. 130

xiii

6.25 Comparisons of multimaterial meshes generated using a grid-based approach (top)
and our particle system-based approach (bottom). The left column is the two-
sphere example, and the right column is a closeup from the frog example. 132

7.1 A particle system that generates quad-packings of points. 135

7.2 Surface samples of the heart material, along with the spherical particles packed
within. 136

7.3 A progressive cut-away of a tetrahedralization of the heart samples shown in Figure
7.2. 137

7.4 A cut-away of a tetrahedralization of the dendrite dataset from Figure 5.11. 138

7.5 Tetrahedralizations of the interface and volume particle samples, shown with a
cutting plane. 138

xiv

LIST OF TABLES

2.1 The specific, round stencils used in this dissertation for a range of feature sizes.
The stencils were generated by dilating combinations of the three basic isotropic
stencils, wherep is theplusstencil,b is theball stencil, andc is thecubestencil. . . 19

3.1 The effects of varying the one free parameter,σ, in the cotangent energy function.
The total number of particles,n, is constant along the rows, and the value ofσ is
the fraction of the total domain. The average number of influenced neighbors,m,
is given for each variation. The upper right example illustrates the one constraint
on σ, which is thatσ must be large enough to ensure adequate distributing forces
at a particle. 30

3.2 Table of free parameters. 39

3.3 Table of free parameters,cont. 40

3.4 Number of particles for each of the distributions presented in Section 3.9, as well
as the time required for the particle systems to converge. 46

4.1 The number of forward evaluations and timings for the marching cubes meshes in
Figure 4.3. 54

5.1 Table of free parameters. 86

5.2 Table of free parameters,cont. 87

5.3 Details of each data set, including size of the volume, values forǫ andδ, minutes
required to distribute the particle system, and resulting number of mesh vertices
and triangles. 87

5.4 The minimum and average radius ratios for each data set (min/avg) using the pro-
posed particle-based method (ps), an advancing front scheme (af), and a modified
marching cubes algorithm (mc). 93

5.5 Vertex valences for each data set, given as a percentage of the total number of
vertices. 93

6.1 The binary morphology operations used to preprocess that torso data presented in
this chapter. The stencils used correspond to those presented in Table 2.1. 116

6.2 Table of free parameters. 124

6.3 Table of free parameters,cont. 125

6.4 The dimensions and number of materials of each dataset, theepsilon andδ values
used to smooth the sizing fields, and the number of particles used to sample the
material junctions. 125

6.5 Statistics about each mesh and their quality. 128

ACKNOWLEDGMENTS

I am deeply appreciative of the commitment of my advisor, Ross Whitaker, to ensuring that I

obtained the skills necessary for asking, and answering, tough questions. From helping to debug

code, to hashing out ideas on the white board, to debating the proper use of hyphens, Ross’s

involvement with each step of the research process provided me with consistent and thoughtful

guidance that is a rare educational experience. Ross also has an incessant demand for excellence

that, although overwhelming and frustrating at times, has left me with an immense sense of

satisfaction in my own work and abilities. I could not have imagined a more effective advisor and

mentor.

My years at the U were also enriched by numerous other people. Mike Kirby provided much

guidance and support, especially during my last year. His insistence on mathematical rigor helped

me to more effectively realize and communicate ideas, and to also make sense of months worth

of analysis and data related to the multimaterial meshing work in this dissertation. Claudio Silva

provided the initial idea and subsequent encouragement for pursuing the particle-based meshing

work, and his insights blossomed into a large part of my dissertation research. Also, none of my

graduate school experience would have been possible without the amazing work environment that

Chris Johnson has fostered in the SCI Institute. I feel incredibly lucky to have experienced Chris’s

vision for an open, productive, and collaborative research group, and to have benefited from his

years of hard work putting it all together. And finally, it was the magic of Hanspeter Pfister’s

teaching that pointed me down this whole path to begin with, and his poking and prodding that

got me to wrap it all up in the end.

I would like to acknowledge the vast amount of research and effort that went into generating

the data sets used in this dissertation. I would like to thank Mark Ellisman, Matthew Jolley, Tolga

Tasdizen, Oliver Nemitz, and David Breen.

Completing this dissertation has been a long and arduous journey, and it has been the support

of my friends and family that kept me motivated, focused, and energized. I cannot say thank you

enough to everyone who has been involved with SCI since my arrival. I would especially like

to thank Gordon Kindlmann, Milan Ikits and Dave Weinstein for providing invaluable advice on

navigating my way through the PhD process — everything they told me came true at one point

along the way. Christiaan Gribble and Aaron Lehfon were incredible study partners, as well as

constant sounding boards for all issues related to school and life.

A large part of my happiness over the years was fostered by the ladies of Ladies Night —

Betty Mohler, Kristi Potter, and Liz Jurrus. In these three women I found never-ending support,

a wealth of wisdom, strength, and advice, and a consistent source of laughter. Our personalities

meshed in an amazingly symbiotic way that I do not expect, but hope, to experience again one

day.

Finally, I would like to thank my family, in Utah and in Virginia, for believing in me the

whole way through. Day in and day out, Aaron Campbell encouraged me and listened to me,

while providing a cozy home and amazing meals to end each day with. With him I learned how

to be a better friend, a better partner, and a better wine-drinker. The vast space of the rest of my

life has been supported by my parents, Bill and Suki, who have made sure that I had, and have,

every opportunity in the world. I owe my independence, my skills, and my education to their love

and encouragement. Mom and Dad, thank you for helping me become the person that I am.

xvii

CHAPTER 1

INTRODUCTION

This dissertation is about manipulating points that sample an implicit surface. By minimizing

an energy function associated with the point distribution, a wide range of sample patterns can

be achieved, from homogeneous distributions to those that are highly adaptive. The point set is

described by aparticle system, which constrains a set of dynamic particles to the surface while

simultaneously associating potential energy functions with each particle that induce interparticle

repulsive forces, pushing the particles across the surface. The system iteratively moves the

particles along the induced force field to locally minimize the energy distributions, resulting in a

regular distribution of points over the entire surface. Furthermore, the potential energy kernels can

be manipulated to create higher densities of points around interesting surface features. Robust and

controllable, the particle system is an implicit surface sampling strategy that can be configured to

meet the needs of a broad range of applications, from visualization to mesh generation.

Because of their volumetric expression, implicit functions are a natural representation for

three-dimensional (3D) digital data representing the physical world, whether those data are ac-

quired through a simulation or through a measuring device like magnetic resonance imaging

(MRI) machines. Implicit functions characterize a volume by defining whether a point is on one

side of the surface or the other, implicitly specifying the surface as a constraint. These surfaces

can be interpreted as a thin band of some value embedded within a volume, like contour lines on

a map for indicating paths of constant altitude over a landscape, illustrated in Figure 1.1.

Oftentimes, data from scanning devices or simulations come in the form of a volumetric lattice

of values, which can then be interpreted as an implicit function. In MRI data, density values for

different tissue types in a patient’s head, for example, are stored over a regular grid and can be

used to deduce boundaries between the skull and the brain, or the brain and a tumor. Similarly,

vortices in data computed from a computational fluid dynamics simulation can be located by

finding surfaces of constant pressure, inferred from pressure values stored at simulation data

points. The ability to locate and visualize these implicitly defined surfaces allows scientists to

study effects that would otherwise be too costly, or even impossible, to create experimentially

2

Figure 1.1. Implicit surfaces are implied bands of some constant value embedded within a
volume, much like lines of constant altitude in a topographic map.

while similarly providing physicians a noninvasive lens into the physiology and pathology of

their patients. Figure 1.2 provides examples of implicit surface visualizations.

Advances in the acquisition of digital data, as well as the associated ability to extract the

implicit surfaces defined within, has also enabled patient-specific simulation models to greatly in-

crease the accuracy and relevance of biomedical simulations. Simulations of bioelectric fields [151],

cardiovascular fluid dynamics [144, 34], and implanted medical devices like cardiac defibrilla-

tors [1], to name a few, have benefited from technology that captures the individual geometry and

pathology of a patient. To generate these models, digital data of a patient is processed to extract

the implicit surface of interest, which is then parameterized into an explicit surface representation,

such as a polygonal mesh like those shown in Figure 1.3. The parameterized surface model can

then be used directly to study phenomena that occur over the surface, or, extended to a volumetric

representation suitable for biomedical simulations.

Visualization, analysis, and extraction of implicit surfaces are all computationally challeng-

ing problems due to the lack of an explicit surface representation. Locating the surface is a

root-finding problem; the surface exists as the zero crossings of a scalar function. For implicit

functions that have a closed-form inverse, root-finding can be accomplished efficiently using first-

3

(a) (b)

Figure 1.2. Examples of implicit surface visualizations: (a) a volume rendering of a tumor
extracted from MRI data using a levelset surface deformation technique [85] (image courtesy of
Aaron Lefohn); (b) a raytraced image of a helium plume computed from a computational fluid
dynamics simulation (image courtesy of the University of Utah Center for Accidental Fires and
Explosions (C-SAFE)).

(a) (b)

Figure 1.3.Examples of implicit surface extractions for biomedical applications: (a) vasculature
extraction for use in a catheter-placement simulation [34] (image used without permission); (b)
patient-specific model used in an EKG simulation [151] (image used without permission).

4

order approximations schemes like Newton-Raphson or subdivision algorithms. More complex

functions, however, like those embedded in curvilinear coordinate systems [68], require compu-

tationally intensive numerical algorithms that do not easily extend to traditional visualization and

surface extraction schemes.

Locating the surface of interest embedded in an implicit function for visualization or extrac-

tion inheriently relies on effective and accurate sampling schemes. Efficacious sampling of an

implicit surface comes down to how well a set of discrete points approximates the underlying

continuous geometry to meet the needs of an application. In visualization, capturing small fea-

tures is important for providing accurate illustrations of the data. Many traditional visualization

techniques rely on piecewise-linear approximations, thus faithfully representing a curved surface

thar requires a dense enough sampling that the approximation captures the topology and geometry

of the surface.

A straightforward approach to adequately sampling an implicit surface is to generate a large

number of samples everywhere on the surface, ensuring, by shear number, that all of the features

are captured. Algorithms for producing such surface points are generally simple to implement and

fast to execute, such as supersampling a surface over a finely subdivided lattice. The drawback of

such methods is that most parts of the surface will be sampled by far more points then necessary,

which can be particularly inefficient when the root-finding is computationally costly. A counter

approach is to purposefully place the surface points according to characteristics of the implicit

surface, such as generating sparser sets across flat areas. Methods that produce these adaptive

point distributions are typically more computationally intensive and complex, but ultimately

produce more efficient and compact representations of the underlying implicit surface.

Extracting a surface mesh for biomedical simulations further requires that the point samples be

regularly spaced such that the resulting polygonalization contains well-shaped elements. In finite

element simulations, thecondition number, which is the value that quantifies how numerically

well-behaved the simulation will be, is often dictated by the most poorly shaped elements — for

triangular meshes, a well-shaped element is as close to an equilateral triangle as possible. Thus,

sampling a surface for finite element mesh generation will ideally result in hexagonal patterns of

points.

The fundamental goal of this dissertation is to provide a robust and controllable framework for

adaptive sampling of implicit surfaces, specifically for the generation of efficient visualizations

and high-quality polygonal representations of scientific and biomedical data. The framework

posed in Chapter 3 uses a system of dynamic particles that are constrained to an implicit surface

5

and minimize a global energy configuration. By employing specific types of potential energy

kernels, the system easily accommodates numerous optimization schemes that efficiently dis-

tribute large numbers of particles while requireing that very few parameters be tuned by the user.

Furthermore, the addition of a space-warping scheme provides a tunable handle for a user to

create highly controllable adaptive distributions. Combined with a simple set of mathematical

constraints based on the geometry of the surface, the system can generate complex, adaptive, and

regular distributions of points across arbitrarily shaped surfaces.

Using this new particle system framework, high-quality, direct visualizations of implicit sur-

faces can be produced for even the most complex of data sets. For example, Chapter 4 presents

results from visualizing isosurfaces embedded in high-order finite element data sets. These

data sets pose numerous challenges for traditional visualization techniques, but can be sampled

naturally and efficiently using a particle system by warping space aniostropically according to

surface metrics computed from tensor product quantities. The flexibility and controllability of

dynamic particle systems also allows for a framework where particles sample the finite element

basis functions directly, avoiding costly numerical inversions of high-order mapping functions

which have no closed-form analytical inverse.

In Chapter 5, a pipeline that exploits the regularity of the particle distribution is presented for

generating geometrically and topologically accurate surface meshes. By combining the particle

system framework with surface sampling theory and PDE-based methods for controlling the local

variability of particle densities, the meshing pipeline is shown to create high-quality meshes

of implicit surfaces. Extending this pipeline, Chapter 6 presents a mathematical framework

for describing the nonmanifold material intersections in multimaterial volumes that are then

sampled with dynamic particles. The use of multiple, interacting particle systems allows for

explicit sampling of topological points, lines, and planes, a feature which is then used to produce

consistent meshes of intersection materials. These meshes of abutting materials are important for

simulations that span multiple layers and boundaries, such as models for propagating electrical

signals through the body [1].

1.1 Contributions
This dissertation seeks to provide a robust and controllable method for adaptively sampling

implicit surfaces using a system of dynamic particles. In meeting the stated goal, this dissertation

provides several contributions:

6

• A method for adding controllable adaptivity into a dynamic particle system framework.

By combining carefully designed potential functions for controlling particle motions with

mechanisms for adding and removing particles, a novel adaptivity framework is presented

that alters the effective distance between particles for precise control of interparticle dis-

tances (Chapter 3) [93, 95].

• A framework for adaptively and efficiently distributing particles in the presence of curvi-

linear coordinate transforms.The controllability of the particle system is employed to

adapt particle distributions to surface geometry that is influenced by curvilinear coordinate

transformations. Furthermore, the particles remain in the space in which the basis functions

are defined, avoiding costly inversions of coordinate transformations which (generally) have

no analytic inverse. This framework is shown to be effective for visualizing data produced

by high-order finite element simulations (Chapter 4) [95].

• A pipeline for generating isosurface triangulations suitable for simulations.Using fun-

damental work in computational geometry and PDE-based methods, particles can be dis-

tributed such that the resulting set of surface samples will generate nearly-regular Delaunay

triangulations of volumetric data (Chapter 5) [94].

• A mathematical representation of nonmanifold material junctions in multimaterial volumes,

and a systematic approach for sampling these junctions for tessellations of the material

interfaces which are suitable for simulations.The development of novel, analytic functions

for describing nonmanifold junctions of materials, as well as a corresponding set of pro-

jection operators, allows particle systems to explicitly sample corners, edges, and surfaces

of material intersections. The resulting point distributions meet fundamental sampling con-

straints, allowing Delaunay-based meshing algorithms to reliably extract watertight meshes

that include sharp features (Chapter 6) [96].

1.2 Overview
Chapter 2 is devoted to a brief overview of implicit surfaces and their history in the fields of

computer graphics, scientific visualization, and computational geometry. The aim of that chapter

is to establish a mathematical description of implicits that we will use throughout this dissertation,

as well as an overview of reconstruction methods used to produce smooth, differentiable implicit

functions from volume data (Section 2.4). Also included are several relevant concepts from the

image processing literature for preprocessing segmented volumes to generate implicit functions

7

with controlled feature sizes (Section 2.5).

Chapter 3 provides a detailed discussion of the proposed particle system framework and its

benefits over other methods posed in the literature (Section 3.2). We present new energy functions

and algorithms that guide the dynamic particles (Sections 3.3 and 3.4), as well as techniques for

adapting and controlling the distribution of particles (Section 3.5). The chapter concludes with a

comprehensive implementation outline (Section 3.6) that will guide implemention discussions in

later chapters.

Chapter 4 adapts the basic particle system framework for the visualization of isosurfaces

embedded in high-order finite element data. After presenting previous work on isosurface visual-

ization, including that specific to high-order finite elements, we present a thorough investigation

on the difficulties of adapting traditional, piecewise-linear visualization techniques to these data

sets (Section 4.2). Next, a particle system framework for sampling high-order finite element

isosurfaces is proposed (Section 4.3) that includes a formulation of a curvature-based adaptivity

metric for surfaces embedded in curvilinear coordinate systems (Section 4.3.1). Finally, we com-

pare results generated using the particle system approach against other visualization algorithms,

indicating that the proposed method is an efficient scheme for creating accurate visualizations of

these challenging data sets (Section 4.6).

Chapter 5 describes a method for constructing isosurface triangulations of sampled, volu-

metric, 3D scalar fields by combining the particle system with surface sampling theory and

PDE-based methods. The chapter first introduces previous work on generating isosurface meshes

that are suitable for simulations, which is followed by a discussion of the sampling constraints

posed by Delaunay-based reconstruction algorithms (Section 5.2). We then present a pipeline that

outlines a scheme for generating particle distributions that conform to the sampling constraints

(Section 5.3), followed by an analysis of results (Section 5.5).

Chapter 6 proposes a method for constructing geometrically accurate, nonmanifold tessella-

tions of material intersections in multimaterial volumes. We develop a novel, functional repre-

sentation of material junctions, along with a set of projection operators, such that each material

junction is explicitly sampled with a dynamic particle system (Section 6.4). When sharp features

in the data are explicitly sampled, we show that Delaunay-based meshing algorithms can be used

to generate watertight, nonmanifold tessellations of the intersections of multimaterial datasets

(Sections 6.4.3 and 6.5). The chapter concludes with results that indicate the proposed method

reliably generates meshes that are well-suited for simulations (Section 6.7).

The final chapter of this dissertation presents preliminary results from extensions to the parti-

8

cle system and mesh generation frameworks. Included in this chapter are methods for generating

quad-packings of particles, for generating sphere-packings towards the creation of tetrahedral

meshes, and future avenues of work.

CHAPTER 2

TECHNICAL BACKGROUND

Although this dissertation is aboutsamplingimplicit surfaces, the ideas herein fundamentally

rely on the description and mathematical properties of implicit functions. This chapter briefly

describes and reviews implicit functions as they are used in the computer graphics and image

processing literature. Details on constructing implicit functions, as well as processing volume

data to control the geometry of the levelsets,are is also included.

2.1 Notation
Our notation for this disseration is as follows: bold face lower-case variables denote column

vectors, such asx = [x y z]T, while bold face upper-case variables denote matrices, such as

the identity matrixI; bold face subscripts denote partial derivatives of the function with respect

to each component of the subscripted column vector, such asFx = [∂F
∂x

∂F
∂y

∂F
∂z]T; xi specifies

the position of thei-th particle, and other nonbold subscripts denote the evaluation of a scalar

function at a specific particle’s location, such asEi. We stray from this notation only in Section

4.3.1, Equations 4.4 – 4.12, where we present the Einstein notation convention for the derivations

of curvature computed in the presence of curvilinear coordinate transformations.

2.2 Implicit Surfaces
An implicit surface is mathematically characterized as the zero level set of scalar field defined

by a functionF : R3 → R. That is,F implicitly defines a locus where{x ∈ R3 : F (x) =

0} [16]. All other points lie either inside or outside of the surface (F (x) < 0 andF (x) > 0,

respectively, by standard convention), with the value ofF (x) frequently indicating the relative

distance of the point to the surface [70].

The specification ofF is typically given as either a set of discrete samples, often spaced

regularly over a lattice, or as a set of mathematical functions which evaluateF at a pointx.

Discrete samples are usually physical measurements such as density, temperature, or pressure,

which, when convolved with functional kernels, defineisosurfaceswithin F as {x ∈ R3 :

10

F (x) = c} [99] — these kernels will be described in detail in Section 2.4. Here,c is referred to as

the isovalueof the surface, and can be varied in visualization applications for exploring scientific

and medical data. These mathematical descriptions ofF specify the implicit surface as the roots

of a function. Recent work in the computer graphics community has also proposed methods

for constructing implicit functions from scattered point data using functions such as radial basis

functions [27, 108] and moving least squares descriptions [3].

Implicit surfaces defined by continuous, differentiable functions are widely used in computer

graphics, visualization, and scientific computing, in part due to their mathematical properties. The

gradients of a surface, that is the first partial derivative ofF ,∇F (x) = [∂F/∂x, ∂F/∂y, ∂F/∂z]T,

are used for advanced shading effects to enhance the perception of small surface features [116,

56, 60]. The definition of surface normals,i.e., the normalized gradients, is also important for

surface deformations in simulations and medical imaging [133]. Furthermore, the implicit surface

representation easily accommodates morphing and surface editing [22], CSG operations [102],

shape interpolation [150], and collision detection [41].

The curvature of an implicit surface can be computed as the eigenvalues of the the second

derivative matrix, orHessian, evaluated at a pointx and projected onto the local tangent plane at

that point. With the Hessian given as:

H =

∂2F/∂x2 ∂2F/∂x∂y ∂2F/∂x∂z
∂2F/∂x∂y ∂2F/∂y2 ∂2F/∂y∂z
∂2F/∂x∂z ∂2F/∂y∂z ∂2F/∂z2

 (2.1)

the projection ofH onto the local tangent plane of the surface is:

G =
−PHP

|∇F | (2.2)

whereP = I − nnT is the projection operator, withn as the normalized gradient. Theshape

matrix G will have two (possibly) nonzero eigenvalues, giving the minimum and maximum

curvature values, with the corresponding eigenvectors defining their respective directions. A

thorough derivation of this curvature calculation is presented by Kindlmannet al.[78]. Curvature

is used in visualization to enhance features and provide depth and orientation clues [121, 36], as

well as for parameterization of implicit surfaces [129].

Blobbies [15] and metaballs [107] were the first implicit surfaces used for modeling in com-

puter graphics, while more recent work has focused on functions that provide greater controllabil-

ity, a richer set of surface characteristics, and the ability to reconstruct continuous surfaces from

11

scattered point data. For reconstructing continuous surfaces from discrete data sampled over a

regular lattice, certain types of compact spline kernels have been shown to efficiently and accu-

rately approximate the original data [99, 78]. Methods for reconstructing a surface by interpolat-

ing a set of surface points are used for interactive sculpting and converting polygonal models to

smooth representations — example implicit functions include radial basis functions (RBF) [27],

and their more scalable successors, compactly supported radial basis functions (CSRBF) [100],

along with variational implicits [149]. Approximating implicits, such as multipartition of unity

(MPU) functions [108], on the other hand, are ideal for reconstructing surfaces from noisy or

missing surface point data.

There are several major drawbacks of implicit surfaces that limit their use in high end mod-

eling applications. Their inability to capture sharp features, as well as the high computational

overhead associated with defining many types of implicit functions such as RBFs, CSRBFs,

and MPUs, limit the number of shapes and variety of surfaces that can be modeled. Further-

more, implicit functions are inherently unintuitive to deform, and require a significant amount

of machinery to indirectly produce specific deformations [162]. In scientific visualization and

computing, however, the biggest drawbacks for using implicit surfaces are the computational

challenges of directly rendering implicits and the lack of an explicit parameterization of the

surface for defining computational boundaries — methods in the literature that address these

two challenges will be discussed in Chapters 4 and 5, respectively.

2.3 Distance Transforms
A commonly used implicit function is thedistance transform, which will be used throughout

this dissertation. This function returns, for anywhere in the domain of the function, the distance

to the closest point on a surface [70]. The distance transform of a surfaceΣ at a pointx is defined

as

dΣ(x) = inf
s∈Σ
‖ x− s ‖ . (2.3)

Oftentimes we are interested in thesigneddistance transform of a solidS, which is the distance to

the closest point on the boundary ofS, δS, with the sign of the value indicating inside (negative

by convention) or outside ofS:

dS(x) = sgn(x) inf
s∈δS
‖ x− s ‖ (2.4)

12

where

sgn(x) =

{
−1 if x ∈ S
1 otherwise.

(2.5)

Unless stated otherwise, we will assume a signed function when discussing distance transforms

in this dissertation, and will thus refer to Equation 2.4 as simplyd(x). Figure 2.1 shows a 2D

distance transformation of curve.

The distance transform is an implicit representation of the surfaceF (x) = 0, and has nu-

merous interesting mathematical properties. For example,|∇d(x)| = 1 almost everywhere with

∇d(x) orthogonal to the levelset passing throughx, the exception being at locations where the

gradient is undefined due to more than one closest surface point (i.e., points along themedial axis,

which will be discussed in more detail in Section 5.3.1). The distance transform is continuous

everywhere, and is differentiable almost everywhere (i.e.,exceptthe points along the medial

axis). Furthermore, where the distance transform is differentiable, the gradient field is1-Lipschitz

continuous, which is defined for a functionF as |F (x) − F (y)| < |x − y|— this property is

a smoothness condition that states that the magnitude of the gradients of the distance transform

will never be larger than its Lipschitz value of one.

To compute a distance transform of a solid, such as a binary classification, a grayscale classi-

fication can be initialized in a narrow band around the boundary of the solid such that

Figure 2.1. A distance transformation of the black curve, where the shade of gray represents the
signed distance from the curve.

13

F (x) =

{
d(x) in the narrowband
∞ elsewhere.

(2.6)

Methods such as anti-aliasing have been shown to be effective at reducing voxelization arti-

facts [156]. For cases where the boundary is defined as an isosurface of a functionF , a first-order

approximation ofd can be computed as(F − c)/|∇F | in the narrow band region, wherec is the

isovalue of the surface.

Once the narrow band region has been initialized, several methods exist for computing the

distance transformation over the domain of the function, such as the chamfer distance trans-

form [124, 24] and the vector distance transform [38, 101]. A popular method for computing

the distance transformation is the fast marching method (FMM) [132, 133], which computes the

arrival time of a front that expands in the normal direction over a set of grid points. By solving

the Eikonal equation from the boundary conditions given in the narrow band region around the

surface, the FMM establishes an inverse relationship between the speed of the front and the

magnitude of the gradient field over a domain. Because|∇d| = 1 at the surface, the front will

move with unit speed and result in a distance transformation.

2.4 Reconstruction Kernels
The proposed system specifically targets volumetric data, such as segmentations from MRI

or CT scans, which come as a set of discrete values defined over a regular lattice. We construct

a continuous, differentiable implicit function from these discrete points by convolving the data

with reconstruction kernels. In 1D, a set of discrete sample pointsvi, located at positionsxi, are

represented continuously asv(x) =
∑

i viδ(x− xi), whereδ(x) is the Dirac delta function. The

convolution ofv(x) with a continuous kernelf(x) is defined as [54]

(v ∗ f)(x) =
∑

i

viδ(x− xi)f(x) =
∑

i

vif(x− xi). (2.7)

In visualization, reconstruction of a continuous implicit function in 2D and 3D frequently uses

separable convolution, which treats each axis in an image (or volume) separately [76]. Thus, a 1D

continuous kernelf(x) generates a 3D continuous kernelf(x,y, z) = f(x)f(y)f(z), resulting

in a 3D convolution:

14

(v ∗ f)(x,y, z) =
∑

i,j,k

vijkf(x− xi)f(y − yj)f(z− zk). (2.8)

Using separable convolution, derivatives of the reconstructed function can also be evaluated and

summed along each axis:

∂(v∗f)(x,y,z)
∂x

=
∑

i,j,k vijkf
′(x− xi)f(y − yj)f(z− zk)

∂(v∗f)(x,y,z)
∂y

=
∑

i,j,k vijkf(x− xi)f
′(y − yj)f(z− zk)

∂(v∗f)(x,y,z)
∂z

=
∑

i,j,k vijkf(x− xi)f(y − yj)f
′(z− zk).

(2.9)

The choice of reconstruction kernel for different applications and different scanning modal-

ities has been extensively studied in image processing [54]. In visualization, however, the most

common reconstruction method is trilinear interpolation due to the ease and speed of its com-

putation, as well as its pairing with many techniques that assume piecewise-linear data. For

visualization tasks that require a higher order reconstruction, such as the design of transfer

functions for volume rendering boundaries and interfaces [77], certain types of compact kernels

have been shown to effectively balance computation efficiency with good approximations of

derivatives [99, 78]. Using these observations, this dissertation utilizes a43 cubic B-spline for

approximating volume data, or a43 Catmull-Rom spline for interpolation. Figure 2.2 presents

two isosurface extractions of a distance transform using an approximating kernel (left) and inter-

polating kernel (right).

2.5 Mathematical Morphology
Volume (and image) data in the form of abinary image,i.e., where the value at each pixel

indicates the pixel is part of the material, or not, is often preprocessed to smooth features and fill

gaps. Using only blurring kernels that smooth data through diffusion, such as a Gaussian kernel,

can result in arbitrarily small (and sharp) features which can impose arbitrarily high sampling

requirements for applications that must capture all parts of the surface. We instead propose to

preprocess labeled data using mathematical morphology, first on binary images to close gaps and

remove features of a certain pixel size, followed by a grayscale morphology that limits the radius

of curvature of the reconstructed data. We explain each of these operators in the following two

subsections. For these sections we will refer to 2D and 3D data stored over a regular lattice as an

image.

15

(a) (b)

Figure 2.2. Examples of an isosurface of a distance tranform extracted using (a) an approxi-
mating43 cubic B-spline reconstruction kernel, and (b) an interpolating43 Catmull-Rom spline
reconstruction kernel.

2.5.1 Binary Morphology

By expressing an image in a set theoretic framework, binary morphology operations can be

described by unions and intersections of the shape contained in the image with morphologic

stencils. As described by Gonzalez and Woods [54], binary morphology operations have two

fundamental operations —dilation, which will add material to the shape boundary; anderosion,

which removes material from the boundary. Dilation of a set (a shape in a binary image)A by a

stencilB is

A⊕B = {z|Bz ∩A 6= ∅} (2.10)

while erosion is

A⊖B = {z|Bz ⊆ A} (2.11)

These two operations are shown in Figure 2.3.

Building on these two primitive operations, two other fundamental morphologic operations

can be defined.Openingsmooths the boundary by removing small features and thin regions,

while closingsmooths the boundary by closing gaps and eliminating small holes. Opening is an

erosion ofA by B, followed by a dilation of the result byB:

16

(a) (b) (c)

Figure 2.3. A binary segmentation (a) and results of the fundamental binary morphology
operationsdilate (b) anderode(c).

A ◦B = (A⊖B)⊕B. (2.12)

Closing, on the other hand, is a dilation ofA by B, followed by an erosion of the result byB:

A •B = (A⊕B)⊖B. (2.13)

These two operations are shown in Figure 2.4.

For 3D binary images, there are three basic, isotropic stencils. The first is a 6-pointed stencil

we will call aplus; the second is a 22-point stencil that is a solid cube minus the corners which we

will call a ball; and the third is a 26-point solidcubestencil. The operations erosion and dilation

can be intuitively thought of as sliding these stencils along the inside or outside of the binary

(a) (b) (c)

Figure 2.4. A binary segmentation (a) and results of the binary morphology operationsopen(b)
andclose(c).

17

shape, respectively. In Figure 2.5, isosurface extractions of the three stencils are shown. These

stencils can be dilated with themselves, or in combination to produce larger stencils for opening

or closing features larger than one pixel.

For results in this dissertation, specifically those presented in Chapter 6, we have found that

rounder stencils (like the ball stencil) produce the best binary shapes for increasing the minimum

size of features in the reconstructed data. In Table 2.1 we present the stencil combinations used

in this dissertation. However, other combinations can produce the similiar results. An example

of the effects of morphology on the geometry and topology of an implicit surface can be seen in

Figure 2.6.

2.5.2 Tightening

To produce smooth surface reconstructions from binary data, the data must be smoothed at the

subvoxel level to eliminate aliasing artifacts from the voxelization. Blurring via diffusion (i.e.,

using a Gaussian blurring kernel) can generate arbitrarily small surface features, even if small

features in the binary data have been eliminated using morphology operations. On the other hand,

methods that perform grayscale morphology operations based on curvature flows can smooth

the data while maintaining a lower bound on the feature size. One such grayscale morphology

scheme proposed by Williams and Rossignac [160], used in Chapter 6, is calledtightening, which

limits the radius of curvature of the resulting boundary using constrained, levelset curvature flow.

Other methods have also been proposed that obtain similar results, such as those that use discrete

Willmore flows [18] or implicit fairing [40].

Tightening eliminates high curvature on a surface while preserving low curvature parts of the

boundary by defining a region around the surface called themortar in which minimum length

loops are computed. These loops are the boundary of a tightened surface that has the properties

that the radius of curvature is greater thanr everywhere and differs from the original surface

only within the mortar. The mortar is defined by morphological operations calledroundingand

plus ball cube

Figure 2.5. Isosurface extractions of the three basic isotropic stencils —plus is a 6-pointed
stencil,ball is a solid cube minus the corners, andcubeis a solid cube.

18

(a)

(b)

(c)

Figure 2.6. Isosurface of a brain segmentation [142] at various stages of preprocessing, extracted
using an approximating kernel: (a) the original segmentation; (b) after opening and closing the
volume using a ball stencil; (c) after tightening withr = 1.

19

Table 2.1. The specific, round stencils used in this dissertation for a range of feature sizes. The
stencils were generated by dilating combinations of the three basic isotropic stencils, wherep is
theplusstencil,b is theball stencil, andc is thecubestencil.

feature size stencil morphology stencil isosurface

1 b

2 b⊕ c

3 (b⊕ p)⊕ c

4 [(p⊕ b)⊕ c]⊕ p

filleting, which are analoguous to the binary morphology operations opening and closing. The

mortar of the shape in Figure 2.7(a) is shown in gray in Figure 2.7(b); minimum length loops are

computed in the mortar withr = 40 to generate the shape in Figure 2.7(c). Figure 2.6(c) shows

an isosurface extraction of a brain segmentation tightened withr = 1.

20

(a) (b) (c)

Figure 2.7. The original shape (a) has a mortar shown in gray in (b). The tightened surface, with
r = 40 is shown in (c). (images used without permission)

CHAPTER 3

DYNAMIC PARTICLE SYSTEMS

Particle systems are a mechanism for controlling point samples and distributing them across

an implicit surface, producing compact, object-space samples of the underlying geometry which

can then be rendered efficiently, or, used as input to a parameterization scheme. Recent research

on point-based surface representations also suggests that point sets may be a viable alternative to

parametric surface representations in applications where the topological constraints of a param-

eterization are unwieldy or inefficient [57]. The state of the art in particle systems for sampling

implicit surfaces, however, presents some shortcomings. First, most of these systems have many

parameters that interact in complicated ways, making it difficult for users to tune the system to

meet specific requirements. And second, these systems do not readily lend themselves to spatially

adaptive sampling schemes, which are essential for efficient, accurate representations of complex

surfaces.

In this chapter we first review the history of particle systems in the computer graphics litera-

ture, focusing on the work of Witkin and Heckbert [162] which established the scheme as a viable

method for sampling implicit surface. We then present a new framework for distributing particles

on implicit surfaces, including a new class of energy functions and a space-warping scheme for

adapting the particle densities. These techniques are shown to provide stable, scalable, efficient,

and controllable mechanisms for distributing particles that sample implicit surfaces within a

locally adaptive framework.

3.1 Background
Particle systems for sampling implicit surfaces were introduced to the computer graphics com-

munity more than a quarter of a century ago. Modeling surfaces with particles was first proposed

by Szeliski and Tonnesen [139, 140] as an oriented particle system that samples deformable

surface models. They employ an energy function from the molecular dynamics literature which

causes particles to exert short-range repulsion and long-range attraction, keeping particles at an

appropriate distance from each other. Turk [148] uses repelling particles to resample polygo-

22

nalized static surfaces using curvature measurements, while De Figueiredoet al. [39] propose a

physically-based particle method to polygonalize implicit surfaces by modeling particles with a

mass-spring system. Other work presents ideas for sampling implicit surfaces for animation [41]

and texture mapping [169]. In parallel, a body of work has been developed in the mathematics

community that studies the discretization of surfaces via energy minimizations [127, 59].

In 1994, Witkin and Heckbert [162] introduced a novel approach to sampling and controlling

implicit surfaces that builds on many of these early ideas. The system they describe constrains a

set of interacting particles to lie on an implicit surface while each particle repels nearby particles

to minimize a Gaussian energy function. The Gaussian energy has a characteristic length, which

is adapted for each particle to suit the distribution of its neighbors. The particle interactions

are constrained to the local tangent plane of the surface, while the particles are reprojected onto

the implicit surface. The Witkin and Heckbert (W-H) method includes approximately 10 free

parameters, and when they are carefully tuned ([162] gives an effective set of guidelines), the

resulting system produces a homogeneous distribution of particles on the surface. The W-H

system will be covered in more detail in the following section.

Heckbert [65] extends the original W-H method by developing a spatial binning optimization

that determines the radius of influence of a particle and only calculates forces for neighboring

particles within this radius. The radius of influence varies from particle to particle, so the

bounding sphere must be computed for each particle. An extension to the method proposed

by Hartet al. [62] allows the system to sample increasingly complex surfaces within an object-

oriented framework that numerically differentiates implicit surfaces comprised of large numbers

of control parameters. Galinet al.[52] propose a method that uniformly samples implicit surfaces

generated from the BlobTree model [164], creating interactive visualizations of these surfaces.

To decrease the number of iterations a particle system requires to converge, Levetet al. [86]

present a geometric scheme for initializing particle positions over a surface. This method is fast

to generate uniform initial positions, and Okaet al. [109] extend these preprocessing ideas to

quickly produce initial particle positions that are adaptive to surface curvature.

3.2 The Witkin and Heckbert Method
The W-H method constrainsn repulsive particlesP = {p0, · · · ,pn−1} to lie on an implicit

surface of the functionF (q), which is controlled by parametersq(t) that change over time to

meet user-defined surface deformation goals. That is,

23

F (xi,q(t)) = 0 (3.1)

wherexi is the position of particlepi. In this framework, particles provide not only a way

to visualize the implicit surface in real time, but also provide a handle through which surface

deformations are controlled by updating the parametersq(t). This dissertation is concerned

with only the particle placement, and thus, to simplify the discussion, we ignore the surface

deformation terms from the original W-H formulation.

Once the particles lie on the surface, individual potential functions are associated with each

to induce particle-particle interactions. Each particle,pi, creates a potential field, which is a

function of the distance betweenpi and all neighboring particles that lie within the potential

field. The energy at a particlepi is defined as the sum of potentials of them particles that interact

with pi:

Ei =
1

2

m∑

j=1,j 6=i

Eij(| rij |), (3.2)

whererij = xi − xj . In the W-H scheme, a Gaussian kernel is used for the potential function:

Eij = α exp

(

−|rij |2
2σ2

)

(3.3)

whereα is a global repulsion amplitude parameter, andσ, called the repulsion radius, is the

standard deviation of the Gaussian.

The derivative of a particle’s energy with respect to its position gives rise to the repulsive force

that defines the repulsion velocity direction (steepest descent) that minimizes the local energy:

vi = − ∂E

∂xi
= −∂Ei

∂xi
= −

m∑

j=1,j 6=i

∂Eij

∂ | rij |
rij

| rij |
. (3.4)

Iteratively moving particles along their energy gradients causes the system to converge toward a

minimal energy configuration.

The surface constraint is enforced by projectingvi onto the local tangent plane of particlepi,

and then reprojecting the updated particle position onto the zero set ofF using a Newton-Raphson

gradient descent technique. The change in a particle’s position,ẋi is characterized by

24

ẋi =

(

I− ∇Fi ⊗∇Fi

∇Fi · ∇Fi

)

vi − φFi
∇Fi

∇Fi · ∇Fi
, (3.5)

whereI is the identity matrix,∇Fi is the spatial gradient ofF at the particlepi, and∇Fi⊗∇Fi is

the projection operator formed by the vector direct product of the gradient. The last term in (3.5)

is the reprojection onto the implicit surface (thefeedback termin [162]), which is scaled by a free

parameterφ. A fraction of ẋi is added to the current position in the manner of a finite forward

difference scheme,i.e., xi ← xi + λẋi, whereλ is the gradient descent constant mentioned

previously. The particle is then rendered using a disk oriented to lie in the local surface tangent

plane [139].

Each particle maintains an adaptive repulsion radius,σi, which grows and shrinks based on

the local energy values. This allows particles to quickly spread over the surface by increasing

their repulsion radius in sparse regions, which in turn increases the interparticle forces that push

particles to lower energy states. Accompanying the adjustable radius is asplitting and dying

mechanism based on a target radius,σ̂, that controls the insertion and deletion of particles in

the system. When a particle’sσi drops below some fraction of̂σ, indicating a densely sampled

region, it is removed, and when it goes above some multiple ofσ̂, indicating a sparsely sampled

region, a new particle is inserted nearby. The system can thus quickly move particles into sparse

regions by growingσi for particles in underpopulated regions, and then inserting new particles

whenσi becomes too high.

Thedyingmechanism is also important to keep particles from clumping together if they get

closer to each other than the characteristic length of the Gaussian potential kernel. Atσi, a

particle’s force function begins to dip towards zero as the derivative of the Gaussian energy

reaches a maximum, creating a potential well that can trap particles together. Although the

particles will not be able to force each other away, the increase in their respective energies will

cause theirσi values to decrease, either eventually moving the particles out of the potential well,

or causing a particle to die as itsσi falls below the dying criteria cut-off.

Ultimately, the system forms homogeneous distributions of particles over the surface by

adaptingσi until all particles have similar energy measures. Many applications, however, require

inhomogeneous distributions based on curvature, such as using particles to polygonalize [72] or

to parametrize [169] the surface. Several extensions to the original W-H particle system have been

proposed in order to accommodate increased sampling in areas of high curvature [123, 35, 72].

All three extensions apply an adaptive, per-particle, curvature dependency to either the repulsion

25

radius,σi, or to the target radius,̂σi. We have found these extensions do not provide adequate

curvature dependent distributions for complex surfaces with large variations in curvature values,

confirming the difficulties mentioned by Röschet al. [123] and Karkaniset al. [72].

These difficulties arise becauseσi will grow and shrink regardless of the underlying curvature

value, and̂σi does not control the behavior of a particle apart from its splitting and dying. For

example, consider a particle in a high curvature area with a relatively lowσ̂i. Asσi increases this

particle splits at faster rates than particles in nearby flatter areas. However, these new particles

will merely be pushed out onto flat areas, which will, in turn, become too crowded, resulting in the

deletion of particles. Meanwhile, the high-curvature particle, missing the fleeing particles it re-

cently created, will continue to split—a never ending cycle of insertion and deletion, illustrated in

Figure 3.1. In our experiments, when we tuned parameters to stop the insertion-deletion cycle by

expanding the hysteresis of insertion and deletion we found that the particle distributions did not

reflect the desired differences in particle densities—the W-H scheme tends toward homogeneous

distributions despite variations in̂σ. Local adaptation in the W-H scheme is significantly more

complex than a single parameter; it also requires modifications to the particle radii interactions

with the per-particle energy functions.

Further complicating fine-grained control of the system are not only the numerous free pa-

rameters in the splitting and dying mechanism, but also the tunable parameters in the numerical

algorithm used for iteratively distributing the particles. The W-H method relies on a gradient

descent for both particle repulsion andσi adaptation. Discretized gradient descent algorithms

(a) (b) (c)

Figure 3.1. Adapting the radius of particles based on local surface curvature in the W-H system
results in a cycle of insertion and deletion of particles: (a) a high curvature particle in red has
a low energy value; (b) the high curvature particle splits to increase its energy, and these new
particles are pushed outwards towards a lower curvature region sampled by the yellow particles;
(c) the new particles are deleted as the lower curvature area becomes over crowded, leaving the
high curvature particle again in a low energy state.

26

invariably introduce a critical free parameter (the descent rate, or unit change per iteration), and

the system can easily become either too slow or unstable if the parameter is improperly tuned. As

a result, changes to the W-H system often entail careful retuning of the corresponding gradient

descent parameter.

In this chapter we propose a new approach to distributing particles across an implicit sur-

face, allowing for a wide range of distribution patterns from homogeneous to highly adaptive.

The proposed system is general across a broad range of shape complexity and size, and re-

quires minimal parameter tuning from surface to surface. The new framework builds upon the

constrained particle system developed by Witkin and Heckbert, but introduces a new class of

energy functions accompanied by a single, global radiusσ that virtually eliminates the need

for insertion-deletion to ensure even distributions of particles across the entire surface. These

(approximately) scale-invariant energy functions allow particles to interact in a similar fashion

over a wide range of distances without adapting or tuning parameters. The particle insertion

and deletion mechanism is instead applied for control of particle densities and spacing, and is

combined with a space-warping scheme that causes particles to distribute with higher densities in

regions of interest. To address the limitations of gradient descent we further propose an adaptive

time-stepping minimization scheme, which automatically tunes the descent rate to accommodate

the individual particle force magnitudes.

The result is a robust system with relatively few parameters that provides a new capability:

a controllable, locally adaptive distribution of particles on implicit surfaces. Mechanisms such

as neighborhood size and deletion/insertion of particles can now be adapted to meet other con-

straints, such as the total number of particles in the system, the average particle density, the

efficiency of the computation, or update and rendering times.

3.3 A New Particle Energy Scheme
At the heart of the proposed particle system is the computation of the potential energy associ-

ated with particle-particle interactions. The minimization of this energy defines the algorithm for

distributing particles across the surface and leads to a quantifiable notion of an ideal distribution.

This pairwise potential energyEij is the most important aspect of any such particle system, with

a bad energy function leading to numerical instabilities and uneven particle distributions, and

a good function resulting in a homogeneous steady state. We have experimented with several

potential energy functions from the literature and have identified three important characteristics

of a well behaved potential energy function. First, energies should beC1 continuous functions

27

of particle distance. Second, the energy functions should be compact to avoid global influences

and allow for efficient computation. And third, to avoid characteristic lengths, and the associated

parameter tuning, the energy must be scale invariant — that is, two particles at different distances

should have the same ratio of energies regardless of the choice of units of the system.

The Gaussian energy used in the W-H method is smooth and nearly compact because the

function can be truncated in a manner that does not significantly affect its behavior. The Gaussian,

however, has a characteristic length and is not scale invariant. A particularly interesting example

of a scale-invariant energy is the electrostatic potential,Eij = 1/|rij |. The electrostatic function

is smooth, except at the origin (which can be fixed by adding adding a small constant to the de-

nominator), but does not fall off quickly enough to provide local behavior. As a result, particles do

not remain on flat regions but instead concentrate exclusively on convex, high-curvature areas—a

well-known phenomenon from electrostatics. Furthermore, truncating the electrostatic potential

yields unreliable results, and the configurations of particle steady states are very sensitive to the

distance of truncation. Thus, the electrostatic function is not approximately compact. Figures 3.2

(a-b) show graphs of the Gaussian and electrostatic energy functions, respectively.

An energy function which establishes a good compromise between approximate scale invari-

ance and compactness is amodified cotangent:

Eij =

{

cot
(
|rij |
σ

π
2

)

+
|rij |
σ

π
2 − π

2 |rij | ≤ σ

0 |rij | > σ
(3.6)

which is shown graphically in Figure 3.2 (c). This potential has one free parameterσ, which

establishes the farthest distance at which particles interact. When| rij |= 0 Equation 3.6 goes

to infinity — we avoid this numerical instability by adding a small value,ǫr = 10−7, to the

interparticle distances. The derivative of this energy with respect to particle distance is:

∂Eij

∂ | rij |
=

{

− π
2σ

[

1− sin−2
(
|rij |
σ

π
2

)]

|rij | ≤ σ

0 |rij | > σ
(3.7)

The derivative shows an analogous relationship to the electrostatic potential. When the distance

between particles is small relative toσ, sin(|rij |/σ) ≈ |rij |/σ, and the force behaves like−1/r2,

which is invariant to scale.

The particle system uses Euclidean distances when computing the distance between particles

as opposed to the more accurate, and computationally expensive, geodesic distance. This ap-

proximation is reasonable as long as the distance between particles is small relative to the local

28

Figure 3.2. Plots of energy functions (E) and the corresponding force functions (F) : (a)
Gaussian energy, exhibiting a characteristic length; (b) electrostatic energy, exhibiting a necessary
truncation; (c) the proposedmodified cotangentenergy, exhibiting compactness and approximate
scale invariance.

(a)

(b)

(c)

29

curvature of the surface such that the surface is approximately planar, which is a valid assumption

when adapting the particle densities with curvature (discussed in Section 3.5.2). Forσ values that

are large relative to the dimensions of the domain, it is possible then to include particles in the

energy and force computations that lie on non-adjacent parts of the surface. To cull some of the

non-neighboring particles, we scale Equations 3.6 and 3.7 by a weighting function based on the

dot product of the normals atpi andpj :

wij =

1 ni · nj ≥ γ

cos
(

γ−ni·nj

γ

)

γ > ni · nj > 0

0 ni · nj ≤ 0

(3.8)

with γ = 0.156 for the results in this dissertation.

Another energy that is very similar to the modified cotangent function is a radial energy:

Eij =

1−

„

|rij |

σ

«

2

„

|rij |

σ

«

2 |rij | ≤ σ

0 |rij | > σ

(3.9)

with a derivative given as

∂Eij

∂ | rij |
=

− 2
σ

1−

|rij |

σ
„

|rij |

σ

«

3

 |rij | ≤ σ

0 |rij | > σ

(3.10)

Experiments using this function result in visually similar distributions as those generated using

Equation 3.6.

Our experiments show that the modified cotangent and radial energies homogeneously dis-

tributes particles across the surface, freeing up the need to modifyσ on a per particle basis

or to implement a parameter sensitive particle insertion and deletion algorithm. The particles

distribute themselves in a nearly hexagonal packing, which is the general pattern for optimal

configurations [127]. The system is well behaved due to the lack of a characteristic length in

the energy or force function, and works across a broad range of surface shapes and sizes with

no modifications. Because of this robust behavior,σ can be treated as an application dependent

parameter which can be tuned in accordance with the desired density of particles and the run-time

requirements of the application — these ideas will be discussed further in Section 3.5.

30

Table 3.1 illustrates the robustness and generality of the cotangent energy function (with the

radial energy exhibiting similar results). For these examples we start with a random placement of

particles, then iteratively move these particles using a gradient descent until the system converges

to a homogeneous distribution. We vary the value ofσ under two different scenarios: a sparsely

packed system of 300 particles, and a densely packed system of 600 particles. Whenσ = 1

(whereσ is the fraction of the domain size), the energy has a global influence over the entire

surface function domain. The particle distributions continue to be homogeneous as we reduce

σ, demonstrating that the cotangent energy is approximately invariant over a wide range of

scales. The only restriction is thatσ must be large enough such that particles interact with a

ring of neighbors at the steady state (m≈ 6 for this example). The upper right example in

Table 3.1 shows the system breaking down whenσ is too small to provide sufficient interaction.

As discussed in later sections, this condition can be met automatically by either increasingσ or

adding more particles.

3.4 Moving Particles
Integrating the particles towards a progressively lower energy state is a nonlinear optimization

problem that introduces numerical challenges. A gradient descent requires careful tuning of

the step size parameter, which can vary from surface to surface, and even particle to particle.

Improper values can lead to very long convergence times if the step size is too small, or irrec-

oncilable oscillations around the minimum if the step size is too large. To avoid these problems

we have implemented an adaptive gradient descent integration algorithm, in the spirit of the

Table 3.1. The effects of varying the one free parameter,σ, in the cotangent energy function. The
total number of particles,n, is constant along the rows, and the value ofσ is the fraction of the
total domain. The average number of influenced neighbors,m, is given for each variation. The
upper right example illustrates the one constraint onσ, which is thatσ must be large enough to
ensure adequate distributing forces at a particle.

n σ = 1 m σ = 1
6 m σ = 1

9 m σ = 1
12 m

300 150.3 8.5 5.8 1.1

600 302.1 18.9 6.6 5.8

31

Levenberg-Marquardt integration scheme [119], that does not require any tuning of parameters,

described in detail in Section 3.4.1. We also propose a Gauss-Siedel update strategy, in which

particle positions are updated one at a time, and each particle update relies on the most recent

positions of its neighbors. Moving particles in this method causes the distribution to converge

about twice as fast as iterating using a Jacobi update where all particle movements are computed

before making any positional updates [73].

A two-step update scheme keeps the moving particles constrained to the surface. First, particle

positions are updated based on the repulsion velocity in the tangent plane:

xi ← xi +

(

I − ∇Fi ⊗∇Fi

∇Fi · ∇Fi

)

vi, (3.11)

which is the result of a Lagrangian formulation of the constrained optimization that keeps parti-

cles on the zero sets ofF . Movements in the tangent plane can, however, push particles off of

the surface, especially in areas of high curvature. Therefore a tangent plane movement must be

followed with a reprojection:

xi ← xi − Fi
∇Fi

∇Fi · ∇Fi
, (3.12)

which is a Newton-Rhapson approximation to the nearby roots (zero sets) ofF . We have found

that a single iteration of Equation 3.12 is generally sufficient to keep particles on the surface for

most well-behaved implicit functions.

3.4.1 Adaptive Gradient Descent

To overcome the numerical problems of using a fixed stepsize parameter when integrating

the particle motions, we propose an adaptive gradient descent method that automatically tunes

individual step sizes for each particle. Each particle maintains an individual step size parameter

λi that is adjusted by the system based on the local energy of the particle. A particle is temporarily

moved to a new position, with the motion scaled byλi, and the new energyEnew
i is compared

to the old. If the energy is not lower, theλi value is decreased and the particle attempts another,

smaller movement. Otherwise, the particle accepts the movement, and itsλi is increased for

the next iteration. Whenλi is low the particle moves in small steps in order to not over step

the minimum, but whenλi is high, the particle moves much faster, quickly minimizing poor

configurations. This particle-by-particle adjustment allows the particles to take steps that con-

32

tinually decrease the local energy, avoid destabilizing motions, and to make smaller and smaller

movements as the distribution converges to a steady state.

Particles must be on the surface before computingEnew
i because a particle should not be

allowed to move to a lower energy position if that position is not on the surface. Also, the system

is slow to converge if the particles are allowed to jump over one another, and thus we penalize

a particle with a very high energy when it attempts to move too large a distance (Section 3.6

definestoo large). This movement size penalty forcesλ to decrease until the motion is on the

same scale as the neighborhood. Each particle is updated and moved individually so that changes

are propagated into subsequent particle updates. The entire process over all of the particles is

repeated until convergence.

Each particle’sλi value is initialized to 1.0 (although we have found the system to be insensi-

tive to this value) and modified by factors of 10 as the system converges to an even distribution.

Modifying λi is an iterative process governed by energy computations and comparisons, and

works as follows for one particle’s position update:

Step 1: ComputeEi, and computevi with Equation 3.4.

Step 2: Computevnew
i = λivi .

Step 3: Compute the new particle positionxnew
i by solving Equation 3.11 withvnew

i , followed

by a reprojection to the surface by solving Equation 3.12.

Step 4: Compute the new energy value,Enew
i , at the new particle locationxnew

i .

Step 5: If Enew
i ≥ Ei, andλi > λmin, decreaseλi by a factor of 10 and go back to Step 2. If

λi ≤ λmin, do not move the particle and skip to the next particle in the list.

Step 6: If Enew
i < Ei, updatexi = xnew

i . Increaseλi by a factor of 10 if this is the first time

through the loop.

We have found this integration scheme to be insensitive to the two free parameters, the initial

value of λ, as well asλmin, as long asλmin is sufficiently small (for all the results in this

dissertation,λmin = 10−14). The method converges over a wide range of surface shapes and

sizes with no modifications.

33

3.5 System Control
The scheme described in the previous section ensures that particles repel each other and reach

a uniform distribution in a reasonable amount of time, without modifying free parameters, or

inserting and deleting particles. The only restriction of the scheme is thatσ must be large

enough such that all the particles can maintain at least a one-ring of neighbors. In practice, when

dealing with unfamiliar or deforming surfaces it may be necessary to enforce certain relationships

between the particles and the surface. For instance, we might want to maintain a minimum

number of particles, a certain minimum particle density, or a minimum particle radius that covers

the surface with a specified number of particles. Meeting these conditions will require modifying

the number of particles or the radius of the energy function. Furthermore, we would also like

to have particle distributions that adapt to local surface features. Mechanisms for meeting these

conditions are discussed in the following two subsections.

3.5.1 Global Control of Particles

As with the W-H method, the particle energy quantifies the density of particles in the neigh-

borhood of a single particle, while the system energy provides information on the global density

of particles. The system energy measure provides further insight to the efficiency of the system

and the locality of the particle influences. Based on energy measures, several techniques can be

used to ensure an efficient and effective system.

The energy of a particle quantifies the amount of interaction the particle has with its neighbors,

where a low energy implies too few neighbors, and high energy indicates to many. To determine

whether the particle system contains enough energy to enforce even particle distributions without

incurring unnecessary particle-particle computations, the system energy measure is compared

against an ideal energy measure,nEideal, wheren is the number of particles in the system

andEideal is the ideal energy for a single particle. In our system, we defineEideal based on

a hexagonal packing of particles where the repulsion radius ends at the two-ring of neighbors,

similar to the distribution described in the W-H method:

Eideal = 6Eij with
|rij |
σ = β = 0.5

cos(π/6) ≈ 0.58 (3.13)

The hexagonal configuration represents a natural, low local energy distribution [127], and is

illustrated in Figure 3.3. When the system energy is belownEideal, particles will generally not

34

have enough neighbors to reach an acceptable distribution. On the other hand, when the system

energy is greater thannEideal, particles are influencing more neighbors than necessary, resulting

in extraneous particle-particle computations and slower global convergence.

To achieve thenEideal, several mechanisms exist to modify the system energy. Particles can

be inserted or deleted to increase or decrease the system energy respectively, orσ can grow or

shrink. These mechanisms can be used separately or in combination, depending on the goals of

the application.

Inserting and deleting particles drives the system to maintain a specific surface density of

particles, defined by the value ofσ. For a specificσ value, the system energy specifies the

approximate local density of neighboring particles across the entire surface. If the local densities

contain more particles than the defined ideal packing, particles can be deleted, either randomly

across the surface, or in a biased approach similar to the W-H deletion criteria. Conversely, low

local energies can be adjusted by splitting particles in the local tangent plane.

Adjustingσ can be used when a specific number of particles is desired. Theσ value grows and

shrinks to ensure that particles interact with only the ideal neighborhood distribution. Growingσ

is important when the system energy is too low to ensure an even distribution of particles, while

shrinking σ when the system energy is too high produces the most computationally efficient

system by keeping inter-particle calculations as local as possible. Changes inσ are carried out

iteratively using a gradient descent or some other 1D optimization technique.

A combination of insertion and deletion of particles can be used with growing and shrinking

σ to maintain a lower bound on the number of particles, as well as an upper bound onσ. This

combination of constraints ensures a minimum number of particles in the system at all times, and

i

j1j2

Figure 3.3. When determining the ideal energy at a particle, we want only the 6-ring neighbors
to influence a particle’s energy and force calculations. In this diagram, we want the distance from
i to j1 to beσ, which makes the distance fromi to j2 approximately0.57σ. The white particles
fall at, or just outside of, the repulsion radius ofpi, while the gray particles exert forces.

35

acap on the complexity of the interparticle calculations. Only changingσ is useful in applications

that require a strict number of particles, such as using particles to set up correspondence points

between multiple shapes for use in shape statistics [28]. For the applications in this dissertation,

however, we rely solely on inserting and deleting particles to achieve specific densities of points.

The ability to achieve specific interparticle distances is an integral component for using particle

systems to generate isosurface meshes (Chapter 5 and 6).

3.5.2 Locally Adaptive Particle Distribution

The local density of particles can be controlled to achieve an adaptive sampling by introducing

a repulsion amplitude,αij , between each pair of particles. This parameter is used to scale the

effective distancebetween particles based on the local geometry of the surface, resulting in scaled

energy and force values. For instance, if we allow surface curvature to increase the effective

distance between particles, the energy and force at these particles will decrease, and the areas

of high curvature will have a higher density of particles. This adaptivity mechanism maintains a

small number of influential neighbors around a particle even in regions of high curvature, allowing

for effective optimization strategies (discussed in Section 3.7). For results in this dissertation,

σ = 1, and the vector between two particles is:

rij = αij(xi − xj) = −rji. (3.14)

With this formulation, when| rij |> 1, we haveEij = 0, and| vij |= 0. Equation 3.14

also ensures that the energy and force between two particles is symmetric, which is important for

stability in the system. The repulsion amplitudeαij could be defined as a function based on any

geometric property of the surface, and we have developed one formulation based on the curvature

magnitude,C (root sum of squares of the principle curvatures):

αij = αji =
1 + ρ

(
s
2π

)
Cij

sβ
(3.15)

wheres andρ are user defined variables that specify the distance, in world units, between particles

on a planar surface and the density of particles per unit angle over a curved surface, respectively,

andCij is the average of the curvature magnitudes atxi andxj . The principle curvatures are

36

computed analytically from the gradient and Hessian of the implicit function as described in

Chapter 2, Equation 2.2.

For surfaces that contain singularities, the curvature magnitudes can become arbitrarily large

at critical points and cause extremely high densities of particles. To curb this effect a maximal

bound can be placed onαij . This constraint still allows particles to get very close to singularities,

but does not guarantee that the critical point will be exactly sampled. We have observed, however,

that particles tend to sample the sharpest points and edges of a surface — an artifact of projecting

a particle’s motion vector into the local tangent plane of the surface.

To illustrate the adaptivity of the particle system, Figure 3.4 presents three examples of particle

distributions over a quartic implicit function with varying values of the angular density parameter,

ρ.

3.6 Implementation
Here we present a basic implementation overview of the proposed particle system using an in-

sertion and deletion mechanism, which will be referred to in later chapters. Tables 3.6 and 3.6 list

all the free parameters in the system. We eliminate divisions by zero in the implementation of the

the proposed curvature based sampling method by adding a very small value to all denominators.

For the results presented in this chapter we initialize our system with several hundred particles

in random positions within the 3D domain of the implicit surface, while thes andρ parameters

are user-defined. In later chapters (Chapters 5 and 6) we propose seeding the particle system

with the vertices of a mesh generated using themarching cubesalgorithm [90] to ensure that

the surface is adaquetly sampled. We have found that for complex surfaces, it is possible for

the convergence criteria (described below) to fail and stop the particle distribution early if the

Figure 3.4. The adaptivity of the particle system is modified from left to right withρ = 0, ρ = 7,
andρ = 15.

37

initial set of particles is not dense enough. For the results in this dissertation, however, we did not

experience this problem.

First, the particles are projected onto the isosurface by performing several iterations of Equa-

tion 3.12. We have found that five iterations is usually sufficient for moving particles to within

ǫF = 10−5 of the isovalue. Next, the system iterates using a Gauss-Seidel updating scheme until

the particle distribution converges by repeating the following steps:

1. For each particle (taken from Section 3.4.1):

(a) ComputeEi, and computevi with Equation 3.4.

(b) Computevnew
i = λivi.

(c) Compute the new particle positionxnew
i by solving Equation 3.11 withvnew

i , followed

by a reprojection to the surface by solving Equation 3.12.

(d) Compute the new energy value,Enew
i , at the new particle locationxnew

i , as well as the

new implicit function value,F new
i .

(e) If Enew
i ≥ Ei or |xi − xnew

i | > s or F new
i > ǫT , andλi > λmin, decreaseλi by a

factor of 10 and go back to Step 2(b)ii. Ifλi ≤ λmin, do not move the particle and skip

to the next particle in the list.

(f) If Enew
i < Ei, updatexi = xnew

i . Increaseλi by a factor of 10 if this is the first time

through Step 2b.

2. Decide whether the system is at a steady state. There are numerous metrics to determine

steady state, and we have chosen to use the difference of the system energy (the sum of the

energy at all the particles) from one iteration to the next. When the system energy difference

is less than a small fraction of the total energy (we use 0.15% for the results presented in

this dissertation, although a range of values would produce similar results), we deduce that

particles have reached a steady state. Otherwise, repeat Step 2b. For poor initializations,

we have found it can be useful to skip to Step 2d every 50 iterations instead of waiting for

the system to reach a steady state.

3. Check whether the configuration of particles is desirable. We compare each particle’s

energy against an ideal energy,Eideal, which is defined by a hexagonal packing of neighbors

on a flat surface with inter-particle distances ofs. We biasEi with a random value on the

interval[0, 1] to eliminate mass splitting or dying, then split particles withEi < 0.35Eideal,

38

and delete particles withEi > 1.75Eideal. Alternatively, if a constant number of particles

is desired, the planar separation variables could be modified to move the system energy

towards the ideal system energy. While we have provided specific values for this step,

we have found in practice that varying the values by up to 20% produces visually similar

results, although with different convergence times.

4. If the energy of the particles is acceptable, stop iterating.

3.7 Computational Optimizations
We have implemented several strategies to increase the computational efficiency of the distri-

bution process. First and foremost, any type of Lagrangian scheme suffers from an inherent lack

of explicit spatial relationships. In the case of the particle system described in this dissertation,

the problem manifests in the computation of repulsive forces from local particle interactions.

Nominally the particle-to-particle interaction problem isO(n2) for each iteration. The use of

compact energy kernels, however, leaves the energy and force computations null for all but a

small subset of neighboring particles. Thus, we have implemented a spatial binning structure [35]

that lessens the subset of potential interactions. The size of the bins is based upon the maximum

possible extent of the energy kernel (which derived from Equation 3.15 issβ), with each bin

maintaining a list of resident particles. Neighboring particle queries for computing forces and

energies is then reduced to computing interactions with particles that reside in the3×3×3 block

of bins surrounding the querying particle’s bin. As such, every time a particle is moved in Step

2b above, the binning structure particle lists are updated.

Although the binning structure dramatically decreases the system convergence time, particles

will still compute distances with many non-neighbor particles, especially as the adaptivity of the

system is increased (i.e., for large values forρ). By not allowing particles to move further than

s in any one iteration (Step 2(b)v), however, the neighborhood configurations change very little

from iteration to iteration. Taking advantage of this observation, we store a list of neighbors

with each particle that is updated only after several iterations (every five iterations for the results

in this chapter). Although the lists may be out of date for intermediate iterations, the iterative

convergence method smooths out these errors. We have found that this approach is particularly

effective as the system approaches a steady state and the particle neighborhoods become stable.

Storing the lists of neighbors typically decreases the computation time by a factor of 2-3, and

even more so with increasing adaptivity.

39

Table 3.2. Table of free parameters.

Parameter Value Description Comments

ǫr 10−7 added to interparticle distances to
avoid infinite energy values

system is insensitive to values
near machine precision

σ 1.0 effective particle radius constant for all results in this dis-
sertation

γ 0.156 defines range of normals for
which the particle energies are
smoothed

insensitive to exact value as long
asγ ≤ 1

λ0 1.0 initial stepsize value system is insensitive to this value

λmin 10−14 minimum stepsize value system is insensitive to this value
as long as it is sufficiently small

s user-defined planar separation value that speci-
fies desired interparticle distances
across a flat plane

robust system behavior relies on
this value to be small enough such
that Euclidean distance measures
closely approximate geodesic dis-
tances

ρ user-defined density of particles per unit angle
over a curved surface

system is insensitive to this value

ǫF 10−5 surface threshold value should be around the ma-
chine precision value

5 number of initial projections of a
particle

system is insensitive to this value
as long as particles get to within
ǫF of the surface

0.15% system energy difference from
previous iteration that indicates a
steady state

value must be small enough such
that the particle distribution con-
verges to an even packing

50 number of iterations when system
automatically checks for a desir-
able configuration (Step 2d)

value must be large enough such
that local particle neighbors can
be established

0.35 percentage ofEideal that indicates
a particle should be split

values with approximately20% of
this value produce visually simil-
iar results with different conver-
gence times

40

Table 3.3. Table of free parameters,cont.
Parameter Value Description Comments

1.75 percentage ofEideal that indicates
a particle should be deleted

values with approximately20% of
this value produce visually simil-
iar results with different conver-
gence times

5 number of iterations when parti-
cle neighbor lists are updated

values< 10 maintain stability in
the system

4w initial value of s based on the
width of a voxel,w

this value must be small enough
such that Euclidean
distance computations closely ap-
proximate geodesic distances

We have also observed that the particle system quickly eliminates the high frequency errors

in its configurations by taking large movements during the first few iterations, followed by many

iterations of small movements to eliminate the low frequency errors. To exploit this trend, we

have developed a hierarchical distribution mechanism. We first distribute coarse level particles

across the system using a larges value, then split each of these particles into four evenly spaced

particles and reduces by half. This process is repeated untils reaches the user defined value.

We have found that an initial value ofs based on the width of the volume voxels works most

effectively.

3.8 Rendering
Rendering a particle system with oriented disks provides the user with a visualization of

accurate surface samples. The disks allow the user to infer the topology of the surface, aided

by the ability to rotate and translate the surface in 3D. However, the oriented disks cannot express

subtle shading cues or connectivity as effectively as rendering methods that generate water-tight

surface visualizations.

Over the last several years, work on point set surfaces has established points as a popular, and

effective, geometric primitive. One common approach for rendering point sets is the splatting

method, first introduced by Pfisteret al. assurfels[115], with numerous extensions for improving

the quality of the rendering [170, 171], as well as the speed [29]. Splatting entails an additive

blend of oriented, alpha-channel Gaussian kernels at each point, followed by a normalization

of each pixel’s color to ensure an even intensity across the surface. The normals of the points

41

can also be included in the projection and blending to allow for smooth shading of the surface.

We have implemented the basic splatting algorithm on the GPU, achieving interactive rendering

speeds — results are shown in Section 3.9. The adaptivity of the particle system allows the splat

surfaces to appear smooth with relatively sparse point samples (sparse compared to typical point

set surfaces that contain millions of points).

3.9 Results
In this section we present results of the proposed particle system for sampling a variety

of implicit surfaces. All the data sets defined over a regular grid are reconstructed using an

approximating kernel, described in Section 2.4. The distributions were computed on a 3.2GHz

CPU with 2.0Gb of memory.

Figure 3.5 shows results of the proposed particle system sampling a sphere, torus, and box.

The sphere and torus implicit surfaces are defined as the zerosets of analytic functions, while the

box is an offset surface of the distance transform of a box. The distributions on the sphere and

torus show regular, hexagonal packings of points over the surfaces, and the distribution on the

box is adaptive to the curvature on the edges and corners. The plot in Figure 3.6 compares the

number of particles distributed across the sphere with the convergence time of the system. From

this plot, the linear behavior of the distribution time of the system with increasing numbers of

particles is evident, which is due to the compact energy kernels and the system optimizations that

take advantage of this characteristic.

The next example in Figure 3.7 is an implicit surface generated from a binary segmentation

of white matter in a brain. Using the techniques discussed in Sections 2.5.1 and 2.5.2, the data

were smoothed by first closing and then opening the binary volume using aball stencil, followed

(a) (b) (c)

Figure 3.5. Particle distributions over simple surfaces. The surfaces in (a) and (b) are the zerosets
of analytic functions, while (c) is a levelset of the distance transform of a box.

42

Figure 3.6. Comparison of the distribution time of the particle system over a sphere versus the
total number particles in the system.

by a tightening of the surface with a maximum radius of curvature of 1.0. Figure 3.7 (a) shows

a homogeneous packing of particles across the surface, and in Figure 3.7 (b) the particle system

adapts to the curvature of the surface.

Figures 3.8 and 3.9 are surfaces reconstructed from the zerosets of distance transforms. These

figures again present homogeneous as well as adaptive distributions of particles. Figure 3.8 (d)

and Figure 3.9 (d) were generated using a GPU-based splat renderer, which allows these solid

appearing surfaces to rendered at interactive rates. The GPU-based splat algorithm runs on an

NVIDIA GeForce 6800 GT card with Pixel Shader 3.0.

In Table 3.9 we provide the number of particles for each of the examples in this section, as

well as the time the particle systems took to converge. For the surfaces that are reconstructed

from volume data, computing the curvature to adapt the particles increased the convergence time

by roughly a factor of four over the distribution using the same value ofs. For the surfaces in

Figure 3.5, the jump in distribution time from the analytic surfaces to the box distance transform

is due to the cost incurred by reconstructing volumetric data.

43

(a)

(b)

Figure 3.7. Particles on a brain reconstructed from a149 × 188 × 148 binary volume that was
closed then opened with aball stencil, followed by a tightening withr = 1. In (a) and (b)s = 2,
with ρ = 0 in (a) andρ = 5 in (b).

44

(a) (b)

(c) (d)

Figure 3.8. The dragon dataset is a356 × 161 × 251 distance transform. In (a) and (b)s = 4
ands = 2, respectively, withρ = 0, and in (c) and (d)s = 2 andρ = 7.5. Image (d) is a splat
rendering of the particles in (c).

3.10 Discussion
In this chapter we have presented a new particle system framework for robust, adaptive

sampling of complex implicit surfaces. We have developed a new class of energy functions and

applied several numerical techniques to generalize, stabilize, and control the distribution of par-

ticles. The physically-based nature of the particle system inherently incurs a high computational

cost, and the proposed system provides the tools necessary to automate the particle convergence

reliably for the production of compact sets of surface samples.

There are numerous avenues to improve the proposed system. Although we have presented

several optimization strategies, more work can be done to increase the efficiency of the distri-

bution process. First, the development of an adaptive spatial binning structure would reduce the

45

(a) (b)

(c) (d)

Figure 3.9. The griffin dataset is a104 × 48 × 98 distance transform. In (a) and (b)s = 2 and
s = 1, respectively, withρ = 0, and in (c) and (d)s = 2 andρ = 7.5. Image (d) is a splat
rendering of the particles in (c).

46

Table 3.4. Number of particles for each of the distributions presented in Section 3.9, as well as
the time required for the particle systems to converge.

Dataset Number of Particles Time
sphere 492 1 second
torus 1184 1 second
box 1049 26 seconds

brain (a) 31635 3.3 minutes
brain (b) 57139 11.3 minutes

dragon (a) 11011 2.3 minutes
dragon (b) 41879 6.2 minutes

dragon (c-d) 44042 13.5 minutes
griffin (a) 8036 1.5 minutes
griffin (b) 21189 3.6 minutes

griffin (c-d) 32144 7.2 minutes

number of potential neighbors at highly adaptive particles. Second, further exploitation of the

system’s tendency to quickly eliminate high frequency error in the distribution process could be

done by posing the system in a hierarchical framework, such as multigrid. These advancements

would help to enable visualization of dynamic data sets, where course level distributions can help

guide fine level distributions from time step to time step.

CHAPTER 4

ISOSURFACE VISUALIZATION OF

HIGH-ORDER FINITE

ELEMENT DATA

This chapter uses the flexibility and controllability of dynamic particles for sampling implicit

surfaces in the context of visualization. Visualization has become an important component of

the simulation pipeline, providing scientists and engineers a visual intuition of their models.

Simulations that make use of the high-order finite element method for spatial subdivision, how-

ever, present a challenge to conventional isosurface visualization techniques. High-order finite

element isosurfaces are often defined by basis functions inreference space, which give rise to

a world spacesolution through a coordinate transformation, which does not necessarily have

a closed-form inverse. Therefore, world-space isosurface rendering methods such as marching

cubes and raytracing must perform a computationally expensivenested root finding. To address

these challenges we propose visualizing the isosurfaces with a particle system. This chapter de-

scribes a framework that allows particles to sample an isosurface in reference space, avoiding the

costly inverse mapping of positions from world space when evaluating the basis functions. The

distribution of particles across the reference space isosurface, however, is controlled by geometric

information from the world space isosurface, such as the surface gradient and curvature. The

resulting particle distributions can be homogeneous, or, adapted to accommodate world-space

surface features, providing compact, efficient, and accurate isosurface visualizations of these

challenging data sets.

The following section provides an introduction to high-order finite elements and the chal-

lenges they pose for isosurface visualization. This is proceeded by sections that provide back-

ground of isosurface visualization methods, as well as the proposed adaptations of the particle

system scheme for visualizing high-order data sets. A derivation of surface curvature in the pres-

ence of curvilinear coordinate transformations is given in Section 4.3.1. The chapter concludes

with a comparison of results from the proposed particle system approach with other visualization

techniques.

48

4.1 High-Order Finite Elements
The method of finite elements [67] is a common spatial subdivision scheme used by scientists

and engineers to reduce large simulation domains to sets of small subdomains over which physical

simulations can be computed robustly and efficiently. While traditional finite element methods

utilize only low-order, linear basis functions for representing data over the elements, they provide

considerable flexibility for handling complex geometries. The geometric flexibility is aided by

the transformation of individual elements constructed as identical cubes inreference spaceinto

uniqueworld spaceelements, which can have not only rectangular faces, but also triangular

faces. In world space, the spatial extent of each element is defined by characteristics of the

domain and simulation, such as boundary conditions and features of interest. The mapping

functions responsible for the transformations can distort the elements by stretching, skewing,

or even collapsing the faces of the reference space cubes, as illustrated in Figure 4.1.

A number of researchers have developed methods to improve the convergence properties of

finite elements through the use of high-order functions for the representation of the data, as

well as the element transformations. Today, high-order finite element techniques have reached

a level of sophistication such that they are commonly applied to a broad range of engineering

problems [42, 74, 138]. Although there do exist some high-order finite element methods that do

not rely on reference space transformations, the use of curvilinear coordinate transformations is

of increasing interest [68]. This chapter is addressing the problem of finite element methods that

rely on higher order (higher than linear) basis functions for the solutions as well as the coordinate

transformations.

Conventional approaches to finite element isosurface visualization assume that linear data

Figure 4.1. A 2D schematic of the finite element subdivision scheme. Inreference space,
elements are defined as identical squares. These squares are transformed intoworld spaceby
a mapping functionT that can stretch, skew, shrink, or even collapse edges.

49

Figure 4.2. An isosurface of a finite element fluid simulation pressure field sampled with a
particle system. The color indicates the relative direction of the surface normal at the particle
(blue indicatesoutwardand red indicatesinward).

representations can be adapted to accommodate low-order finite elements. This strategy, however,

faces a number of challenges when considering high-order data sets. First, the data must be finely

subsampled to ensure that features are adequately captured with linear approximation schemes.

Second, there is, in general, no closed form expression for the inverse of high-order mapping

functions. Numerical inversion schemes are required to transform world space locations into the

reference space when sampling the data, creating a nested root-finding problem when locating

an isosurface. Furthermore, determining which reference-space element in which to invert a

particular point in world space adds to the computation.

Computational scientists who wish to visualize high-order finite element solutions will require

visualization algorithms that are flexible enough to accommodate these constraints. These algo-

rithms will need to have variable degrees of freedom so that users can easily control the trade-off

between visualization quality and speed. For efficiency, these computations must be locally

adaptive, allowing computational power to be applied to regions of the solutions that exhibit the

most complexity (i.e.,h-r adaptivityin finite element terms). Furthermore, these algorithms will

need to achieve the appropriate balance of computations in world space, where the metrics for

adaptivity are defined, and reference space, where there are closed-form expressions for the asso-

ciated geometric quantities. To address these issues we are proposing an isosurface visualization

technique that relies on a particle system, exhibited in Figure 4.2. The particles are constrained

to an isosurface and exert repulsive forces on each other, resulting in even distributions across the

surface.

In Chapter 3, we showed how these types of systems can be made robust and controllable

while also adaptive to features of interest. For isosurfaces embedded in high-order finite elements,

adaptivity based on the curvature of the isosurface in world space is a function of not only

the high-order basis functions, but also the mapping function. A contribution of this chapter

50

is the derivation of isosurface curvature in the presence of curvilinear coordinate transformations,

including a reduction of the isosurface Hessian from a rank-three tensor contraction into a series

of standard vector-matrix computations. Also, we propose a method for manipulating the particle

positionsin reference spaceto avoid a numerical inversion of the coordinate transformation,

while computing the particle interactions and adaptivity in world coordinates.

The resulting particle system allows for a series offorward computations to obtain desirable

distributions of samples that are accurate and compact over the world space surface. The resulting

distribution of particles — a process that may take anywhere from a few seconds to minutes

— can be rendered interactively as either simple point sprites or as a water-tightsplat surface

on the GPU, allowing a scientist or engineer to quickly explore their data from any camera

location. Furthermore, the generality of this system can be broadly applied to any type of data

representation that makes use of a reference space and a mapping function.

4.2 Background
This section first presents a brief overview of techniques in the literature for directly sampling

implicit surfaces. The discussion is followed by an analysis of the challenges for adapting

traditional visualization methods to high-order finite element data, along with a review of existing

methods for visualizing these data sets.

4.2.1 Direct Visualization of Implicit Surfaces

In scientific, medical, and engineering applications, visualization has become an integral part

of simulation and analysis pipelines. As the size of data sets continues to swell with the increase

in computing capacities and scanning resolutions, visualization tools are have become invaluable

for recognizing features in otherwise dizzying amounts of information [69]. Oftentimes, data

from scanning devices or simulations come in the form of a volumetric lattice of values, which

can then be interpreted as an implicit function. When directly visualizing surfaces and boundaries

embedded in these implicit functions, methods typically excel in one of two orthogonal charac-

teristics: they either produce a high quality visualization, or they are computationally efficient.

These competing paradigms have brought forth two general classes of methods — those that are

image-space based, and those that are object-space based.

Image-space methods visualize implicit surfaces by sampling the surface from the reference

frame of the image plane in the virtual camera model. Ray tracing, for example, traces the path

of individual rays from a virtual camera into each pixel of the output image and through the

implicit function, computing intersections of the ray with the implicit surface [60]. Determining

51

the intersections is done via root-finding along the ray, either by solving for the roots directly if

the functional form of the implicit function is known, or, by an iterative method such as Newton-

Raphson, subdivision, or interval arithmetic [98]. Once the intersection points are computed,

advancing shading effects can be generated using the derivatives of the implicit function at the

point location [157], producing photo-realistic or highly stylized images [55].

Another image-space approach to visualizing implicit functions is volume rendering [89],

which assigns a color as well as opacity to different levelsets of the function. By blending the

values of the levelsets together, the result is a volumetric effect that allows several isosurfaces to

be viewed at once. The original method, called ray casting, is a direct extension of ray tracing,

and was proposed independently by Drebin and Levoy [48, 87]. Ray casting composites the

color and opacity values of interpolated data as rays, originating from a virtual camera, traverse

the implicit function. Methods for preprocessing the color and opacity values assigned to an

implicit function, such as shear-warp [82] and splatting [155], have been developed to optimize

this volume rendering algorithm.

Although image-space approaches generate stunning visualizations, they are computationally

expensive for two reasons: first, the algorithms are inherently dependent upon the view point, thus

every new view of the data must be recomputed; and second, the sampling of the implicit surface

is dictated by the resolution of the final image and the data dimensions, not by the complexity

of the surface itself. Extensions to these image-based methods exist to increase the rendering

efficiency, but require multiprocessor machines [111] or specialized hardware [114, 25].

Object-space methods, on the other hand, first sample a surface in the reference frame of

the virtual world, allowing the sample points to be determined as a preprocessing step. Sam-

pling the surface directly in object-space can be done by projecting a set of points onto the

zeroset of the implicit function using a technique like gradient descent. Because the samples

are view-independent, the surface can be visualized from many different viewpoints without a

computationally expensive resampling, making these methods effective for exploring scientific

data on commodity desktop (and laptop) machines. The surface point samples can be rendered as

simple point primitives, as disks oriented tangentially to the surface, or using a more sophisticated

point-based rendering technique, such as splatting.

4.2.2 Low-Order Visualization Methods for High-Order Data

Until recently, much of the work in finite-element simulations has focused on linear elements.

In the simplest case where the finite elements form a regular grid in world space, conventional

methods like marching cubes [90] and direct volume rendering [91] are applicable. In general,

52

however, the finite elements produce an irregular grid in world space that is incompatible with

the assumptions these methods make about the regularity of the grid. Early work by Shirley

and Tuchman [136] and Williams [161] proposes a volume rendering approach for tetrahedral

elements, and Bunyket al. [23] propose a generalized ray-casting algorithm for irregular grids.

Doi and Koide [47] present the Marching Tetrahedra method for triangulating isosurfaces defined

over tetrahedral elements. More recently, work has moved the volume rendering [154, 26] and

isosurface generation [122, 112] algorithms onto the GPU to obtain faster rendering speeds.

Applying these low-order, linear methods to high-order finite elements, however, presents

several challenges. First, high-order basis functions represent features in the data with far fewer

grid elements than an equivalent low-order representation. Thus, visualization methods that rely

on linear interpolation must first finely subdivide the domain to ensure that features in the data are

not missed. This increase in grid resolution can have an explosive effect on not only the storage

requirements for the visualization, but also on the computation required to sufficiently sample the

elements.

The second problem stems from the need to compute an inverse of the mapping function

to evaluate the data in the world space. LetF ∗(u) be the functional representation of the

finite element solution, which is defined in the reference space, and letT be the coordinate

transformation that maps a reference space pointu into a world space pointx, i.e.,T (u) = x. The

world space representation of the solution is thereforeF (x) = F ∗(T−1(x)). There is generally

no closed form expression forT−1, causing world-space evaluations to require iterative numerical

schemes for the computation ofu = T−1(x). Thus, determining the location of isosurfaces in

high-order finite element data becomes a nested root finding problem –F (x) (and its derivatives)

must be iteratively evaluated to determine the position of the isosurface, with each evaluation of

F (x) requiring an iterative, numerical inversion ofT .

There is yet one more challenge for the general problem of visualizing high-order finite

elements. The data and coordinate transformations are valid for only a single element, and in

practice another layer of computation is required to determine which reference element contains

the pointu = T−1(x). Although efficient element lookups based on regular grids [125, 53] or low

order curves [159] can be applied to elements with planar or quadratic curved faces, respectively,

there is no closed form solution for the general problem. Spatial partitioning schemes can be

utilized to reduce the grid ambiguity to among a few elements [103], but the inverse mapping

u = T−1(x) will (generally) require multiple iterations across multiple elements. The problem

is becoming increasingly more difficult as results from the scientific computing literature extend

53

the finite element methodology to more general frameworks. For instance, recent work by Hughes

et al. [68] proposes spline-based functions for finite elements, which produces yet another class

of curvilinear mappings between the reference and world domains.

Adapting marching cubes to accommodate high-order finite elements elucidates these three

challenges. In Figure 4.3 we present the results of the isosurface extraction technique applied to

a sphere that is transformed through a2× 2× 2 set of quadratic b-spline functions. To generate

these results, a regular world space grid is first created. The world space location of each grid

node is numerically inverted within each potential element until the associated reference space

location is determined and the basis functions can be evaluated. Accurately finding the zeros of

the high-order data along the grid is then accomplished via a root-trapping mechanism.

We have incorporated two different root-trapping methods into a marching cubes framework.

The first is a grid refinement strategy that uses an adaptive subdivision scheme to be as efficient

as possible, recursively subdividing only the grid cells that contain zero crossings. Care has been

taken in the implementation of the subdivision scheme to ensure coherence across neighboring

cells, avoiding redundant sampling of the data. The the second root-trapping approach uses the

Newton-Rhapson method along grid edges to determine the zero crossings.

Ensuring that point samples of the isosurface—for any sampling scheme—lie on the surface

to within a small error tolerance is important for generating accurate surface approximations. In

Figures 4.3(b-d) the vertex locations are computed using linear interpolation over progressively

more refined grids. These results indicate that using low-order interpolation schemes requires a

very finely subdivided grid to accurately determine the zeros of the data and capture the geometry

of the surface (Figure 4.3(d)). In Figures 4.3(e-g) the vertex locations are computed using a

Newton-Rhapson root-finding method. While the grids in these images are relatively coarse, the

zeros of the data are more accurately computed, generating more precise approximations of the

surface.

While Figure 4.3 illustrates that capturing the geometry of high-order data is possible with

low-order schemes, the results come at the cost of lengthy compute times. The computations

are dominated by the large number of mapping function evaluations, which we callforward

evaluations. The surfaces in Figures 4.3 require a numerical inversion of each grid node, and

the surfaces in Figures 4.3(e-g) also incur nested root-finding evaluations along the grid edges.

The number of forward evaluations and timings are given in Table 4.1 for results generated on a

P4 3.2GHz CPU with 2.0Gb of memory. It is interesting to note that Figures 4.3(e-g) out perform

Figure 4.3(d), indicating that root-finding along coarse grid edges is more efficient than linearly

54

(a)

(b)

(e)

(c)

(f)

(d)

(g)

Figure 4.3. Marching cubes surfaces of a sphere mapped through quadratic b-spline functions:
(a) the transformed elements; (b-d) surfaces generated using an adaptive subdivision root-trapping
scheme; (e-g) surfaces generated using Newton-Raphson root-trapping. Grid dimensions, number
of forward evaluations, and timings are given Table 4.1.

Table 4.1. The number of forward evaluations and timings for the marching cubes meshes in
Figure 4.3.

Grid Root-trapping Number Forward Time
Mesh Resolution Method Evaluations (millions) (seconds)
(b) 5× 5× 13 subdivision 0.6 6.7
(c) 9× 9× 25 subdivision 2.4 25
(d) 17× 17× 49 subdivision 7.7 82
(e) 5× 5× 13 Newton-Raphson 1.7 19
(f) 7× 7× 17 Newton-Raphson 3.2 35
(g) 9× 9× 25 Newton-Raphson 6.8 73

interpolating along refined grid edges.

4.2.3 High-Order Visualization Methods

Other researchers have also noted the challenges of efficiently adapting low-order visual-

ization methods to high-order functions, and some work has been done to specifically address

the problem of visualizing high-order finite element data. Wileyet al. [159, 158] formulate

raycasting for curved-quadratic elements, and Brasher and Haimes [21] propose a GPU-based

method for color mapping cut planes of quadratic and cubic elements. A method to subdivide

elements containing high-order basis functions so that low-order visualizing methods can be

used is proposed [130, 145]. Coppolaet al. [33] address the issue of vector visualization with

high-order representations by formulating the particle advection problem on high-order basis

functions. Similar to our framework, this work tracks particle advection in the reference space to

avoid the inverse mapping problem. More recently, Nelson and Kirby [103] present an algorithm

for raytracing high-order, spectral/hpelements. Their method uses a world-space approximation

55

of the composition of the coordinate transformation and the reference space basis functions.

It assumes multilinear mappings (linear element boundaries in world space), and includes a

quantification of the approximation and root-finding error. They show that the image-space

method compares favorably with marching cubes in compute time when the tolerances on surface

position are sufficiently high.

4.3 Adaptation of the Particle System Framework
In this section curvature metrics for surfaces that exist in curvilinear are derived, as well as

a method for sampling the isosurfaces in reference space that results in regular distributions of

particles in the world space.

4.3.1 Isosurface Geometry in Finite Elements

To adaptively distribute particles across a finite element isosurface, we must formulate the

gradient and Hessian of the world space implicit function,F , in terms of the reference space

specifications that are given by the finite element basis and mapping functions. As mentioned in

Section 4.2.2, the implicit function representing the simulation data,F ∗, is defined over a set of

finite elements in reference space and is transformed into world space through a mapping function

T (u) = x. The gradient and Hessian of the world space implicit function are thus defined by not

only F ∗, but also byT , and thereforeT must be included in all of the derivative calculations.

Used in the computation of the world space gradient and Hessian is the Jacobian of the

mapping function, which describes how the space around a reference space position is stretched

or squashed by the mapping function:

J(u) =
∂T (u)

∂u
=

∂x

∂u
=

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w .

 (4.1)

Also, to simplify the following derivations we denote the inverse of the Jacobian as

K = J−1 (4.2)

and provide a linear algebra identity for a matrixM:

56

dM−1

dz
= −M−1 dM

dz
M−1 (4.3)

wherez denotes some Cartesian basis vector.

Formulating the expressions for the world space gradient and Hessian requires meticulous

derivations of the derivatives of the coordinate transformation,T . Care must be taken to correctly

determine the order of the component multiplications as well as which vectors and matrices need

to be transposed. Furthermore, the derivation of the Hessian includes a vector multiplication with

a rank-three tensor, which is the result of computing the second derivative of the vector-valued

coordinate transformation. To clarify these derivations we use the Einstein notation convention,

as described in [14]. Developed for dealing with curved spaces in physics, Einstein notation

identifies relationships often hidden by conventional linear algebra notation, such as transposition

and order of operations.

To begin, we define the world space asX, the reference space asU , and the mapping function

as T : U 7→ X; let x ∈ X andu ∈ U . Using Einstein notation, we definex = xi and

u = ui, utilizing upper indices for world space components and lower indices for reference space

components. The number of indices of a variable indicates the rank of the tensor –vi is a rank-one

tensor (or vector);Mij is a rank-two tensor (or matrix);Tijk is a rank-three tensor, and so on. In

this convention, repeated indices in a term indicates a summation over the range of index values.

For example:

aT · b
︸ ︷︷ ︸

vector

=
∑

i

aibi

︸ ︷︷ ︸

summation

= aibi
︸︷︷︸

Einstein notation

. (4.4)

Parenthese are also dropped on functional variables, such as from the basis functions and the

mapping function:

F (x) = F ixi (4.5)

F ∗(u) = F ∗
i ui (4.6)

T (u) = T i
juj = xi. (4.7)

57

For brevity, however, we will notate Equations 4.5 and 4.6 as simplyF andF ∗, respectively,

emphasizing the role of these equations as scalar functions throughout the derivations. Finally,

Einstein notation also uses indices to represent partial derivatives, such as for the Jacobian of the

mapping function:

J(u) =
∂

∂uj
T i

kuk =
∂xi

∂uj
= J i

j . (4.8)

The inverse of the Jacobian is then

Ki
j = (J i

j)
−1. (4.9)

The world space gradient,F i, is:

F i =
∂F

∂xi
=

∂F ∗

∂uj

∂uj

∂xi
= F ∗

j Ki
j . (4.10)

The expression of the Hessian includes the derivative of the inverse Jacobian which, using Equa-

tion 4.3, is written:

Ki
jk =

∂(J i
j)

−1

∂uk
= −K l

jJ
l
mkK

i
m. (4.11)

Notice that the second derivative of the mapping function,J l
mk, is a rank-three tensor. Using

Equations 4.10 and 4.11 the Hessian,F ij , is defined as:

∂

∂xi

(
∂F

∂xj

)

=
∂

∂uk

(
∂F

∂xj

∂uk

∂xi

)

= F ∗
lkK

j
l K

i
k − F ∗

l Km
l Jm

knKj
nKi

k. (4.12)

By carefully matching Einstein notation indices of each component in Equations 4.10 and

4.12, the gradient and Hessian expressions are reduced to a series of standard vector-matrix

operations. Introducing[· | · | ·] to express the concatenation of three column vectors into a

matrix, the expressions for the world space gradient and Hessian in standard notation are:

58

Fx = KTF ∗
u

(4.13)

Fxx =
(
F ∗

uu
K

)T
K −

([

FT

x

∂J

∂u
| FT

x

∂J

∂v
| FT

x

∂J

∂w

]

K
)T

K. (4.14)

The expressions conveyed in Equations 4.13 and 4.14 allow world space adaptivity to be

achieved using reference space evaluations of the basis functions, mapping functions, and their

derivatives, along with any standard vector-matrix library. This formulation has general applica-

bility and could, for instance, be used to add curvature dependencies in other applications that

make use of reference space regularity, such as mesh generation [134].

4.3.2 Reference Space Particles

To avoid the computations associated withT−1 we have developed a strategy that maintains

particle positions in reference space, while controlling the particle distributions with geomet-

ric information from the world space. This strategy is similar to the guided search algorithm

proposed by Coppolaet al. [33] for particle advection. Maintaining reference space positions

allows the basis functions that defineF ∗ to be sampled using closed form expressions. Thus,

the curvature calculations and projection of particles onto the isosurface (Equation 3.12) can be

computed directly. We ensure that the particle distributions are even and adaptive in the world

space by using world space positions (forward mapping) when computing the repulsive force

velocities in Equation 3.4. We then transform these velocities via the derivative of the mapping

function to obtain an approximate reference space velocity,v∗
i :

v∗
i = Kvi (4.15)

The reference space positions are then updated using Equation 3.11 with reference space com-

ponents. We note that Equation 4.15 is a first-order approximation, and thus assumes updates

that are small relative to the isosurface and the curvature of the coordinate transformation. We

are not interested in the precise motion of particles, but rather that they move to lower energy

states. Thus we adapt the time steps to accommodate this first-order approximation, as described

in Section 3.4.

59

To effectively distribute particles in the reference domain, particles must also be able to move

from element to element. Finite element data sets typically contain reference space information

describing which elements abut one another in the world space, as shown by the dashed lines in

Figure 4.4. Because reference space elements are identical cubes, we can easily determine when

a particle’s positional update causes it to leave an element, and use the adjacency information to

compute the particle’s new element and new position within that element. When a particle moves

from one element into the next, we use linear interpolation—based upon the reference space

coordinates of the adjacent elements’ shared world space vertices—to determine the particle’s

location in the neighboring element’s local coordinate system.

4.4 Boundary Discontinuities
Surfaces defined over finite elements are usually guaranteed to be onlyC0 continuous at

the element boundaries, allowing for cusps on a surface in areas that are analytically flat. This

potentially results in lessened interparticle forces due to the tangent plane projection of a particle’s

neighborhood force field. The iterative nature of the convergence mechanism, however, smooths

out this effect.

In practice we have found the discontinuities present a problem only when rendering the

particles. The particles’ radii do not adapt to these discontinuous features, causing artifacts

to sometimes appear when disks or splats intersect each other – Figure 4.5 illustrates the phe-

nomenon along boundaries. To more accurately capture these surface features, the particles can

be adapted in Equation 3.15 by not only the curvature computed from the Hessian, but also by the

particles’ proximity to element boundaries. This adaptation will not remove the visual presence

Figure 4.4.Particles move from element to element by utilizing neighboring element information
(dashed lines) and linear interpolation of the reference space element vertices to determine the
coordinates of the particle in the neighboring element.

60

of the cusps but will make the discontinuities appear smoother.

4.5 Implementation
This implementation is a modified version of that found in Section 3.6. Changes to the basic

particle system implementation are inbold. For all of the results presented in this chapter we ini-

tialized the system with several hundred particles at random locations, evenly distributed among

all finite elements. The particles maintain reference space positions as well as the corresponding

world space positions.

1. For each particle:

(a) ComputeEi and computevi with Equation 3.4by summing the repulsive forces and

energies of all the neighboring particles in world space. Transform the velocity

into reference space with Equation 4.15.

(b) Computev∗new
i = λiv

∗
i .

(c) Compute the new particle positionin reference spaceunew
i by solving Equation 3.11

with v∗new
i , followed by a reprojection to the surface by solving Equation 3.12.If the

new position is outside of the element, determine which element the new position

is in, and convert the position into the new, local coordinate system.

(d) Compute the new energy value,Enew
i , at the new particle locationxnew

i by mapping

the new reference space position into world space withT , as well as the new implicit

function value,F new
i .

Figure 4.5. Artifacts due to boundary discontinuities where disks (left) or splats (right) intersect
each other.

61

(e) If Enew
i ≥ Ei or |xi − xnew

i | > s or F new
i > ǫT , andλi > λmin, decreaseλi by a

factor of 10 and go back to Step 2(b)ii. Ifλi ≤ λmin, do not move the particle and skip

to the next particle in the list.

(f) If Enew
i < Ei, updateui = unew

i . Increaseλi by a factor of 10 if this is the first time

through Step 2b.

2. Decide whether the system is at a steady state. There are numerous metrics to determine

steady state, and we have chosen to use the difference of the system energy (the sum of the

energy at all the particles) from one iteration to the next. When the system energy difference

is less than a small fraction of the total energy (we use 0.15% for the results presented in

this dissertation, although a range of values would produce similar results), we deduce that

particles have reached a steady state. Otherwise, repeat Step 2b. For poor initializations,

we have found it can be useful to skip to Step 2d every 50 iterations instead of waiting for

the system to reach a steady state.

3. Check whether the configuration of particles is desirable. We compare each particle’s

energy against an ideal energy,Eideal, which is defined by a hexagonal packing of neighbors

on a flat surface with inter-particle distances ofs. We biasEi with a random value on the

interval[0, 1] to eliminate mass splitting or dying, then split particles withEi < 0.35Eideal,

and delete particles withEi > 1.75Eideal. Alternatively, if a constant number of particles

is desired, the planar separation variables could be modified to move the system energy

towards the ideal system energy. While we have provided specific values for this step,

we have found in practice that varying the values by up to 20% produces visually similar

results, although with different convergence times.

4. If the energy of the particles is acceptable, stop iterating.

4.6 Results
We begin with a demonstration of the method on a curvilinear mapping of a simple implicit

function. Figure 4.6 shows a quadratic b-spline coordinate mapping function, which maps a

reference space sphere into a world space teardrop, introducing a curvature variation across the

surface. Our mathematical formulation of the world space curvature correctly accounts for the

effects of the mapping function.

Figure 4.7 demonstrates the particle system achieving an even distribution on a sphere in the

world space, despite the irregular reference space geometry. Figure 4.6 asserts that the system

62

Figure 4.6. A sphere defined in reference space (left) is mapped to a teardrop in world space
(right). The mapping function induces a curvature variation to the surface, and the particles adapt
accordingly.

can correctly adapt to the world space curvature introduced by the mapping function. All of

these results are produced by manipulating the positions of particles in the reference space, while

computing inter-particle distances and curvatures using world space geometries.

The particle system visualizations in Figure 4.8 are generated from the data set used in the

marching cubes example shown in Figure 4.3. These examples are provided as a comparison of

what the particle system achieves in approximately the same amount of time as marching cubes

with root-finding. Using the same computing resources specified in Section 4.2.2, Figure 4.8(a)

requires 16 seconds and 1.1 million forward evaluations; Figure 4.8(b) requires 36 seconds and

2.5 million forward evaluations; and Figure 4.8(c) requires 70 seconds and 4.8 million forward

evaluations. The particle system is able to capture the sharp tips of the surface faithfully due

to the adaptivity mechanism, even at coarse resolutions – this is a significant difference from the

polygonal surfaces. Furthermore, the splat renderings produce much smoother water-tight surface

approximations than the marching cubes results.

These results allow us to compare directly against marching cubes, elucidating the advantage

of the particle system. First, notice that the particle system produces higher quality results in

similar amounts of time withfewer forward evaluations (compare Figures 4.3(e-g) with Figure

4.8). This is in part due to marching cubes evaluating grid nodes in regions where the surface does

not exist, but also due to the numerous iterations at each grid intersection point to determine the

correct placement of the vertex, a chore that consumes over half of the compute time. In contrast,

63

Figure 4.7.The particle system converges to an even distribution in world space (right) regardless
of the shape of the surface in reference space (left).

the particle system spends most computation time evaluating the data (by these numbers, about

70%) and little time in the overhead of the particle system,i.e., computing particle-particle in-

teractions. These results, like those described in the literature [103], demonstrate that generating

accuratevisualizations of high-order data is inherently expensive due to the cost of evaluating

the high-order solutions and coordinate transformations. By simultaneously finding the roots of

F and distributing the surface samples in a sensible way, the particle system makes very effective

use of these costly evaluations.

The raytracing method described in [103] generates nicely shaded andwater-tight imagesof

high-order finite element isosurfaces, but with the image-space drawbacks inherent to all raytrac-

ing methods. Data exploration is computationally expensive because each viewpoint requires the

isosurface to be resampled, and the computational cost is also associated with the resolution of

the resultant image. Furthermore, the accuracy of the ray-isosurface intersections are related to

the degree of the polynomial used to approximate the implicit function along the ray in world

space. This relationship scales with computation time asp2 to p3, wherep is the degree of the

polynomial.

Conversely, the particle system allows users the freedom to explore the data by interactively

moving a distributed set of particles in space. The accuracy of the particle positions with respect

64

(a)

(b)

(c)

Figure 4.8. The data set from Figure 4.3 sampled with a particle system. Theright column
images are splat renderings of the particles in theleft column: (a) 1280 particles distributed in
16 seconds with 1.1 million forward evaluations; (b) 3232 particles distributed in 36 seconds
with 2.5 million forward evaluations; (c) 8647 particles distributed in 70 seconds with 4.8 million
forward evaluations.

to the isosurface are controlled on a per particle basis by the error threshold,ǫT , and is indepen-

dent of the sampling density of the particle system, unlike the raytracing method. Thus, very

coarse, fast distributions of particles will be guaranteed to lie withinǫT of the isosurface. The

accuracy of the visualization produced by the particle system is instead related to theinferred

topologyof the isosurface by the viewer. Course level distributions provide insight to the gross

geometry of the isosurface, while finer distributions provide increasingly more detailed repre-

sentations of the underlying geometry. Accuracy thus relates to the amount of detail that can be

visualized with a specific resolution of the particle system – a relationship that scales linearly

with time.

Figures 4.9(a) and 4.9(b) illustrate the results of two different resolutions of the particle system

with 500 and 6800 particles, respectively. In Figure 4.9(c), the particle distribution from Figure

4.9(b) has been rendered with a GPU-based splat algorithm, and is virtually indistinguishable

from a raytraced image at512 × 512 resolution. Moreover, the isosurface in Figure 4.9(c) can

65

be rotated at interactive frame rates (greater than 30 frames per second). The GPU-based splat

algorithm runs on an NVIDIA GeForce 6800 GT card with Pixel Shader 3.0. The isosurfaces

in Figure 4.9 reside within a single hexahedral element, and are the zeroset of an eighth-order

polynomial implicit function. The 500 particles in Figure 4.9(a) took 4 seconds to converge,

and the 6800 particles in Figure 4.9(b) took 3 minutes to converge. The512 × 512 raytraced

image with an25th-order reconstruction polynomial required 6 minutes to render. We note that

the particle system implementation uses the same finite element evaluation code as the raytracer,

which is also the implementation used for results in [103]. We have found that sampling the finite

element implicit function takes, on average, an order of magnitude longer than computing the

inter-particle forces. This is consistent with our earlier observation, that basis-element evaluations

dominate the computation.

We demonstrate the capabilities of our proposed particle system by visualizing pressure field

isosurfaces of two CFD simulations. In the first example, shown in Figures 4.2, 4.10, and

4.11, we examine the wake of a rotating canister traveling through an incompressible fluid.

The finite element mesh consists of 5040 hexahedra and 696 prisms, with the computational

fluid mechanics problem being solved with third-order polynomials per element. In the second

example, shown in Figure 4.12, we visualize the flow past a block with an array of splitter plates

placed downstream of the block. This example contains 3360 hexahedra and 7644 prisms, again

with the computational fluid mechanics problem being solved with third-order polynomials per

element. The color of the disks in Figures 4.2, 4.10, and 4.12 indicates the relative direction of

the surface normal at the particle (blue indicatesoutwardand red indicatesinward). In Figure

4.11, color specifies the size of the particles.

4.7 Discussion
In this chapter we have presented a general and robust method for visualizing isosurfaces of

high-order finite element data sets that would allow scientists and engineers to efficiently explore

simulation data. By sampling isosurfaces with a particle system, the method produces compact

and adaptive visualizations that can be viewed at a variety of resolutions. Furthermore, the

proposed system is general and easily adaptable to a broad range of finite element representations,

from low-order linear elements, to complex, spline based elements. The curvature derivation

presented in Section 4.3.1 is also relevant for any application that measures curvature in the

presence of curvilinear coordinate transformations.

As mentioned in Section 4.3.1, the discontinuities in the derivatives at the element boundaries

66

(a) (b)

(c) (d)

Figure 4.9. The zeroset of an eighth-order implicit function defined within a single hexahedral
element: (a) 500 particles, with a distribution time of 4 seconds; (b) 6800 particles, with a
distribution time of 3 minutes; (c) A GPU-based splat rendering of the 6800 particles that is
visually indistinguishable from the512 × 512 raytraced image in (d) that required 6 minutes to
render.

67

(a)

(b) (c)

(d) (e)

Figure 4.10.The isosurface of pressureC = 0 for a CFD simulation over 5736 elements with a
third-order polynomial implicit function in each element: (a) Schematic for the fluid simulation;
(b) 5000 particles, 55 seconds; (c) 13,000 particles, 3.4 minutes; (d) 28,000 particles, 15 minutes;
(e) 59,000 particles, 39 minutes.

68

0.016

0.04

Figure 4.11. The distribution from Figure 4.10(d), color-mapped based on the radii of the
particles. The colorbar provides the range of values of the radii.

can cause features in the surface that cannot be analytically detected through computation of

surface curvature. These undetectable features will contain a very sparse sampling of particles,

which create artifacts when the particles are splat. One solution would be to implement a more

sophisticated splatting algorithm that clips splats along these boundaries [172]. Also, the particle-

based visualization system could be bundled with an image-space rendering technique, such as

raytracing, and serve as a preview for quickly determining isovalues and viewpoints of interest.

69

(a)

(b)

Figure 4.12. The isosurface of pressureC = −0.1 for a CFD simulation over 11,004 elements
with a third-order polynomial implicit function in each element: (a) Schematic for the fluid
simulation; (b) 43,000 particles, 25 minutes.

CHAPTER 5

ISOSURFACE MESHES USING DYNAMIC

PARTICLES WITH QUALITY

CONSTRAINTS

Biomedical simulations increasing rely on patient-specific models for accuratly capturing the

pathology and physiology of individual patients. The generation of these models depends on

a pipeline for extrating high-quality parameterizations of implicit surfaces reconstructed from

MRI or computed tomography (CT) data. In this chapter we describe a method that addresses

a piece of this pipeline — specifically, the construction of isosurface triangulations of implicit

surfaces. The resulting meshes consist of triangles that are well-suited for accurate interpolation

of scalar and vector-valued quantities, as required for numerous applications in visualization and

numerical simulation. The proposed method does not rely on a local construction or adjustment of

triangles as is done, for instance, in advancing wavefront or adaptive refinement methods. Instead,

a system of dynamic particles optimally samples an implicit function such that the particles’

relative positions produce a topologically correct Delaunay triangulation. Thus, the proposed

method relies on aglobal placement of triangle vertices. The main contributions of the chapter

are the integration of dynamic particles systems with surface sampling theory and PDE-based

methods for controlling the local variability of particle densities, as well as detailing a practical

method that accommodates Delaunay sampling requirements to generate sparse sets of points for

the generation of surface tessellations.

The chapter begins with an introduction of biomedical applications that use meshing technol-

ogy, and is followed by a review of existing methods for parameterizing implicit surfaces. We

then present a detailed description of the proposed particle-based meshing pipeline along with

results and a discussion.

5.1 Meshing for Biomedical Simulations
The problem of surface meshing has been studied extensively in a wide array of applications

and contexts by a range of disciplines, from visualization and graphics to computational geometry

71

and applied mathematics. Existing approaches for tackling the surface meshing problem can

generally be distinguished by:

• how the original surface isspecified;

• what therepresentationof the output mesh is; and

• what the metrics are for measuring thequalityof the mesh.

This chapter deals with a particular application, which isthe generation of nearly-regular

triangle meshes from medical or biological data either for visualizing interpolated quantities

or for conducting numerical simulations.

Generating polygonal reconstructions of biological data is important in a variety of contexts.

For example, in bioelectric field problems there is evidence of better source localization when

inverse-problem solution techniques employ geometry and material properties that conform to

those of the patient or subject [151]. Similarly, research in cardiovascular fluid dynamics and

image guided medical simulations rely increasingly on models created from images of real vas-

culature [144, 34]. Recent work proposes using image driven geometry for the analysis of

biomolecular functional models [167]. Accurate and compelling visualizations of simulated

quantities over surfaces, such as the visualization of flow on manifolds [152, 88], also require

high-quality geometry. In the context of mesh generation, visualization and simulation are related

in the way they demand not only accurate geometric approximations but also representations that

provide for accurate interpolation of other physical quantities across the surface.

The dependence of biomedical applications on image data drives several aspects of this work.

First, a surface is not represented in a parameterized form but rather as a volumetric constraint,

such as a levelset in a binary or grayscale mask resulting from an image segmentation. Thus,

we focus on isosurfaces. Second, images have finite resolution and cannot capture small, sharp

features beyond the resolution of the imaging device, which is limited by intersample distance

and the point-spread function of the measurement process. Thus, the proposed method trades

geometric accuracy for mesh quality and topological consistency, resulting in numerically useful

meshes.

The strategy described in this chapter combines work from several disparate fields, estab-

lishing a global approachto meshing isosurfaces of volume data. This approach allows for

local decisions about point placements to effect the global distribution over time, and generates

high-quality, closed surface meshes (i.e., water-tight) that adapt triangle size to closely approx-

72

imate the isosurface geometry. In this work, high-quality is defined by targeted measures of

the regularity of the triangles. Although the proposed method is computationally expensive, the

production of consistently higher quality meshes than other approaches makes the method useful

for applications that demand very regular triangulations. Starting with a smooth reconstruction

of the volume data, the method computes the curvature and medial axis of an isosurface, which

are then used to construct a Lipschitz continuous measure oflocal feature size, a fundamental

geometric quantity that governs the minimal sampling rate of a surface. A dynamic particle

system then positions a large number of samples with interpoint distances that respect this local

feature size. The resulting point samples are triangulated using the Delaunay-based meshing

algorithm of Dey and Goswami [44], an algorithm that relies on sampling densities that exceed the

minimal sampling rate. Thus, this chapter proposes a new meshing pipeline while also addressing

the question of how, in practice, to make use of the fundamental work in surface sampling theory

by detailing an algorithm for reliably achieving specific sampling densities.

5.2 Background
For many applications it is useful to generate a parametric representation of an implicit sur-

face, such as a piecewise-linear polygonal mesh. In visualization, a triangular mesh can be

rendered very efficiently using modern graphics hardware, while in simulations, boundaries rep-

resented in implicit functions can be linearly subdivided into a finite element mesh. Early work on

isosurface meshing in the computer graphics literature focuses on efficiently generating approxi-

mate meshes, used mostly for visualization. The well-knownmarching cubesalgorithm [165, 90]

provides a well-defined set of rules for reliably and quickly producing first-order approximations,

but does not construct tessellations that are adaptive to the isosurface geometry. Furthermore,

quality measures of triangle regularity can be arbitrarily poor while vertex valences vary greatly,

independent of the input surface geometry. Improvements to marching cubes are numerous,

including improvements for better geometric approximations and closed meshes [106].

One general class of strategies for achieving higher quality surface polygonalizations is to

start with a mesh that is either coarse or of low quality and, through some combination of mesh

refinement, edge-swapping, or vertex repositioning, incrementally improve the mesh geometry

and triangle quality. For example, Velho [153] proposes a curvature-based refinement method for

improving the geometric accuracy of a marching cubes mesh, but does not fully address the issue

of triangle quality. Woodet al. [163] propose another strategy that first constructs a coarse,

topologically correct mesh that is then smoothly refined, producing higher quality triangles.

73

Other researchers have proposed refinement algorithms without the need for a base mesh [31].

In general, however, the strategy of refining a mesh to improve triangle quality produces the

inefficiency of a great many samples that are dictated by mesh quality rather than the geometry

of the underlying surface (for convergence rates of mesh quality see [31]).

Another scheme for generating quality isosurface meshes is to start from one or more seed

points and grow triangles in the form of an expanding, oradvancing, front [83, 63]. The basic

approach is quite fast and can produce high-quality triangles, especially when triangle size is

adapted to local surface curvature [72, 129]. The core algorithm procedes in two phases. First,

the front is grown by adding triangles along active edges, where the triangles are sized according

to local curvature metrics. Triangles are added as long as they are not too close to other preexisting

ones until the initial front and the active front are separated by a thin, empty region. The second

phase of the algorithm stitches these fronts together using a variety of heuristics for detecting and

connecting nearby triangles.

A key element of advancing front techniques is the detection of merging fronts. Spatial

subdivision schemes can be used to find any nearby triangles [72], as can other methods such

as fences[128], which test for bounding sphere intersections. Even with these tests fronts can

still overshoot or miss existing triangles. Using more stringent triangle sizing schemes, such as

a guidence field[128], can help to limit the size of triangles and avoid misdetections of nearby

fronts. The detection and stitching schemes, however, are based on a variety of heuristics and

special cases that have yet to be provably correct or implementable. Furthermore, the shapes

and sizes of triangles along merging fronts is determined not only by surface geometry, but also

by the geodesic curvature (curvature in the tangent plane) of the moving front. This problem

becomes even more acute when the data contain wavefronts that collide from opposite directions,

which is unavoidable for certain topologies or shapes. Thus, advancing front algorithms must

have additional built-in heuristics, such as wavefront smoothing [131], or special triangulation

schemes (e.g., edge swapping) that deal with collapsing or colliding wavefronts, often at the

expense of triangle quality in those areas.

A third approach to surface meshing is to generate an unorganized set of surface samples and

use algorithms from the computational geometry literature to create a Delaunay tessellation of the

points. Early work in the field provides the algorithmic foundations for producing solid Delaunay

triangulations in 2D and 3D [126, 50, 32], complemented by literature on the theory and methods

for extracting the surface manifold [6, 5, 8, 43]. These methods employ a compelling bottom-up

approach for constructing edges and faces from nonlocal properties of a point set, guaranteeing

74

closed, nonintersecting meshes. Generating the set of surface samples, which determine the

topology of the resulting tessellationand the quality of the resulting triangles, is difficult and

generally treated as either a separate problem, or as part of an adaptive scheme for iteratively

improving mesh quality [31, 45].

This chapter proposes a surface sampling and triangulation algorithm that relies on fundamen-

tal sampling requirements associated with Delaunay surface reconstruction schemes. Amentaet

al. provide the quantitative requirements, based on surface geometry, for 2D curves [6] and

3D surfaces [5], such that a unique Delaunay tessellation exists from which a subset of edges

or faces have a topological equivalence to the underlying surface. After distributing a set of

points based on these sampling requirements, we use methods that generate water-tight Delaunay

reconstructions from such samples [44, 9] to create a tessellation.

The core of the Delaunay sampling requirements relies on a characterization of surface ge-

ometry that depends on nonlocal information. Given a smooth surfaceF ⊂ ℜ3, a sufficiently

dense samplingP is one such that for any points ∈ F the Euclidean distance betweens and the

closest sample pointp ∈ P is no greater thanǫ times thelocal feature sizeat s. Any discrete set

of surface pointsP that meets this requirement is anǫ-sample ofF . The current theoretical (3D)

results showǫ = 0.06 is sufficient [5]. However, empirical results indicate that the actual bound

might be looser, and several authors have conjectured thatǫ = 0.5 may be closer to the necessary

bound [7].

The definition of local feature size (LFS) is an important aspect of these results and of the

proposed algorithm. The LFS of a points ∈ F is defined as the distance froms to the nearest

point on the medial axis (MA) ofF , shown in Figure 5.1 as the distanced to the point on the

surfaces. The MA has been heavily studied in the literature [80, 70] in the context of shape

modeling, computational geometry, and computer vision. Although the MA has several formal

definitions and many interesting and important characteristics, it is sufficient for the proposed

method to consider the MA of a surface as (the closure of) the set of pointsM ⊂ ℜ3 such that the

nearest point on the surface tom ∈M (i.e.,mins∈F |s−m|) is not unique. Alternatively, several

authors define the MA as the set of points where there exists a sphere that does not intersect the

surface and is tangent to the surface in more than one location.

The relationships between the MA, local surface geometry, and sampling requirements are

important in several ways. First, the cotangency definition implies that the LFS ofs ∈ F is no

greater thanthe local radius of curvature at that point. The radius of curvature is then an upper

bound, as is the sampling condition, and is therefore not a suitable proxy for the LFS. For instance,

75

s

d

Figure 5.1.A curve (shown in black), with anǫ-sampling of points (also shown in black), and its
MA is (shown in red). Theǫ-sampling requirements state that a point on the surface,s, cannot be
further away from a sample point thanǫ times the LFS ats.

the feature size can be very small on thinly separated, flat objects that have a very large radius of

curvature. Second, the LFS condition is necessary for establishing the correct topology among

an unorganized set of points. If the topology is somehow knowna priori (e.g., via continuity in

an advancing front) the sampling density could be much more sparse. However, one common

use of a surface mesh is for the construction of a body fitting tetrahedralization [4] where it is

important that the triangles, which form the faces of the corresponding tetrahedra, conform to the

global solid geometry. If, for example, a thin region of a surface were sampled with a sparse set

of points, the corresponding tetrahedra would be very flat. However, if the point density is related

to the LFS, the tetrahedra are more likely to be regularly shaped.

Algorithms for constructing anǫ-sampling of a surfaceF are not immediately evident from

the sampling theorems or mesh generation algorithms. Although several related schemes propose

methods for sampling surfaces with less-strict or slightly different bounds [19, 31], theǫ-sampling

requirement provides guarantees necessary for subsequent simulations due to the side effect of

respecting local as well as global object shape. Among the contributions of this chapter is a

practical scheme for generating sets of surface points that closely conform to theǫ-sampling

requirements.

76

5.3 Mesh Generation with Particle Systems
The goal of the proposed meshing system is to generate nearly-regular triangular meshes of

isosurfaces. By adaptively distributing a set of dynamic particles such that their positions conform

to anǫ-sampling requirement, the particles can be used to generate a Delaunay surface mesh that

corresponds to the geometry and topology of the isosurface. To achieve this goal, the proposed

method consists of several steps: (1) computation of a MA approximation to determine the local

feature size; (2) creation of a sizing field to specify the desired distances between particles; (3)

adaptive distribution of particles across the isosurface; and (4) triangulation of particle positions

to create a polygonal reconstruction of the isosurface. Figure 5.2 depicts this pipeline. The

following subsections will describe each of these steps in more detail.

5.3.1 Local Feature Size

As described in Section 5.2, the LFS is the distance to the MA of a surface. Accurate

computation of the MA is a challenging research problem, and numerous approaches have been

proposed for its solution. One approach presented in the computer vision literature is to detect

discontinuities (i.e., shocks) in a distance transform of a surface. Detecting the shocks, and hence

the MA approximation, in the distance transform is numerically tricky due to the discontinuities

in the derivatives at these points. Siddiqiet al. [137] propose measuring the divergence of the

gradient of the distance transform, where high values indicate a significant change in the field,

and thus a MA point. Another approach by Persson [113] fits local quadratics over the distance

transformation grid, looking for places where these functions intersect. A set of heuristics then

determine whether an intersection point should be included in the MA approximation.

For this work we have developed a medial axis detection algorithm for more general implicit

surfaces which is moderately robust to free parameters, gives subgrid accuracy, and does not

require the thinning or postprocessing of similar methods [137]. This scheme relies on thefoot

pointmethod, which is the nearest pointp on a surface to a given pointq, and can be found using

gradient descent by the method described in [64]. Here we consider only the MA proper, and not

the singular points where the MA terminates. The line segment definedpq is perpendicular to the

surface, and every point onpq hasp as its foot point. This line segment forms acharacteristic,

which is the path of a surface point that moves inward/outward in the direction of the surface

normal (to within a sign difference). As we proceed from the surface along an inward or outward

characteristic, the foot point of each point along that path remains the starting point for the

characteristicuntil the characteristic intersects the MA — once the characteristic intersects the

77

Figure 5.2. The proposed mesh generation pipeline using a dynamic particle system. First, a
medial axis is computed from a distance transform of an implicit surface; next, an initial sizing
field is built from the local feature size and radius of curvature; a smoothed sizing field is then
generated by limiting the gradient of the initial sizing field; particles sample the sizing field and
distribute themselves accordingly; and finally, the particles are triangulated using a Delaunay
surface reconstruction algorithm.

MA, the position of the foot point changes. The algorithm for detecting the MA is as follows. For

each point on the gridq find the foot pointp, then find the pointq∗ along the characteristic (away

from the foot point) that intersects the current voxel (far face of the cube). Find the footpoint

p∗ associated withq∗. If the angle between the line segmentspq and p∗q∗ is greater than some

small thresholda, then the segmentpp∗ crosses the MA. The position of the MA alongpp∗ can

be found by using a first-order (tangent plane) approximation to the surface at the pointp∗. We

usecos(a) = 0.9 for all of the results in this paper.

After constructingM , a LFS fieldλ(x) is created by finding the distance to the closest medial

axis pointm ∈M at the grid nodes. For efficiency, we restrict this field to the subset of grid nodes

78

that bound the isosurface. Theλ field needs only to be a conservative estimate of the distance to

the true MA as LFS (and curvature, which will be discussed in the next section) provides an upper

bound on the distance between particles in the proposed system; anything less than, or equal to,

the true distance will drive the final distribution of particles to be anǫ-sampling.

The accuracy of theλ field fundamentally relies on the underlying accuracy of the medial

axis detection algorithm, which is itself a sampling problem. Creating the medial axis requires a

sampling of the data field, where those samples are chosen dictating the accuracy of the medial

axis detection. The problem thus cycles between choosing samples to detect the medial axis, and

using the detected medial axis to determine where the samples should be to accurately capture the

true medial axis. For this work, we intentionally break the cycle by relegating the accuracy of the

system for determining thelfs, and ultimately achieving a trueǫ-sampling of the surface, to that

of the accuracy of the underlying medial axis detection algorithm. As research into medial axis

detection progresses, the proposed sampling method can make use of new algorithms to achieve

more accurate results.

5.3.2 Sizing Field

The sizing field is the mechanism by which the particle system adapts its distribution to meet

anǫ-sampling requirement. There are two geometric quantities, LFS and radius of curvature, and

two parameters,ǫ andδ, that govern the construction of the field.

To establish an initial sizing fieldh0(x), theλ field is compared to the radius of curvature

at each grid node in a narrow band around the isosurface. The radius of curvature is calculated

as1/|kmax|— the absolute value of the maximum curvature can be computed directly from the

Hessian ofF [78]. The initial sizing field is given as:

h0(x) = C min(λ(x), 1/|kmax(x)|) (5.1)

whereC is a constant based onǫ that is discussed and defined in the following paragraphs.

Including the radius of curvature in Equation 5.1 helps to ensure that small surface features that

may not have been captured inM appear in the sizing field construction.

Althoughh0 contains most of the core geometric information about a surface necessary for

describing anǫ-sample, it is not suitable on its own for regulating particle distances for two

reason: first, the Delaunay sampling theory indicates that some fraction of the LFS is required

for topologically correct reconstructions; and second, to achieve high quality triangles across the

79

entire mesh, the gradient of the sizing field must be limited to ensure smooth, gradual changes

in triangle size. These two characteristics are controlled by the user defined parametersǫ andδ,

which modifyh0 to create an(ǫ, δ)-sizing fieldh(x).

Multiplying h0 by twice theǫ parameter, such thatC = 2ǫ, causes the sampling to be a fraction

of local feature size,i.e., anǫ-sampling. The Delaunay sampling requirement [6] specifiesǫ for

some point on the surfaceother than the sample points, thus we include this implied factor of

two in C, and the literature indicates thatǫ = 0.5 may be a loose upper bound forǫ. The second

parameter,δ, is used to limit the gradient ofh0 such that the values in the resulting fieldh will

not change faster thanδ. Thus,δ dictates how quickly the edge lengths of neighboring triangles

can change —δ < ǫ will generally produce well-shaped triangles. This limiting produces a

δ-Lipschitz field (described in Section 2.3), an important property for smooth triangle gradation.

To limit the rate of change ofh over its grid we use the following discrete operator, operating

on a lattice sampling of our fieldhijk = h(x) at a grid node positionx, which is shown by

Persson [113] to generate aδ-Lipschitz field:

hn+1
ijk = hn

ijk + ∆t(min(∆+
ijk, δ)−∆+

ijk) (5.2)

where

∆+
ijk = [max(D−

x hn
ijk, 0)2 + min(D+

x hn
ijk, 0)2 +

max(D−
y hn

ijk, 0)2 + min(D+
y hn

ijk, 0)2 +

max(D−
z hn

ijk, 0)2 + min(D+
z hn

ijk, 0)2]1/2 (5.3)

and whereD+ andD− are the forward and backward difference operators, respectively, with

subscripts denoting the axes along which they are operating. In our implementation of the system

we consider the limiting of the gradient to have converged when the maximum relative change of

any grid node is less than10−5.

While the LFS functionλ is 1−Lipschitz [126], the inclusion of the radius of curvature

causesh0 to lose this property. We have found, however, that the initial sizing fieldh0 is nearly

1−Lipschitz, producing a final sizing fieldh which ismin(2ǫ, δ)-Lipschitz. Notice that ifδ ≥ 2ǫ,

the gradient limiting smoothing will have no effect onh0. We have experimented with a range

of values for bothǫ andδ, and present an illustrative example in Figure 5.3 to provide intuition

80

on each parameter’s role in the final mesh quality. This example visually emphasizes the balance

between geometric accuracy, the number of triangles, and triangle quality. The rounded box is a

level-set of a sampled analytic distance transform of box, where the faces are planar, the edges

are cylindrical, and the corners are spherical. The surface is reconstructed using a Catmull-Rom

spline kernel and the first and second derivative of a cubic B-spline. We also note that this

sizing field could be incorporated in the advancing front algorithm to determine triangle size by

replacing theguidence field[128] with the sizing field.

5.3.3 Distributing Particles

Using the particle system framework described in Chapter 3, a set of dynamic particles can

be controlled byh such that their final distribution meets the sampling requirements forF . To do

this, the system is initialized with a set of particles, the positions of which are determined from

a marching cubes triangulation to ensure that disconnected parts of the isosurface are seeded

with particles. The particles are then projected ontoF using a Newton-Raphson gradient descent

method. Once on the surface, each particle is associated with an individual potential function

which induces interparticle forces that push them towards lower, local energy states (see Chapter

3). To control the sampling density, we scale the distances between particles — which determines

the magnitude of the interparticle forces — by the value ofh at each particle’s position. The

distance between particlespi andpj becomes:

dij = αij |(xi − xj)| = dji (5.4)

whereαij is defined byh (evaluated at particle positionsxi andxj using linear reconstruction

kernels) as follows:

αij = αji =
β

min(hi, hj)
(5.5)

with β = 0.5/ cos(π
6). The particles are then iteratively moved to lower local energy states until

the system reaches an equilibrium.

Equation 5.5 scales the effective distance between particles based on an ideal hexagonal

packing across a flat surface where the region of influence of a particle ends at the closest two-ring

neighbors. The value ofβ is derived from this ideal packing, and allows for a population control

mechanism to be defined that adds and removes particles based on their energy, driving the system

81

δ = 0.5ǫ δ = ǫ δ = 2.0ǫ

ǫ = 0.125

ǫ = 0.25

ǫ = 0.5

ǫ = 1.0

Figure 5.3. Illustrative comparison of mesh quality and number of triangles for varying values
of ǫ andδ, the user defined parameters in Equations 5.1 and 5.2, respectively. Theǫ values vary
down the columns while theδ values vary across the rows.

82

towards an ideal packing. Becauseh0 establishes an upper bound on the allowed distance between

particles for meeting anǫ-sampling requirement, using the minimum sizing field value of any pair

of particles establishes a conservative sampling, as do the convex, linear interpolation kernels that

reconstructh at arbitrary particle locations.

There is, however, a caveat to producing anǫ-particle sampling. The particle system uses

Euclidean distances to compute interparticle forces and energies, as opposed to the more accurate

(and computationally expensive) geodesic distance. The distance approximation causes particles

in a two-ring neighborhood to become influential, adversely effecting the population-control

mechanism for obtaining ideal neighborhood packings. This artifact, however, is bounded by

ǫ, which allows for a contraction factorg to be introduced to the system to counter-act the effects.

Figure 5.4 shows the distance contraction for particles equally spaced across a circle. The distance

between each adjacent particle isd — the distance betweenp0 andp2, however, is not2d as the

ideal packing model assumes. Instead, it is:

D = 2d

(

1− (dkmax)2

4

)1/2

. (5.6)

In the proposed system,d ≤ ǫ/kmax because the LFS is bounded from above by the radius of

curvature. Thus, we can bound the contraction parameter,g, as:

1 ≥ g ≥
(

1− ǫ2

4

)1/2

. (5.7)

As ǫ goes to zero,g approaches one because the surface becomes locally more and more planar as

the distance between particles shrinks. These bounds ong attest that the contraction effect cannot

get arbitrarily worse as the surface features become smaller; the worst case is bounded byǫ.

To counteract the contraction of distance to neighboring particles, we inversely scale the sizing

field ash ← h/g. We empirically determined a value ofg by observing histograms of the ratio

of triangle edge lengths to the average ofh at each edge’s vertices. Over a range ofǫ andδ values

for a variety of data sets the shapes of the histograms were visually identical except for the tails,

which contain a relatively small number of outliers — an example of one histogram is shown in

Figure 5.4. Based on our observations, we determined a conservative estimate ofg to be1.5. The

inclusion ofg creates a final mesh where the length of virtually every edge is at most2ǫh0. These

results are detailed in Section 5.5.

83

0 0.5 1 1.5 2

Figure 5.4. The effects of curvature cause the two-ring neighboring particles to become closer
than2d (left). This effect is bounded byǫ, which allows for a scaling parameter to be introduced
into the system. We empirically determined this value by studying histograms of the triangle edge
lengths versush, such as that of the pelvis reconstruction (right).

5.3.4 Triangulation

To triangulate a distribution of particles, we use the water-tight Delaunay triangulation method

TIGHT COCONE [44] – a free version of the software is available from the author’s website.

TIGHT COCONE first builds a Delaunay tetrahedralization of the union of the set of input surface

points and the Voronoi vertices of those points. The faces of the tetrahedralization are then culled

such that the remaining triangles exist only in a thickened region around the surface samples.

To avoid the creation of holes in the manifold extraction step from these candidate faces, the

remaining tetrahedral elements are marked asinsideor outside. The marking is done by first

creating an adacent tetrahedral element to some candidate face with a vertex at infinity. This

element is marked as outside, and a walking algorithm then determines, based on adajencies,

which tetrahedral elements are inside or outside. The labeling of the elements is then considered

in the final manifold extraction step that extracts a surface triangluation out of the set of candidate

triangles such that the resulting mesh is gauranteed to be water-tight.

The TIGHT COCONE algorithm works well for single materials when the sampling criteria

is met. There are applications of particle-based meshing, however, such as to multimaterial

datasets for which the sampling criterial cannot be explicitly met. In Chapter 6 we present a

simple labeling algorithm that takes advantage of the volumetric data for constructing watertight

surface meshes — this algorithm could be applied to any of the sets of particles in this chapter

for achieving reliable surface meshes.

84

5.4 Implementation
This particle system implementation is a slightly modified version of that found in Section

3.6, where changes are inbold, and free parameters introduced in this chapter are presented in

Tables 6.6.4 and 6.6.4, where we also present the free parameters from Chapter 3 that were used

in the meshing implementation. Note that almost all of these parameters use the same values as

previously discussed implementations.

For all of the results presented in this chapter we initialized the system with the vertices of

a marching cubes mesh. Thes and ρ user-defined variables are replaced with a sizing field

generated as a preprocessing step.

1. For each particle:

(a) ComputeEi, and computevi with Equation 3.4,where the interparticle distances

are scaled by theαij given in Equation 5.5.

(b) Computevnew
i = λivi.

(c) Compute the new particle positionxnew
i by solving Equation 3.11 withvnew

i , followed

by a reprojection to the surface by solving Equation 3.12.

(d) Compute the new energy value,Enew
i , at the new particle locationxnew

i , as well as the

new implicit function value,F new
i .

(e) If Enew
i ≥ Ei or |xi − xnew

i | > s or F new
i > ǫT , andλi > λmin, decreaseλi by a

factor of 10 and go back to Step 2(b)ii. Ifλi ≤ λmin, do not move the particle and skip

to the next particle in the list.

(f) If Enew
i < Ei, updatexi = xnew

i . Increaseλi by a factor of 10 if this is the first time

through Step 2b.

2. Decide whether the system is at a steady state. There are numerous metrics to determine

steady state, and we have chosen to use the difference of the system energy (the sum of the

energy at all the particles) from one iteration to the next. When the system energy difference

is less than a small fraction of the total energy (we use 0.15% for the results presented in

this dissertation, although a range of values would produce similar results), we deduce that

particles have reached a steady state. Otherwise, repeat Step 2b. For poor initializations,

we have found it can be useful to skip to Step 2d every 50 iterations instead of waiting for

the system to reach a steady state.

85

3. Check whether the configuration of particles is desirable. We compare each particle’s

energy against an ideal energy,Eideal, which is defined by a hexagonal packing of neighbors

on a flat surface with inter-particle distances ofs. We biasEi with a random value on the

interval[0, 1] to eliminate mass splitting or dying, then split particles withEi < 0.35Eideal,

and delete particles withEi > 1.75Eideal. While we have provided specific values for

this step, we have found in practice that varying the values by up to 20% produces visually

similar results, although with different convergence times.

4. If the energy of the particles is acceptable, stop iterating.

5.5 Results
In this section we present results from the proposed system for generating isosurface meshes

of a variety of biological data sets. The first two tessellations, shown in Figures 5.5 and 5.6, are of

a pelvis [10] and brain [142] generated from binary segmentations that have been smoothed with

a Gaussian kernel (σ= 1.5). Figure 5.7 illustrates a skull extracted from gray-scale CT data, and

Figure 5.8 depicts vasculature represented by the zero-set of a distance transform generated by an

anisotropic smoothing algorithm [104]. All four surfaces are reconstructed with approximating

cubic B-spline kernels.

The proposed method was run on a P4 3.2GHz CPU with 2GB of memory. The generation of

the medial axes and theλ grids took on average about an hour for each data set while limiting the

gradient field ofh0 to generateh required several minutes. Run times to distribute the particle

systems, along with the resulting mesh dimensions are presented in Table 5.5. We also present the

ǫ andδ values used to generate the sets of particles and note that for all but one data set these two

values were constant over the set of data. These values are slightly larger for the pelvis data set as

the resolution of the surface was more coarse than the underlying data grid, allowing for a more

spare set of particles to accurately reconstruct the surface. As mentioned in Section 5.3.4, we use

TIGHT COCONE [44] to triangulate the particle distributions — the tessellations required on the

order of several minutes.

The stated goal for this work is the generation of isosurface meshes suitable for simulations

and the interpolation of data. To measure the quality of our results for these purposes we

draw upon ideas established in the finite element literature which characterize the role of mesh

quality in the simulation accuracy [67]. Here, we briefly discuss the interplay between geometric

accuracy and the error of a finite element solution computed over a mesh.

86

Table 5.1. Table of free parameters.
Parameter Value Description Comments

ǫr 10−7 added to interparticle distances to
avoid infinite energy values

system is insensitive to values
near machine precision

σ 1.0 effective particle radius constant for all results in this dis-
sertation

γ 0.156 defines range of normals for
which the particle energies are
smoothed

insensitive to exact value as long
asγ ≤ 1

λ0 1.0 initial stepsize value system is insensitive to this value

λmin 10−14 minimum stepsize value system is insensitive to this value
as long as it is sufficiently small

ǫF 10−5 surface threshold value should be around the ma-
chine precision value

5 number of initial projections of a
particle

system is insensitive to this value
as long as particles get to within
ǫF of the surface

0.15% system energy difference from
previous iteration that indicates a
steady state

value must be small enough such
that the particle distribution con-
verges to an even packing

50 number of iterations when system
automatically checks for a desir-
able configuration (Step 2d)

value must be large enough such
that local particle neighbors can
be established

0.35 percentage ofEideal that indicates
a particle should be split

values with approximately20% of
this value produce visually simil-
iar results with different conver-
gence times

87

Table 5.2. Table of free parameters,cont.

Parameter Value Description Comments

1.75 percentage ofEideal that indicates
a particle should be deleted

values with approximately20% of
this value produce visually simil-
iar results with different conver-
gence times

5 number of iterations when parti-
cle neighbor lists are updated

values< 10 maintain stability in
the system

ǫ user-defined fraction of LFS stored in the
sizing field

values≤ 0.5 are important for
the reliability of accurate trian-
gulations

δ user-defined Lipschitz value of sizing field values must be≤ ǫ

10−5 convergence threshold for gra-
dient limiting

value should be near machine
precision

1.1 TIGHT COCONE parameter values in the range [0.9, 1.2]
produce reasonable tessellation
results

Table 5.3. Details of each data set, including size of the volume, values forǫ andδ, minutes
required to distribute the particle system, and resulting number of mesh vertices and triangles.

Data Volume ǫ,δ Time Vertices Triangles
Size (mins)

brain 149x188x148 0.5, 0.3 41 91702 182188
pelvis 271x390x282 0.75, 0.5 1 4992 9984
skull 256x256x115 0.5, 0.3 232 212188 424588
vessel 265x265x171 0.5, 0.3 280 287990 576493

dendrite 270x586x154 0.5, 0.3 225 203744 406994

88

Figure 5.5. A tessellation of a pelvis segmentation [10].

Given a domainΩ and a partial differential equation (PDE) that operates on a solutionu that

lives overΩ, the standard finite element method attempts to construct a geometric approximation

Ω̃ = T (⊗) consisting of a tessellation of polygonal shapes (e.g. triangles and quadrilaterals

for 2D surfaces) of the domainΩ, and to build an approximating function spaceṼ consisting

of piece-wise linear functions based upon the tessellation [67]. Building on these two things,

the goal of a finite element analysis is to find an approximationũ ∈ Ṽ that satisfies the PDE

operator in the Galerkin sense. The details of how this is accomplished are beyond the scope

of this work. The important points, however, are that a finite element analysis must balance

geometric error and approximation error while respecting stability constraints (e.g., as discussed

by Babuska and Aziz [11]), and that these errors are connected through the tessellation that is

generated. The space of functions from whichũ is generated depends on the type of elements

that exist inΩ̃. Thus the quality of the solution approximation is not only related to the accuracy

of Ω̃ for approximatingΩ, but also to the geometric properties of the mesh elements. In theL2

norm, the accuracy of̃u is bounded by a constant that includes angles of triangular elements.

Babuska and Aziz [11] show that if the largest triangle angle is bounded away from180◦, the

89

Figure 5.6. Particles on the brain and the resulting tessellation. The surface is a reconstruction
of a white-matter segmentation [142].

finite element method converges as the triangle size decreases. Shewchuk [135] notes that small

angles are preferable over large angles, so long as the largest angles are not too large, and extends

these results to provide functions that guide mesh generation and refinement algorithms toward

the production of high quality finite element tessellations. A common quality metric used in

the literature for measuring this relationship of element angles is the ratio of the radii of the

inscribed circle to the circumscribing circle of a triangle,rin/rcirc. This metric penalizes triangles

containing small angles, with the worst ratios going to triangles that also contain a large angle.

The proposed system addresses both aspects of geometric quality posed by the finite element

method. First, the accuracy of the tessellation for capturing the topology of the domain is guar-

90

 particle system

advancing front

marching cubes

Figure 5.7. The skull mesh is generated by reconstructing a level-set of a gray-scale CT image.
Close-ups are from triangulations generated using the proposed particle system method, an
advancing front technique [129], and a marching cubes algorithm.

anteed by the Delaunay reconstruction algorithms forǫ-distributions of particles. We quantify

the ability of the proposed system to meet this requirement by computing the ratio of triangle

edge lengths versus the average ofh0 at the edge vertices. In Figure 5.9 we present histograms

of the results for each data set. The pelvis mesh contains no edges larger thanh0 dictates, and

virtually every edge in the other three tessellations meets the sampling requirements defined in

h0 — less than 0.004% of the triangles in the brain and skull meshes, and less than 0.008% in the

vessel mesh, contain an edge that falls above the required sampling length. We note that while

the particles reliably meet the sampling requirements ofh0, the correctness of these requirements

are ultimately related to the accuracy of the medial axis detection method, as discussed in Section

5.3.1. These results indicate that the proposed particle-based method is a practical scheme for

generating anǫ-sample of an isosurface that relates point density solely to the geometry of the

91

Figure 5.8. The vessel mesh represents the zero-set of a distance transform generated using an
anisotropic smoothing algorithm [104].

surface, and not to the quality of the tessellation which is instead achieved implicitly by the

low-energy configuration of particles.

The second finite element requirement for generating high quality tessellations is the produc-

tion of nearly regular triangles. We compute the radius ratios for each data set to measure the

quality of the triangles in the resulting meshes — Figure 5.10 displays these histograms. We

present the average radius ratios for each data set in Table 5.4, along with the minimum (worst)

ratio which is important for determining the condition number in a finite element simulation. We

also include the radius ratios for meshes generated using a marching cubes [90] algorithm that

has been modified to use the same reconstruction kernels as those used in the particle system,

and from an advancing front algorithm [129] that has been supplied to us by the authors. The

data indicate that the proposed method generates average radius ratios that are nearly identical to

the advancing front technique, but consistently produces much better minimum ratios than either

alternative triangulation method. The proposed system is able to (globally) produce very regular

triangulations due to the natural, low energy, hexagonal packing of particles, avoiding the prob-

lems associated with grid-based methods (i.e., restriction of vertices to grid edges) or advancing

92

brain pelvis

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

skull vessel

Figure 5.9. The edge length versush ratios for the four data sets. Values greater than1.0 were
encountered at a frequency of less than0.01% in the brain, skull, and vessel meshes.

front techniques (i.e., detecting and stitching merging fronts) — poorly shaped triangles due to

these problems are shown in Figure 5.7.

A third metric for measuring the quality of triangulations is a measure of the vertex valence

of a mesh. For applications such as mesh compression [146] and subdivision surfaces [84] the

regularity of the vertex valences across a mesh is important for efficient and accurate results.

Regular triangulations tend toward a valence of six for most vertices, similar to the hexagonal

properties of particle packing. Vertex valence also indirectly indicates the tendencies of a mesh

to contain large and small angles. In Table 5.5 we summarize the valences of the vertices in our

triangulations. The meshes indicate a good affinity for valence-six vertices (63.275%, compared

with 44.15% for marching cubes and 71.75% for advancing front), with only a small fraction of

vertices exhibiting valences greater than seven or less than five (0.7%, compared with 12.86% for

marching cubes and 0.95% for advancing front). These numbers show that the particle-based

method out-performs marching cubes while also containing a smaller percentage of extreme

valences than the advancing front technique.

Practically, the proposed method relies on a lower bound for the LFS to ensure that the number

of particles does not blow up. In general, however, implicit functions can have arbitrarily large

93

brain pelvis

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

skull vessel

Figure 5.10. The radius ratios for the four data sets, all with an average ratio of∼ 0.94.

Table 5.4. The minimum and average radius ratios for each data set (min/avg) using the proposed
particle-based method (ps), an advancing front scheme (af), and a modified marching cubes
algorithm (mc).

pelvis brain skull vessel
ps 0.40/0.92 0.18/0.94 0.092/0.94 0.0195/0.94
af 0.23/0.94 0.02/0.93 0.006/0.93 0.0007/0.94
mc 0.00/0.66 0.00/0.67 0.000/0.66 0.0000/0.66

Table 5.5. Vertex valences for each data set, given as a percentage of the total number of vertices.

< 5 5 6 7 > 7
brain 0.1 17.2 65.3 17.1 0.3
pelvis 0.3 22.3 56.2 20.8 0.4
skull 0.1 16.8 66.0 18.0 0.2
vessel 0.3 16.7 65.6 16.9 0.5

94

curvature, which results in very high densities of points around small features. By controlling

the local configurations of binary voxels as well as the curvature of the implicit surface,e.g.

through mathematical morphology operations, the curvature of the the reconstructed isosurface,

and thus the maximum density of particles, can be controllably bounded. Levelset-based defor-

mations [143, 133, 160], such as thetighteningalgorithm discussed in Section 2.5.2, can also

systematically control the curvature of an implicit surface.

When the curvature of an implicit surface is bounded, we find that the particle-based meshing

algorithm consistently generates triangulations with minimimum radius-ratios in the 0.2–0.5

range — Figure 5.11 presents one such example. This mesh consists of approximately 407,000

triangles, and has a minimum radius ratio of 0.38. The sampled implicit function was generated

from a binary segmentation of a dendrite [51] that was tightened with radius of 1.0.

5.6 Discussion
In this chapter we propose a particle-based method for generating high-quality tessellations of

biological data sets. By creating a sizing field to dictate the density of the particle distributions,

this method produces sets of points that can meet the sampling requirements of Delaunay surface

reconstruction algorithms for generating topologically accurate tessellations, the accuracy of

which depends on the correctness of the underlying medial axis detection algorithm. We present

results from a variety of data sets that indicate the proposed method can reliably produce meshes

that closely capture isosurface geometry, as well as generate very regular triangulations. We also

compare the method against other tessellation techniques and show that the particle-based scheme

generates consistently higher minimum radius ratios, an important characteristic for reducing

geometric error in finite element simulations.

95

Figure 5.11. A high-quality mesh of a spinny dendrite segmentation [51]. The triangulation
contains over 400,000 elements, and has a minimum radius ratio of 0.38.

CHAPTER 6

SAMPLING AND MESHING OF

MULTIMATERIAL VOLUMES

Methods that faithfully and robustly capture the geometry of complex material interfaces

in labeled volume data are important for generating realistic and accurate visualizations and

simulations of real-world objects. The generation of such multimaterial models from measured

data poses two unique challenges: first, the surfaces must be well-sampled with regular, efficient

tessellations that are consistent across material boundaries; and second, the resulting meshes must

respect the nonmanifold geometry of the multimaterial interfaces. In this chapter we propose a

strategy for sampling and meshing multimaterial volumes using dynamic particle systems. We

present a novel differentiable representation of the material junctions that allows the particle

system to explicitly sample corners, edges, and surfaces of material intersections. We show that

the resulting point distributions meet fundamental sampling constraints, allowing Delaunay-based

meshing algorithms to reliably extract watertight meshes of consistently high-quality.

6.1 Introduction
Volumetric scans (volumes) provide an important source of information for generating real-

istic computer models of real-world objects. For example, biological and geophysical data are

often captured using volumetric scanning methods such as magnetic resonance imaging (MRI) or

ultrasound. The data from these devices is usually stored as a regular grid of values that provide

information about the surface of the scanned object and its detailed internal structure. Most

objects, natural or man-made, contain multiple materials with vastly different physical properties

that are typically organized in complicated geometric configurations. Extracting precise geo-

metric models of the interfaces between these materials is important both for visualization and

for realistic physically-based simulations in a variety of fields, from biomedical computing and

computer animation to oil-and-gas exploration and engineering.

Multimaterial volumes impose particular challenges for sampling and meshing algorithms

because the boundaries between materials are typically not smooth manifolds. As a result,

97

intersections of materials can produce sharp features such as edges and corners (see Section 6.3).

Furthermore, the development of increasingly realistic simulations dictates additional constraints,

such as a sufficient number of samples to accurately represent the geometry, compact sets of

nearly-regular triangles, and consistent tessellations across material boundaries. The construction

of geometric models that meet these requirements for surfaces of distinct objects is well-studied.

However, generating high-quality models of objects that contain multiple materials has thus far

received little attention.

In this chapter we use a dynamic particle system to produce well-spaced distributions of

points on material interfaces in multimaterial volumes. The particles move to minimize an

objective function that is designed to produce configurations of samples that are locally adaptive,

geometrically accurate, and well-suited for subsequent meshing. The set of material boundaries

are described as a CW-complex [79], and this chapter proposes new, analytic representations

for the different kinds of cells that form this structure. Also defined are projection operators

that allow the particles to sample these material boundaries in a hierarchical fashion — 0-cells,

1-cells, and then 2-cells. The result is a set of surface points that adapt to the underlying geometry

and meet fundamental surface sampling requirements. Using Delaunay-based meshing schemes,

an algorithm based on labeling tetrahedron creates surface meshes that are well-suited to the

generation of well-shaped volumetric elements [4].

The main contribution of the chapter is a novel scheme for representing the nonmanifold

sets formed at the material interfaces in multimaterial volume data, and a corresponding set of

projection operators that allow these interfaces to be sampled with dynamic particle systems. We

also present an algorithm for distributing sets of particle systems such that each type of interface

is sampled explicitly, and show that high-quality surface meshes of the sample points exist as

well-defined subsets of a Delaunay tetrahedralization. Implementation details of the proposed

algorithm are presented, and results for several multimaterial volumes generated from MRI scans

of real-world objects are shown, demonstrating the proposed system’s effectiveness.

6.2 Previous Work
Most of the previous work on meshing multiple material data focuses on grid-based tes-

sellation algorithms. These algorithms work on the original, labeled volumes, and focus on

extensions of the marching cubes case tables to handle the nonmanifold surface intersections. A

postprocessing step is then applied to reduce the voxelization artifacts. Some of the earliest work

presents methods that generate nonmanifold meshes from tetrahedral elements that are created

98

from the original rectilinear volume. Bloomenthal and Ferguson [17] propose a scheme that first

subdivides each voxel in a multilabel dataset into six tetrahedral elements. From these elements,

intersections of multiple materials along element edges, as well as in element interiors, can be

determined such that a nonmanifold triangulation can be reliably extracted. Themarching tetra-

hedralmethod [105] adapts the well-knownmarching cubesalgorithm [90] for the tessellation of

irregular grids, and is extended by Bonnellet al.[20] to incorporate fractional volume information

of multiple material datasets. Dillardet al. [46] also extend the marching tetrahedra scheme for

generating boundary meshes of data consisting of thousands of materials from polycrystal data.

Resolving the triangulation ambiguities of the nonmanifold topology when tessellating the

multimaterial interfaces is straight-forward using tetrahedral elements, but results in an excessive

number of triangles. Methods based on extracting interfaces in hexahedral cells can reduce the

overall number of triangles, but they must handle an increased number of nonmanifold ambigu-

ities. Reitingeret al. [120] propose a scheme for extracting nonmanifold meshes from a regular

grid of multilabel data by specifically detecting voxels that contain more than two materials,

placing a vertex inside these voxels, and, through a series of heuristics, computing a triangulation

of the voxels’ intersection points. Bertramet al. [12] produce a single multiple material dataset

from time-sequenced volumes using afairing procedure that produces signed distance functions

of the materials from which a nonmanifold tessellation is extracted using an algorithm similar to

that proposed by Hegeet al.[66]. By preprocessing multiple material datasets to eliminate voxels

with more than three materials, Bischoff and Kobbelt [13] greatly reduce the complexity of the

triangulation of these datasets. Recently, Zhanget al. [166] proposed an octree-based approach

that relies on the dual contouring method [71] to produce adaptive tetrahedral elements as well as

to preserve sharp features.

In general, these irregular and regular grid-based methods are robust and efficient, but generate

large numbers of triangles that are usually poorly shaped because the methods do not focus on

the placement of the vertices. Furthermore, the size of the elements is related to the resolution

of the grid, rather than to the geometry of the material surfaces, and the resulting meshes must

be postprocessed to reduce voxelization artifacts and generate tessellations suitable for simula-

tion [37]. To remove the dependence of the tessellation resolution from the underlying grid,

Ponset al. [118] extend the Delaunay-based volume meshing algorithm of Oudetet al. [110]

to multimaterial datasets. This approach instead builds a geometric model of multiple materials

by subdividing a Delaunay tetrahedral mesh, generating consistent material interfaces by con-

struction. The algorithm defines material boundaries as a subset of the tetrahedralization for all

99

faces that are bounded by tetrahedral elements belonging to different materials. The quality of

the resulting elements are controlled through a refinement procedure, the geometric accuracy of

which is proved by Boissonnatet al. [19]. This proof, however, requires that the surfaces beC2

continuous, which is not the case for multiple material data — we will discuss in Section 6.3 that

the surfaces of materials in a multilabel dataset are onlyC0 as they contain sharp features where

more than two materials intersect.

6.3 Topology of Multimaterial Interfaces
We represent interfaces in a multimaterial dataset using a model that describes each material

with a smooth, volumetricindicator function,fi [92]. A set ofN indicator functionsF = {fi|fi :

V 7→ ℜ} representsN materials. The model assigns a material labeli to a pointx ∈ V if (and

only if) fi(x) > fj(x) ∀ j 6= i.

Looking at the simple case when only two materials exist in the dataset, for all pointsx where

f1(x) − f2(x) > 0 the model will assign a label of1, while assigning a label of2 otherwise.

Notice that this description corresponds to the conventional formulation of an implicit surface.

In the multimaterial model, the set of pointsx wheref1(x) − f2(x) = 0 forms the interface, or

junction, between these two materials.

In the case of an arbitrary number of materials in the dataset, the configurations of interfaces

become somewhat more complex. The boundaries that separate materials are no longer mani-

fold, and can form sharp corners and edges. The topology of these junctions, however, can be

characterized by certaingenericconfigurations (see Figure 6.1). The termgeneric, from the field

of singularity theory, refers to the cases where the set of functionsF are ingeneral position.

This situation is analogous to the finite-dimensional spaces considered in discrete geometry —

(a) (b) (c) (d)

Figure 6.1. In 2D, a 3-material junction is generic and forms a 0-cell (a); it maintains its topology
under small perturbations (b). A 4-material junction (c), however, is a nongeneric case, and is
anihilated under small perturbations (d) to form generic 2- and 3- material junctions.

100

i.e., three points in general position cannot lie on a line, and if they do, a general position can be

restored through very small perturbations. This work generally considers only generic configura-

tions, which is justified by the system’s reliance on measured data that inherently contains some

level of noise, as well as the use of a data processing pipeline that ensures a degree of smoothness

in the indicator functions (see Section 6.6.1).

Each material interface is characterized in terms of the number of material indicator functions

that are maximal (and equal) at that junction. ForV ⊂ ℜ2, 2-junctions and 3-junctions occur

generically, as shown in Figure 6.1 (a-b), while a 4-junction is a nongeneric case, as shown in

Figure 6.1 (c-d). ForV ⊂ ℜd eachK-junction forms a subset ofV that is topologically equivalent

(homeomorphic) to aP -disk, whereP = d−K + 1. Thus each type of material junction can be

considered aP -cell, as described in the literature on discrete topology [61]. Thus, generically, for

d = 3 we have 4-junctions, which are 0-cells or points; 3-junctions, which are 1-cells or curves;

and 2-junctions, which are 2-cells or surfaces.

The collection of cells that describe the different types of material junctions, taken together,

form a CW-complex. That is, we can organize them hierarchically, such that each 2-cell is

attached to a collection of 1-cells (at its border), and each one cell is attached to one or more

0-cells. Special care must be taken to describe the cases where a particular material junction

is itself closed, but this formality is not important to the proposed method. The strategy in this

chapter is to sample nonmanifold multimaterial boundaries using this hierarchy of manifolds, and

to form the appropriate relationships between samples at each level in the hierarchy.

6.4 Representing and Sampling Junctions
Given a set of material indicator functionsF , first defined are a set of analyticalcell indicator

functions,J , that approximate the cells formed by each type of material junction (Section 6.4.1).

In the proposed particle system sampling scheme, each particle will be constrained to a particular

material junction. The formulation for each type of cell includes a set of projection operators to

enforce this constraint (Section 6.4.2). The system generates a hierarchy of particle systems so

that each type of generically occurring material junction is represented in the final mesh. Thus,

in 3D we begin by sampling the 0-cells (points), followed by the 1-cells (curves), and concluding

with the 2-cells (surfaces). Finally, the multimaterial surface meshes are extracted as a subset of

a Delaunay tetrahedralization of the samples (Section 6.4.3).

101

6.4.1 Differentiable Multimaterial Junctions

The individual material junctions present in the volumetric model of multimaterial datasets are

analytically represent to allow sets of particles to specifically sample each junction. To do this,

inside/outside(IO) functions for each material are defined using the volumetric model described

in Section 6.3. These functions are:

f̃i = fi −
n

max
j=1,j 6=i

fj , (6.1)

where positive values indicate the presence of materiali and negative values indicate some other

material. These functions have the property that the zero-set of any one IO function,f̃i, coincides

with the material transitions betweeni and some other material. This means, for instance, that

for two adjacent materials,i andj, we havef̃i = f̃j = 0 along the 2-junction where these two

materials meet.

This coincidence of zero-sets for adjacent materials in Equation 6.1 allows for a novel repre-

sentation that approximates the different kinds of material junctions (cells) within a multimaterial

volume. These junctions are detected by acell indicator functionthat identifies points inV where

a set of IO functions evaluate to zero, such as the material interface between materials 1 and 2

shown as the red dashed line in Figure 6.2. Along this curve,f̃1 = f̃2 = 0 and f̃3 < 0, while

in the the vicinity of this curvẽf1 andf̃2 will be nonzero (one negative and the other positive).

Thus, in 3D, we can represent the set of 2-cells that form the interface between two materialsi

andj, wherei 6= j, as the zero-set of the continuous cell indicator function:

1f

2f

3f

p

Figure 6.2. Material interfaces in multimaterial datasets exist where a volumetric model of the
data transitions from one maximal material to another, shown by the dotted lines for a set of three
indicator functions.

102

Jij = f̃2
i + f̃2

j . (6.2)

In this scheme, the 1-cells for the set of materialsi, j, k (assumed distinct) are given by the set of

pointsJijk = 0 where:

Jijk = f̃2
i + f̃2

j + f̃2
k , (6.3)

and likewise, the indicator for a 0-cell is:

Jijkl = f̃2
i + f̃2

j + f̃2
k + f̃2

l . (6.4)

6.4.2 Sampling Multimaterial Junctions with Particles

To distribute a set of dynamic particles across a manifold we need to define two things: first,

how particles will be projected onto the manifold; and second, how particles will be constrained

to move along the manifold. The first case is usually done using a gradient descent method such as

Newton-Raphson, while the latter case is most often accomplished by projecting motion vectors

onto the local tangent space of the manifold. For distributing particles across multimaterial

intersections, both of these tasks require first derivative information of the cell indicator functions.

The gradient of Equation 6.2 (with analogous definitions for Equations 6.3 and 6.4) is:

∇Jij = 2f̃i∇f̃i + 2f̃j∇f̃j . (6.5)

The max function is onlyC0, however, and the derivative is not defined at the transition

between materials. Thus, we approximatemax with a smooth function that is differentiable

and can be tuned (via a parameter) to be arbitrarily close tomax. One example of an analytic,

differentiable approximation tomax for a setZ of unique valuesz1, z2, · · · zm is given by first

defining a functiong:

g(z) = 1 +
z

(z2 + ǫ2max)
1/2

. (6.6)

Themax function is then:

103

max(Z) =
1

2m−1

m∑

i=1

zi

m∏

j=1,j 6=i

g(zi − zj) (6.7)

with the gradient given by:

∇max(Z) =
1

2m−1

m∑

i=1

∇zi

m∏

j=1,j 6=i

g(zi − zj)+

zi

m∑

j=1,j 6=i

∇g(zi − zj)
m∏

j=1,j 6=i

g(zi − zj)

 (6.8)

where:

∇g(z) = ∇z

[
1

(z2 + ǫ2max)
1/2
− z2

(z2 + ǫ2max)
3/2

]

. (6.9)

At the material transitions there is a not a unique set of a values, however. Thus, when

evaluting the IO functions of the transitioning materials for a cell indicator function, themax

in Equation 6.1 requires an extension of Equation 6.7 to accomodate these nonunique (maximal)

values:

max(F) =
1

(K − 1)2n−K

n−1∑

i=1

fi

n−1∏

j=1,j 6=i

g(fi − fj) (6.10)

wheren is the number of materials inV , F is the set of(n− 1) indicator functions evaluated by

max in Equation 6.1, andK is the numer of materials in transition for a specific cell indicator

function. For the results in this chapter we useǫmax = 10−5.

Using the approximation tomax given in Equation 6.10, we can derive an expression for the

lower-bound of the cell indicator functionJ , and show that this bound goes to zero in the limit.

The value of the transitioning materials at the junction is defined asA, and the largest value of the

nontransitioning materials at the juncton is defined asB. The difference between these two values

is (A−B) > 0. Using Equation 6.6, we define:α = g(A−B), which is a number slightly smaller

than 2;β = g(B−A), which is a number slightly larger than 0; andg(A−A) = g(B−B) = 1.

The expression for the cell indicator function of a K-junction becomes:

104

J = K

[

A− 1

(K − 1)2n−K

(
(K − 1)Aαn−K + (n−K)BβK−1

)
]2

(6.11)

In this expression, as the difference betweenA andB gets large relative toǫmax, α → 2 and

β → 0, which causesJ → 0. This expression also shows that for the special case ofn = K we

haveJ = 0.

Notice that the cell indicator functions have the property that they are (nearly) zero on the

set of interest (i.e., a material junction) and positive everywhere else. Because the set of interest

is locally minimal, the gradient is zero on the material junctions, and thus these cell indicators,

unlike the IO functions, do not directly provide the tangent spaces that are needed to constrain the

motion of interacting particles. The cell indicators are constructed, however, from combinations

of implicit functions for the individual materials (i.e., the IO functions), and the gradients of these

IO functions give the local orientation of the cells. Thus the tangent spaces (planes or lines in

3D) of the cells are reconstructed from a series of projection operators that rely on gradients of

the corresponding IO functions.

For 2-cells, the gradients of the IO functions that characterize the junction will be approxi-

mately equal and opposite near the zero set. Thus we project a motion vector of a particle,v,

onto a tangent plane that is defined by the average (for numerical robustness) of these IO function

gradients:

nt =
∇f̃i −∇f̃j

|∇f̃i −∇f̃j |
(6.12)

and update the motion vector as:

v← v− < v,nt > nt = (I − nt ⊗ nt)v. (6.13)

On the 1-cells, particles must move along the tangent line of the zero-set ofJijk. A tangent

line is computed as the summation of the cross products of each pair of the three characterizing

IO function normals, which all have zero-crossings along that set:

105

tijk =
∇f̃i

|∇f̃i|
× ∇f̃j

|∇f̃j |
+
∇f̃j

|∇f̃j |
× ∇f̃k

|∇f̃k|
+
∇f̃k

|∇f̃k|
× ∇f̃i

|∇f̃i|
. (6.14)

The particle motion vectors are then projected onto this normalized tangent line, constraining the

motions to the 1-cell:

v←
〈

tijk

|tijk|
,v

〉
tijk

|tijk|
. (6.15)

The 0-cells, which are the first to be sampled, are isolated points, each sampled by a single

particle (see Section 6.6.2), thus, we do not need to define a projection operator.

6.4.3 Meshing Multimaterial Samples

Fundamental work in inferring correct topology from a set of unorganized surface points

relies on a sampling criteria that link the density of points to the LFS of the surface [6]. In order to

guarantee topologically and geometrically correct surface reconstructions, state-of-the-art surface

sampling results require an infinite sampling density (in the limit) near sharp features, such as

those formed by at the 0-cells in a multimaterial dataset. The proof in Section 6.5.1, however,

shows that the LFS sampling constraint can be lifted around sharp features if sample points

are placed explicitly on cells, allowing for the reconstruction of geometrically and topologically

correct tessellations of surfaces with sharp features using Delaunay-based meshing schemes. The

proof guarantees this claim in 2D for a lower bound of45◦ on the material angles formed by

the tangent lines of the 1-cells at the 0-cell where they meet. Results from the levelset literature

indicate that angles between 1-cells, defined by smooth indicators functions, are120◦ at the

0-cells [168], making the90◦ lower bound a reasonable constraint for this work. We anticipate a

similar result, with a larger angle constraint, in 3D.

Based on this proof, we know that there exists a Delaunay-based method that can reconstruct

topologically correct manifold surfaces of individual materials in multimaterial datasets from the

set of particles. These datasets contain additional information, though — namely, a material label

for almost ever point inV — that allows for a simple labeling algorithm to reliably extract the

manifold material surfaces, as well as the nonmanifold intersection surface [118]. The labeling

algorithm first computes a Delaunay tetrahedralization of the the sets of points sampling the 0-,

1-, and 2-cells. Next, each tetrahedron is assigned a material label by determining the material

106

type at the location of its circumsphere center. Finally, the algorithm generates a surface mesh by

extracting all faces bounded by tetrahedra with different material labels.

6.5 Analysis and Correctness of Algorithm
6.5.1 Extension of Sampling Requirements to Include Sharp Features

Individual materials in a multimaterial dataset can be constructed as a union of junctions

that bound the material. For materials that have 3- and 4-junction boundaries, sharp features

appear around these boundaries at the nonmanifold material intersections. These sharp features

present a problem when considering the sampling constraints imposed by Delaunay-based surface

reconstruction algorithms. These constraints specify that the density of surface samples, which

form the vertices of the reconstructed tessellation, is inversely proportional to the distance to the

medial axis at those sample locations. This distance (the LFS) goes to zero at sharp edges where

the medial axis touches the discontinuous feature. Thus, the number of particles that sample a

material near a 3- or 4-junction must go to infinity to meet this constraint.

There is a way around the intractability of the sampling constraint near sharp features, which

is to place sample pointsdirectly on these features. The following derivation shows that if the

angleθ between two double-junctions near a sharp feature is large enough, and that the sharp

feature is explicitly sampled, then the sampling constraints do not apply in a small region around

the feature. The derivation states that in 2D,θ must be larger than45◦ — we anticipate a similar

result, with a larger angle constraint, in 3D. These proofs hold so long as the samples nearest the

sharp features lie within a ball that contains subsets of the surface for which the lower-bound on

the tangent-line angles is met.

6.5.1.1 Definitions

• A circle isemptyif its interior contains no points.

• A circumcircleis a circle touching a set of points that is empty of those points.

• Given three pointsa, b, and c, the Voronoi vertexof these points is the center of the

circumcircle ofa, b, andc.

• Given three pointsa, b, andc, theVoronoi vertexof these points is at the intersection of the

perpendicular bisectors ofab,bc, andca.

• The edgeab is in the Delaunay triangulation of the set of points containinga andb if there

107

exists an empty circumcircle fora andb.

6.5.1.2 Delaunay Surface Reconstruction in 2D

Here we present a brief, high-level overview of the 2D Delaunay surface reconstruction algo-

rithm CRUST [6], which builds on the fundamental LFS sampling requirements. The algorithm

begins by taking a set of pointsP = p1, · · · ,pn that sample a curve, and computing their

corresponding Voronoi verticesV = v1, · · · ,vm. Next, a Delaunay triangulation ofP ∪ V is

generated. From the set of all edges in the Delaunay triangulation, the edges not connecting two

sample points inP are culled, leaving a set of edges called thecrust — in Figure 6.3 the crust

is shown by the bold lines. In their seminal work on this algorithm [6], Amentaet al. show that

if P is sufficiently dense with respect to the LFS of the curve, thecrust is guaranteed to contain

edges that connect only adjacent surface points, and to also be topologically homeomorphic to

the original curve.

6.5.1.3 Derivation of of Material Angle Constraints

Given the set of points shown in Figure 6.4 that sample a curve with a discontinuity and a

material angleθ > 45◦, this derivation shows that the edgep1p3 will not exist in thecrustof the

points. There are several assumptions that we make:

Figure 6.3. When a curve is sampled densely enough, thecrustexists as a subset of edges of a
Delaunay triangulation of the surface sample points and their Vornoi vertices (image used without
permission).

108

• p2 samples the discontinuity exactly

• |p1p2| = |p3p2|

• |p4p1| = |p5p3|

• |p1p2| ≤ |p4p1|

Given these assumptions, there are two cases to consider:

• 90◦ ≤ θ ≤ 180◦

• 0◦ < θ < 90◦

6.5.1.3.1 Case 1. For the first case, where90◦ ≤ θ ≤ 180◦, we have the situation depicted

in Figure 6.5. The Voronoi vertexv is at the center of the circumcircleB of pointsp1, p2, and

p3. In this situation the smallest circumcircle ofp1p3 that is empty ofp2 is the circumcircleB.

By definition,v will lie at the center ofB. Thus,B will not be empty of points inP ∪ V , and

hencep1p3 will not be an edge in the Delaunay triangulation ofP ∪ V .

6.5.1.3.2 Case 2. For the second case, where0◦ < θ < 90◦, we have the situation depicted

in Figure 6.6. The Voronoi vertexv1 is at the intersection of the perpendicular bisectors ofp1p2,

p2p3, andp3p1, and the Voronoi vertexv2 is at the intersection of the perpendicular bisectors of

p4p1, p1p3, andp3p4. The pointc lies onp1p3 and is the center of the smallest circumcircle

of p1 andp3. In this situation, we want to know what is the largestθ for which the smallest

circumcircle ofp1 andp3 is empty ofv1 andv2. The circumcircle ofp1 andp3 will not be

2p

1p 3p

4p
5p

Figure 6.4. The sampling assumptions for the 2D proof. The pointp2 explicitly samples the tip
of the sharp feature,|p1p2| = |p3p2|, |p4p1| = |p5p3|, and|p1p2| ≤ |p4p1|.

109

2p

1p 3p

v

B

Figure 6.5. The case where90◦ ≤ θ ≤ 180◦.

empty when either:

• |c− v1| < 1
2 |p1 − p3|

• |c− v2| < 1
2 |p1 − p3|

To simplify the following discussion, we let|p1 − p2| = 1 without loss of generality, and let

γ = 1
2θ.

We do not, however, need to consider the case where|c − v2| < 1
2 |p1 − p3| because for

γ > 0◦, |c − v1| < |c − v2|. To see why this is true, Figure 6.7 shows the relationship between

v1, v2, andc. The pointc falls halfway betweenv1 andv2 whenp1c is perpendicular top1p2

2p

1p 3p

4p
5p

1v

2v

B

c

Figure 6.6. The case where0◦ < θ < 90◦.

110

— this assumes that|p1 − p2| = |p4 − p1|; if |p1 − p2| < |p4 − p1| the pointc will never fall

halfway betweenv1 andv2. Thus, forγ > 0◦, |c − v1| < |c − v2|. This means that we only

need to consider whenv1 is inside of the circumcircle ofp1 andp3.

Finally, we determine when|c− v1| < 1
2 |p1 − p3|. From Figure 6.8 we see that:

|c− v1| = x tan(90◦ − 2γ) (6.16)

wherex = |c− p1|. This leaves us with the following inequality:

tan(90◦ − 2γ) < 1. (6.17)

Thus,p1p3 exists in thecrustof the sample points whenθ < 45◦.

6.5.2 Angle of Multiple Materials

To empirically test the convergence of the 3D IO function angles towards120◦, we generated

a dataset that consists of a material in the shape of wedge that is then squeezed between two other

2p 1p

1v

2v

c

Figure 6.7. Shown here, the Voronoi vertexv2 will never be closer to the pointc thanv1.

2p

1p

y 1v

x

c

Figure 6.8. For θ < 45◦, the Voronoi vertexv1 will fall outside the smallest circumcircle of
p1p3.

111

materials inside of a box. By intersecting the reconstructed IO function of the wedge material

with a circle oriented perpendicular to the sharp edge of the wedge, the angle of the material

coming into the three-material boundary can be approximately computed. To do this, first analytic

distance transforms of all three materials are computed, and the angle of the wedge is varied from

10◦ to 120◦. Figure 6.9 shows isosurface extractions of the distance transform zero-sets of each

material for the10◦ and120◦ data sets. Second, each data set is smoothed via tightening with a

range ofr values. We then reestablish the material boundaries with Equation 6.1 and place a point

along the 3-junction. Around this point a circle of radiusR is defined that is perpendicular to the

3-junction, and the two intersection points along the circle with the IO function of the wedge

material are found using a root-finding scheme. Finally, to determine the angle of the wedge

material near the three material junction the difference of the circle normals at the intersection

points is computed.

In Figure 6.10 we present results of the experiments that vary the intersecting circle radius

R, as well as the tightening radiusr. The plot in Figure 6.10(a) shows the material angle for

a range of wedge angles as the radius of the intersecting circle is decreased. The plot confirms

that the material angle increases as the three material junction is approached, and that for even

small wedge angles, the resulting IO function angles increase to values above100◦. Round-

off errors prevent calculations any closer than 0.005 of the circle center (where 0.005 is in the

units of the voxel width). The plot shown in Figure 6.10(b) shows the IO function angle at the

smallest computed circle radius for a range of tightening radii. Again, this plot confirms that

the reconstructed material angles tend toward values above100◦ with numerical precision errors

(a) (b)

Figure 6.9. Isosurface extractions of analytic distance transforms of a wedge dataset of (a)10◦,
and (b)120◦.

112

preventing accurate evaluations of the exact angle values near the three material junction.

We can show analytically that regardless of how small the initial angle of a material is going

into a 3-junction, the smallest possible angle at a 3-junction pointafter the material has been

tightened and then reconstructed as an IO function is109.5◦. The geometry we are discussing is

shown in Figure 6.11, where the untightened wedge with a material angle ofθ is shown in blue,

the tightened wedge is shown in green (wherer is the tightening radius), and the reconstructed

IO function for the wedge is shown in yellow. To compute the angle of the IO function material

(yellow) we would like to characterize the polynomial that describes the red line and then find its

slope at the 3-junction pointtj.

We consider the worst-case scenario,i.e., when the material angleθ goes to zero, to determine

the lower-bound on the material angle of the reconstructed IO function, which is illustrated in

Figure 6.12. Because the tightening algorithm results in a distance transform, we can compute

the exact location of the triple-junction pointtj. The tightened wedge is again shown in green

with r = 1, while the tightened bottom and top materials are shown by the purple and blue hatch

marks. The center of the tightening circle is at the location(0, 1), which gives the following

equation for the distance transform of the wedge material near this circle:

dw(x) =
√

x2 + y2 − 2y (6.18)

The distance transform of the bottom material is given as

db(x) = y (6.19)

and for the top material as

dt(x) = 2− y. (6.20)

The 3-junction point will be located wheredw(x) = db(x) = dt(x), which is the location that

the IO functions for all three materials will evaluate to zero. To determine this location, first they

coordinate is computed by settingdb(x) = dt(x), which results iny = 1. Then,dw(x) = db(x)

is solved withy = 1, leavingx =
√

2. Thus, the 3-junction point is at the location(
√

2, 1).

Next, the polynomial of the line shown in red is determined by settingdw(x) = db(x), giving

the equation

113

Circle Radius of 0.005

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Wedge Angle

A
n

g
u

la
r

D
if

fe
re

n
c
e
 o

f
C

ir
c
le

 N
o

rm
a
ls

tighten r = 1.0

tighten r = 2.0

tighen r = 3.0

Tighten Radius of r = 3.0

0

20

40

60

80

100

120

140

0.001 0.01 0.1 1 10 100

Intersecting Circle Radius R

A
n

g
u

la
r

D
if

fe
re

n
c
e
 o

f
C

ir
c
le

 N
o

rm
a
ls

wedge 20 degrees

wedge 50 degrees

wedge 80 degrees

wedge 120 degrees

Figure 6.10. Plots of the wedge experiment that indicate the IO function angles increase as
a three material point is approached: (top) as the intersecting circle radiusR decreases, the
material angles for a range of wedge angles increase to values over100◦; (bottom) material
angles computed at a small intersecting circle tend to values over100◦, regardless of the amount
of tightening used.

114

r
tj

Figure 6.11.The geometry for the wedge data, where blue is the original wedge with a material
angle ofθ, green is the wedge tightened with a radius ofr, and yellow is the reconstructed IO
function.

0

)0,0(

)1,0(
)1,2(

x

y

Figure 6.12.The geometry for the wedge data, where blue is the original wedge with a material
angle ofθ, green is the wedge tightened with a radius ofr, and yellow is the reconstructed IO
function.

y =
1

2
x2. (6.21)

The derivative of Equation 6.21 iṡy = x, which is then evaluated at the 3-junction point to get

the slope of the line tangent to the IO function of the wedge,m =
√

2. Computing2 arctan(
√

2)

provides a lower-bound of the angle of the IO function for the wedge material as109.471221◦.

6.6 System Overview
6.6.1 Preprocessing Data

Multimaterial data sets are often the result of a segmentation process applied to grayscale

data from sources such as MRI or CT scanners. Automatic segmentation by a computer is a

challenging research problem, and is thus often augmented with hand segmentations by a domain

expert. For example, in the multiple material torso data segmentation shown in Figure 6.13 the

heart material was hand segmented by a cardiologist, while the other materials were generated

115

semiautomatically using an expectation-maximization segmentation algorithm [117]. Hand seg-

mentations can capture small features and thin regions that can sometimes be misclassified by a

segmentation algorithm. These hand segmented materials, however, can often contain interslice

artifacts where the material boundaries between slices are hard to distinguish. In Figure 6.14

(a) an isosurface of the hand segmented heart material shows some of these artifacts. Further-

more, these volumetric datasets are a discrete representation of some (presumably) continuous

geometry, and the segmentation process makes binary decisions on what is, and is not, part of a

specific material. Thus, the process of scanning and labeling is inherently lossy, but is necessary

for generating 3D geometry from discrete grids. The resolution of specific simulations is often

coarser than the resolution of the volume data, which further eliminates geometric information

about the original, underlying shape. For these reasons, preprocessing of the volume data is

necessary to eliminate small features and to reduce segmentation artifacts. This section will

outline a variety of mechanisms that can be used to preprocess multiple material datasets.

Binary morphology can be used to reduce segmentation artifacts, as well as to eliminate

spurious pieces of material and close small gaps. The elimination of these small features is

important for generating geometry that reflects the resolution of the final simulation as efficiently

as possible. As discussed in Section 2.5.1, there are numerous choices of morphology stencils,

and there are the different morphology operationsopeningand closing. These operations are

applied to each material after they have been isolated into individual volumes from the original,

multilabel data set. For the torso results presented throughout this chapter, the stencils given

in Table 2.1 were used to preprocess the individual materials, with the explicit morphology

Figure 6.13. The original multilabel torso dataset, where segmentations indicate (from darkest
to lightest) air, torso tissue, lung, heart, and bone. In this data set, the heart was handsegmented
while all other materials were automatically segmented.

116

(a) (b) (c)

Figure 6.14. Segmentation artifacts show up in an isosurface extraction of the heart material
(a). Binary morphology operations can eliminate many of the small features and gaps (b), while
tighteningsmooths the surface by controlling the minimum feature size (c).

operations (and stencil size) listed in Table 6.1. In the isosurface extraction shown in Figure

6.14 (b), the segmentation artifacts that appear in Figure 6.14 (a) are greatly reduced after binary

morphology operations are applied to the raw data.

For many types of biomedical applications, the numerical complexity of the simulations

require a relatively course geometry compared with the resolution of the data coming from

the scanning device. Thus, downsampling the data to meet the needs of the final simulation

can reduce the size of the simulation geometry without incurring a loss of accuracy of the final

result. The goal of the simulation which necessitated the generation of the torso data presented

in this chapter is one such example. Thus each material was downsampled after the morphology

operations were performed. One consequence of this downsampling is that empty voids may

appear when the materials are concatenated back together, shown in Figure 6.15. To remedy

this, avotingalgorithm fills voids based on neighborhood information around empty nodes. For

each grid node that is determined to be empty, the local 6-point neighborhood is searched, with

the empty node taking on the value of the most prevalent neighborhood material value. When

Table 6.1. The binary morphology operations used to preprocess that torso data presented in this
chapter. The stencils used correspond to those presented in Table 2.1.

material morphology operations stencil size
air closethenopen 4and2

torso tissue closethenopen 4and2
bone openthenclose 2and1
lung closethenopen 4and1
heart closethenopen 4and1

117

there is more than one prevalent value, a heuristic determines the value of the empty node — for

results in this chapter, the smallest of the prevalent values is chosen. After the empty regions

of the recombined data have been filled, the materials are again isolated into individual material

volumes.

The segmentation, binary morphology, and downsampling process can sometimes produce

physically implausible artifacts in the data. An example is shown in Figure 6.16, where the

automatic segmentation algorithm failed to identify a region of torso material, resulting in an

undesirable bone-air boundary. These types of artifacts are often due to the challenges of identify-

ing and maintaining thin material boundaries throughout the preprocessing steps. By identifying

implausible material boundaries in the segmented data, the data can be corrected by adding or

removing material using a tool such as a 3D paint program.

Figure 6.17 presents the original and processed multilabel data for the individual materials for

the torso data set. Although the processed materials shown in column (b) contain features of a

size that correspond with the resolution of the motivating simulation, they are not adequate for

(a) (b)

Figure 6.15. The multilabel torso dataset after binary morphology is performed on the individual
materials, followed by a downsampling. The materials are recombined in (a) where the black
pixels indicate an empty region where no materials are specified. The downsampled data after
voting(b) which applies heuristics to fill in empty regions.

(a) (b)

Figure 6.16. Segmentation and/or binary morphology can create unrealistic material boundaries
(a), such as the bone/air boundary circled in red. To remedy this, the segmentation can be fixed
by hand (b).

118

generating high-quality geometry — these volumes must be smoothed to eliminate voxelization

artifacts that would otherwise cause a stair-stepping effect in the final geometry. Using the

curvature flow-based morphology operationtightening, described in Section 2.5.2, the individual

materials are smoothed such that the resulting zeroset surfaces have a controlled minimum feature

size. The results of smoothing each material with a tightening radius ofr = 1 are shown in

column (c) of Figure 6.17. Differentiable, smooth surfaces can then be extracted from these

volumes using continuous reconstruction kernels.

In the process of tightening a surface to ensure a specific minimum radius of curvature, thin

regions of the surface can be altered drastically by the algorithm. An example of this is shown in

Figure 6.18, where a thin wall of the heart is noticeably eroded during tightening. To remedy this

(a) (b) (c)

Figure 6.17. The torso data set at various stages of preprocessing, where white indicates material
and black indicates nonmaterial. The materials from top to bottom are the outside, torso tissue,
bone, lung, and heart: (a) the original data after each material have been isolated from the
multilabeled volume; (b) the downsampled materials after performing binary morphology on
each material; (c) the final, tightened materials which become the inputindicator functions.

119

undesirable effect, a smaller tightening radius can be used, at the cost of less smoothing of the

overall surface. However, due to the numerics of the levelset framework in which the tightening

algorithm is implemented, subvoxel tightening is not possible. Instead, the material volume can

be upsampled to a higher resolution grid, over which a smaller tightening radius can then be

applied. For the torso results presented in this chapter, the heart material resides over a higher

resolution grid then the other materials, and was tightened withr = 0.6 (where the units ofr are

given in the units of the courser grid).

The output of the algorithm is a grayscale volume that stores the signed distance to a tightened

material surface, where positive values indicate material. We reconstruct continuous, differ-

entiablefi from the tightened volumes of each material usingseparable convolution, which

convolves a 1D continuous kernel with grid points along each separate axis of a volume (see

Section 2.4). For the results presented in this chapter, we use an interpolating43 Catmull-Rom

spline as the continuous kernel. The reconstructed implicit functions are then input to the system

as the set of indicator functionsF .

6.6.2 Distributing Particles on Junctions

The proposed system builds from the particle system framework from Chapter 5 for placing

points along each material junction. This framework uses asizing fieldthat informs particles of

how far they should be from their neighbors to meet LFS sampling requirements.A sizing field

volume for a multimaterial dataset is generated by computing the LFS of each IO function (i.e.,

thef̃i). At each grid point in the sizing field volume the minimum LFS for the set evaluated at the

(a) (b) (c)

Figure 6.18. When materials have thin regions,tighteningcan remove a large amount of material
to obtain the required minimum radius of curvature. In (a), an isosurface of the binary heart
volume is shown for a thin region of the material. After tightening withr = 1 (b), a large portion
of the heart wall is eroded. In these situations it can be useful to tighten the material at a higher
resolution (c) with a smaller tightening radius (r = 0.6 in this image).

120

grid point location is stored. Along sharp features, however, the LFS will go to zero, causing an

infinite sampling requirement. Because we are explicit sampling these sharp features, the strict

LFS requirements near 0-cells and 1-cells are violated by placing a lower bound on the sizing

field. This lower bound is determined by the tightening radiusr (see the previous section) that

drives the tightening algorithm when smoothing the material volumes. This is (from analytical

results in 2D, and empirically in 3D) a good estimate of the size of the ball within which the angle

constraint (from Section 6.4.3) holds. For surfaces in 3D, the preprocessing (tightening) does not

guarantee a lower bound on the principle curvatures in hyperbolic regions, which could lead to

problems in obtaining sampling densities that ensure the angle-constraint near 0- and 1-cells. In

practice, this appears to be very rare, and we have not observed this problem in the results shown

in this chapter, despite the complexity of the datasets.

Using an ordered sampling scheme for distributing sets of particle systems, the system first

samples each 0-cell with a single particle, which remains fixed in place. Next, the system samples

1-cells with particle systems that interact with these 0-cell particles. Similarly, the 1-cell particles

are allowed to converge to a steady state and are then fixed in place. Finally, particles are

distributed on the various 2-cells that interact with 0- and 1-cell particles.

6.6.3 Meshing the Surface

We use Tetgen1 to generate a tetrahedralization of the convex hull of the set of particles.

Each tetrahedral element is labeled according to the material in which its circumscribing sphere

center lies. The watertight, nonmanifold mesh of the material interfaces is the subset of faces

that are bounded by tetrahedra of different material types. Faces that lie on the convex hull are

labeled as having a second bounding tetrahedra of the outside material type. This nonmanifold

mesh can then be used to generate volume filling elements that conform to the LFS of the

boundary (see Section 6.7). Manifold meshes of each individual material can also be extracted in

a similar fashion, with the shared boundaries of surface meshes having consistent triangulations

by construction.

We have experimented with other Delaunay-based surface reconstruction algorithms, such

as TightCocone [44], that are designed to infer topology from an organized set of points with-

out knowledge of the underlying surface/solid. Our experiments showed these methods can

sometimes fail, and thus we advocate the use of a simpler labeling algorithm, such as the one

described in this paper, that includes information about the underlying multimaterial volume

1tetgen.berlios.de

121

which gaurantees conformal, watertight surfaces. In Figure 6.19 we present an example of a poor

triangluation from TIGHT COCONE that is correctly meshed in Figure 6.20 using the proposed

labeling algorithm.

6.6.4 Implementation

This particle system implementation is an extension of the version found in Section 3.6.

Changes to the basic particle system implementation are inbold, and free parameters introduced

in this chapter are presented in Tables 6.6.4 and 6.6.4, where we also present the free parameters

from Chapter 3 that were used in the multimaterial implementation. Note that almost all of these

Figure 6.19.A poor triangulation from TIGHT COCONE of the torso tissue material.

122

parameters use the same values as previously discussed implementations.

Prior to distributing the particles, the segmented, multilabel volumes under go significant pre-

processing to produce smooth surfaces that are designed specifically for the needs of a particular

application. First, each material is isolated from the original volume and smoothed using binary

morphology operations and any other necessary segmentation enhancements. Next, appropriate

resolutions are selected for each material, and the materials undergo tightening to generate smooth

representations — interpolating Catmull-Rom spline kernels (discussed in Section 2.4 are then

used to reconstruct continuous represents of the tightened materials for the remainder of the

pipeline. The tightening is followed by a generation of sizing fields for each IO functional

representation of the materials, described in Section 5.3.2, withǫ = 0.5, δ = 0.4, andhmin
0 = ǫr

where r is the tightening radius. Then, marching cubes meshes are generated for each IO

function, the vertices of which are used to initialize the particle systems. Finally, all the possible

combinations of materials are computed and initialized with a marching cubes mesh for one

of the junction materials by projecting the vertices onto the junction for 10 iterations. Any

particle system with zero particles on the junction after the initial projections is considered to

be nonexistent in the data and removed from the set. The remaining systems are distributed using

the following steps:

1. For each quad-junction, cull all but one particle for each surface point location.

2. For each remaining junction, starting with the triple-junctions followed by the double-

junctions:

(a) Add all (n + 1)-junctions and (n + 2)-junctions, if they exist, to the particle sys-

tem’s neighborhood, wheren is the number of materials at this particle system’s

junction.

(b) For each particle:

i. ComputeEi, and computevi with Equation 3.4,where the interparticle dis-

tances are scaled by theαij given in Equation 5.5, using the minimumh(xi)

value over all of the materials’ sizing fields.

ii. Computevnew
i = λivi.

iii. Compute the new particle positionxnew
i by solving Equation 3.11using the pro-

jections operators defined in Section 6.4.2with vnew
i , followed by a reprojection

to the surface by solving Equation 3.12.

123

iv. Compute the new energy value,Enew
i , at the new particle locationxnew

i , as well

as the new implicit function value,F new
i .

v. If Enew
i ≥ Ei or |xi − xnew

i | > s or F new
i > ǫT , andλi > λmin, decreaseλi by a

factor of 10 and go back to Step 2(b)ii. Ifλi ≤ λmin, do not move the particle and

skip to the next particle in the list.

vi. If Enew
i < Ei, updatexi = xnew

i . Increaseλi by a factor of 10 if this is the first

time through Step 2b.

(c) Decide whether the system is at a steady state. There are numerous metrics to deter-

mine steady state, and we have chosen to use the difference of the system energy (the

sum of the energy at all the particles) from one iteration to the next. When the system

energy difference is less than a small fraction of the total energy (we use 0.15% for the

results presented in this dissertation, although a range of values would produce similar

results), we deduce that particles have reached a steady state. Otherwise, repeat Step

2b. For poor initializations, we have found it can be useful to skip to Step 2d every 50

iterations instead of waiting for the system to reach a steady state.

(d) Check whether the configuration of particles is desirable. We compare each particle’s

energy against an ideal energy,Eideal, which is defined in Section 3.5.1 with a value

of n = 2 for triple-junctions, and n = 6 for double-junctions. We biasEi with

a random value on the interval[0, 1] to eliminate mass splitting or dying, then split

particles withEi < 0.35Eideal, and delete particles withEi > 1.75Eideal for double-

junctions. Or, for triple-junctions, split particles with Ei < 0.25Eideal, and delete

particles with Ei > 2.5Eideal.

(e) If the energy of the particles is acceptable, stop iterating.

(f) Write out the particle positions for input to a meshing algorithm.

6.7 Results
We present results from several real-world datasets generated from MRI scans. The dimen-

sions of each dataset are given in Table 6.7, along with the number of materials and sample

points. We also provide theǫ andδ values used to smooth the sizing fields, and note that these

values were constant over all of the data sets. The torso and brain datasets were sampled on a

P4 3.2GHz CPU with 2GB of memory in approximately12 hours and3 hours, respectively. The

124

Table 6.2. Table of free parameters.

Parameter Value Description Comments

ǫr 10−7 added to interparticle distances to
avoid infinite energy values

system is insensitive to values
near machine precision

σ 1.0 effective particle radius constant for all results in this dis-
sertation

λ0 1.0 initial stepsize value system is insensitive to this value

λmin 10−14 minimum stepsize value system is insensitive to this value
as long as it is sufficiently small

ǫF 10−4 −−10−5 surface threshold values of10−4 were used for 4-
junctions, otherwise, values10−5

were used

5 – 50 number of initial projections of a
particle

system is insensitive to this value
as long as particles get to within
ǫF of the surface, however, more
iterations were used for increas-
ing numbers of interacting mate-
rials

0.15% system energy difference from
previous iteration that indicates a
steady state

value must be small enough such
that the particle distribution con-
verges to an even packing

50 number of iterations when system
automatically checks for a desir-
able configuration (Step 2d)

value must be large enough such
that local particle neighbors can
be established

0.35 percentage ofEideal that indicates
a particle should be split

values with approximately20% of
this value produce visually simil-
iar results with different conver-
gence times

125

Table 6.3. Table of free parameters,cont.

Parameter Value Description Comments

1.75 percentage ofEideal that indicates
a particle should be deleted

values with approximately20% of
this value produce visually simil-
iar results with different conver-
gence times

5 number of iterations when parti-
cle neighbor lists are updated

values< 10 maintain stability in
the system

r user-defined tightening radius value should be chosen based
on application specific needs

hmin
0 ǫr minimum sizing field value other than hyperbolic regions,

this is the minimum feature size
after tightening, which can be
lowered to reduce the incidence
of mistriangulations at the ex-
pense of more (and smaller) tri-
angles

10 number of initial particle pro-
jections

must be large enough to ensure
that the initial set of particles
get to withinǫF of the junction
surface

Table 6.4. The dimensions and number of materials of each dataset, theepsilon andδ values
used to smooth the sizing fields, and the number of particles used to sample the material junctions.

Dataset Source Volume ǫ, # Particles
(# Materials) Dimensions δ

torso (5) MRI 260x121x169 0.5, 0.4 394k
frog (5) MRI 260x245x150 0.5, 0.4 186k

low-res frog (5) MRI 160x151x94 0.5, 0.4 31k
brain (3) MRI 149x188x148 0.5, 0.4 161k

two spheres (3) synthetic 128x128x128 0.5, 0.4 1214

126

Figure 6.20. Multimaterial surfaces of a torso extracted from an MRI scan, with closeups of
meshes generated using dynamic particle systems.

127

Figure 6.21. Meshes of the white matter and cerebral spinal fluid (CSF) of a brain dataset
generated from an MRI scan.

frog, low-res frog, and spheres datasets were sampled on a laptop with a Celeron 1.4GHz CPU

and 1GB of memory in approximately 5 hours, 1 hour, and 4 minutes, respectively.

A driving application for this work is the simulation of cardiac defibrillation in children. The

goal is to generate a pipeline that will acquire a MRI scan of a child, generate patient-specific ge-

ometry from the scanned data, and to then determine an ideal placement for a cardiac defibrillator

through FEM simulation. The torso dataset shown in Figure 6.20 was generated from a segmented

MRI volume in this study, and consists of five materials: the torso tissue, bone, lung, heart, and air.

Although other materials exist in the original MRI scan, decisions on which to include in the final

simulation must be made to keep the number of elements manageable. For example, including

the thin layers of fluid that exist between different organs would induce excessive numbers of

elements as the feature size of this material layer is very small. Both the brain and frog datasets

shown in Figures 6.21 and 6.22 were also generated from MRI scans that had been segmented

128

into multilabel volumes. The low-resolution frog in Figure 6.23 was downsampled from the

segmented frog dataset in Figure 6.22 and then processed using morphology to eliminate small

features. The synthetic two-sphere example in Figure 6.24 was generated over a grid from the

difference of two analytically represented spheres.

For many FEM simulations used in biomedical computing, thecondition number,i.e., , the

value that describes how numerically well-behaved a simulation will be, is directly related to

the most poorly-shaped element in a tessellation. A metric that is commonly used to quantify

the quality of surface meshes for FEM is the ratio of the inscribed circle to the circumscribing

circle of a triangle,2rin/rcirc. A ratio of one indicates an equilateral triangle, and a ratio of zero

indicates a triangle that has collapsed down to an edge. In Table 6.7 we present statics for the

tessellations generated with the proposed method, including the ratio of the most poorly shaped

triangle for each mesh. These statistics indicate that not only are the bulk of the triangles nearly

regular, but also that the worst shaped triangle is of consistently high-quality. This latter result

is important for eliminating the time-consuming, and common, chore of hand tweaking mesh

elements to make them suitable for simulations.

The results from the proposed system are compared against a grid-based multimaterial mesh-

Table 6.5. Statistics about each mesh and their quality.
Material Number of Min/Avg

Triangles Radius Ratio
torso tissue 673k 0.39/0.94
torso bone 460k 0.31/0.94
torso lung 215k 0.32/0.93
torso heart 140k 0.38/0.93
frog tissue 367k 0.30/0.94
frog bone 197k 0.37/0.94
frog guts 46k 0.30/0.94
frog brain 8k 0.52/0.94
low-res frog tissue 202k 0.39/0.94
low-res frog bone 114k 0.39/0.94
low-res frog guts 25k 0.49/0.94
low-res frog brain 5k 0.52/0.93
brain white matter 255k 0.39/0.94
brain csf 92k 0.42/0.94
spheres top 1544 0.51/0.92
spheres bottom 1506 0.52/0.92

129

Figure 6.22.Meshes of the frog dataset generated from an MRI scan.

130

Figure 6.23. Screen shots from a point-based physics simulation. In the top row, all of the
materials were assigned the same material properties, while in the bottom row, the bones and
internal organs were assigned stiffer properties.

Figure 6.24. A synthetic example of two intersecting spheres, illustrating the consistency of the
meshes along the shared boundary.

131

ing scheme using the VTK software2. Common to these approaches is a pipeline that first

extracts a nonmanifold mesh from a discrete, multilabel volume, followed by a smoothing step

to eliminate voxelization artifacts, and finally a decimation of the mesh to decrease the number

of triangles [12, 46]. Our implementation uses thevtkDiscreteMarchingCubesclass to extract a

mesh of the interfaces, thevtkWindowedSincPolyDataFilterto smooth the voxelization artifacts,

and thevtkQuadricDecimationto reduce the number of triangles. We generated meshes using this

pipeline of the two-sphere and frog examples with approximately the same number of triangles

as the analogous particle system-based examples. The minimum and average radius ratios for the

spheres are 0.014 and 0.79, respectively, and for the frog 0.0 and 0.79, respectively. Not only

is the quality of these meshes significantly lower than for our particle system-based meshes, but

the size of the triangles does not adapt to the underlying geometry. Adaptive triangulations are

important for efficiently capturing the geometry of an object with as few elements as possible.

We present a visual comparison of these results in Figure 6.25.

The particle-based method is also well-suited for generating volumetric samples of multima-

terial datasets. We have extended the particle system framework for packing spheres inside of

sampled multimaterial interfaces. The spheres are distributed using the same sizing field that

guides the surface samples, which is smoothed away from the surface such that larger values are

on the inside of materials. The spheres are distributed as an additional step at the end of the

ordered distribution process. These volume samples can be used to generate tetrahedral meshes

that conform to the material interfaces and respect the LFS of the boundaries (see Chapter 7), as

well as for point-based physics simulations. In these simulations, research has shown that both

physical and geometric complexity are highly correlated [2], and that the stability and accuracy

of the simulation is directly related to the ability of the surface and volume samples to capture the

LFS of the material boundaries.

To test our results, we have implemented a point-based physics algorithm that simulates elastic

materials [97] , extending the algorithm to handle multimaterial objects by assigning different

physical properties to volume samples of different material types. Surface meshes generated

from the particles sampling the multimaterial interfaces are used to include collision detection

between materials of different types [75], as well as for rendering the simulation results. In

Figure 6.23 we present screenshots from a simulation of the frog dropping onto a flat surface. In

Figure 6.23 (top row) all volume samples were assigned the same material type, while in Figure

6.23 (bottom row), volume samples in the bones and internal organs were assigned stiffer material

2vtk.org

132

Figure 6.25.Comparisons of multimaterial meshes generated using a grid-based approach (top)
and our particle system-based approach (bottom). The left column is the two-sphere example,
and the right column is a closeup from the frog example.

133

properties than the surrounding frog tissue. By assigning different properties to each material in

the frog, more complex, and realistic simulations can be achieved, including stiffness within the

head and body due to the rigid bone structure. This example illustrates not only the importance of

modeling multiple materials of objects for increasingly realistic simulations, but also the potential

for automatically generating complex digital models from scanned, real-world objects.

6.8 Discussion
The high-quality results of the proposed method come at the cost of long computation times.

Most of that time is spent in preprocessing the multilabel data and distributing the sets of particles.

The number of materials in the dataset also adds to the overall computation time as themax

function must evaluate everyfi that exists in the set. However, the quality of the meshes from our

particle-based scheme is so high that we can avoid the usually time-consuming step of meticulous

hand-editing of mesh vertices to ensure well-shaped elements.

CHAPTER 7

EXTENSIONS AND FUTURE WORK

During the course of this dissertation work we experimented with numerous extensions and

applications of the particle system framework. In this section we will present some preliminary

results of a few of these ideas, and provide some future directions for research.

The low-energy hexagonal packings of the particle systems’ distributions are mirrored in

the natural world, such as those found in many simple crystalline structures. There are also

low-energy states in crystals that form quadrilateral patterns, and we were intrigued with the idea

of finding adaptivity metrics that would cause the particles to settle into quadrilateral packings.

In nature, quad-packings often occur when different materials interact with each other. Thus, we

modified the particle system framework to accommodate particles of different types by differen-

tiating between the adaptivity metric for like-particle interactions and that for unlike-particles.

Specifically, theαij in Equation 3.14 is multiplied by
√

2 for interactions of like-particles, while

remaining unchanged for interactions between unlike-particles. In Figure 7.1 a quad-packing of

particles is shown that was generated using this scheme.

A system with different classifications of particles is sensitive to a uniform heterogeneity

of the particle types. We found that the initialization of the system such that the particles are

relatively uniformly mixed helped to keep regions of like-particles from forming, which would

otherwise create mostly hexagonal packings of points. We are interested in looking into effective

techniques for initializing the particles, as well as for maintaining uniformly heterogeneous

distributions throughout the convergence process. Well-distributed sets of quad-packings could

be used to create quad-meshes through a Delaunay triangulation and mesh refinement scheme

that removes all the edges associated with one of the particle types.

The particle system framework is naturally extendible to any dimension. As such, we have

experimented with representing particles as volumetric spheres, and packing the spherical par-

ticles into a volume. The natural low-energy state of the system occurs when each sphere has

approximately 12 neighbors, forming a regular dodecahedron shape [58]. Thus, the particle

system framework is modified to drive the system towards this neighborhood density by changing

135

Figure 7.1. A particle system that generates quad-packings of points.

the value ofn in the ideal energy measurenEideal from 6 to 12, and also eliminating the surface

constraint (i.e., the projection of a particle’s motion vector).

Specifically, we are interested in generating volumetric, boundary conforming meshes that

are well-suited for simulations. Using the volumetric particle system, spheres are packed inside

of a volume after the boundary of the volume is sampled with a surface particle system. The

spherical particles interact with the frozen surface samples (which are also represented as spheres)

and distributed inside of the sampled boundary — Figure 7.2 shows the surface samples for the

heart material from Chapter 6, along with the spherical particles packed inside. For well-shaped

tetrahedral elements, the volumetric sampling should be related to the LFS near the surface [4].

Inside of the volume, however, larger tetrahedral elements are often desired for efficient simula-

tions. Thus, the sizing field used in Chapters 5 and 6 is smoothly increased away from the surface

using the gradient limiting algorithm (see Section 5.3.2), and drives the sampling density of the

spherical particles.

136

Figure 7.2. Surface samples of the heart material, along with the spherical particles packed
within.

For generating tetrahedral meshes, we have experimented with Tetgen1. First, a boundary

(surface) mesh is created (see Chapters 5 and 6), which is input to Tetgen along with the set of

volumetric particles. The output is a constrained Delaunay tetrahedralization. In Figure 7.3, a

tetrahedralization is shown of the sample points from Figure 7.2. Figure 7.4 shows a tetrahedral-

ization of the spiny dendrite dataset from Chapter 5, while Figure 7.5 presents tetrahedralizations

of the frog and two-sphere examples from Chapter 6.

Although well-distributed points generate well-shaped triangles inℜ2, this does not extend to

tetrahedral elements inℜ3 [141]. The problem arises when four points are nearly coplanar and

tessellated as asliver tetrahedron — these slivers can have nearly equal length edges (which for

triangles indicates a well-shaped element) , but are very flat. The flatness of these elements gives

them poor numerical characteristics in simulations. Slivers are problem for many volumetric

meshing algorithms [4], and especially for 3D Delaunay methods [49]. Thus, a significant amount

of research focuses on algorithms for refining tetrahedralizations to eliminate slivers, such as

sliver exudation[30] andlattice refinement[81]. The meshes created from the volumetric particle

system also contain a small number of these poorly-shaped elements. However, the regularity

of the majority of the tetrahedra is encouraging. We are interested in pursuing strategies for

1tetgen.berlios.de

137

Figure 7.3. A progressive cut-away of a tetrahedralization of the heart samples shown in Figure
7.2.

138

Figure 7.4. A cut-away of a tetrahedralization of the dendrite dataset from Figure 5.11.

Figure 7.5.Tetrahedralizations of the interface and volume particle samples, shown with a cutting
plane.

139

removing slivers, such as point insertion or grid refinement.

Similar in spirit to the field of artificial intelligence, the particles are, at their essence, a

collection of agents governed by a few simple rules that, when interacting, produce complicated

distributions. When these systems are applied to the surface sampling problem, the result is a

well-distributed set of point samples over arbitrarily complex surfaces. Changing the rules that

direct how particles interact with each other creates adaptive distributions that meet a specific

sampling constraint, whether that constraint is for ensuring geometrically accurate meshes, or for

parameterizing a set of shapes [28]. This latter example illustrates a new approach for sampling

ensemblesof shapes using dynamic particle systems for studying and computing the statistics

of a set of surfaces. In this work, a a set of particles sample each shape, interacting with not

only neighboring particles on the surface, but alsocorrespondingparticles across the entire set

of surfaces. These complex interactions result in sets of point samples that balance an even

distribution of points across any one surface with a similar parameterization of each surface in

the set.

The flexibility of dynamic particle systems comes at the cost of long computation times

compared to other sampling schemes, such as grid-based approaches. The system requires many

iterations to converge, and each particle update can be long if the distribution is highly adaptive

or if the particle-particle interactions are complex. Parallelization of the system is not straightfor-

ward due to the nonlocal propagation of the local particle behaviors,i.e., each particle movement

effects a neighborhood of other particles’ movements. Multigrid methods [147] are an effective

numerical scheme for solving these types of global optimization problems, and may be extendible

to dynamic particle systems. Also, the GPU has been used to simulate systems of noninteracting

particles, and may be applicable for simulating interacting particles as well.

This dissertation provides an empirical analysis of the behavior of dynamic particle systems,

and we believe that a rigorous, theoretical analysis is possible for characterizing the system’s

general behaviors. However, even without a theoretical description, we have demonstrated that in

practice, dynamic particle systems are an effective mechanism for approaching numerous, current

research problems. As further study into the behavior of this dynamic system occurs, we expect

its applicability to extend broadly.

APPENDIX A

This appendix provides a brief outline of the software used in Chapters 5 and 6 to generate

meshes from particles. Included are the algorithms and sources of code or executables for each

step of the pipelines.

Chapter 5
• Downsampling and padding volumes:The teem1 software provided by Gordon Kindl-

mann.

• Binary morphology for eliminating small features: Personal implementation of the op-

erationserode,dilate,open, andclose, as defined by Gonzalez and Woods [54].

• Greyscale morphology for volume smoothing:Implementation by Ross Whitaker of the

tighteningalgorithm of Williams and Rossignac [160].

• Medial axis: Implementation by Ross Whitaker of an unpublished algorithm based on

footpoints(see Section 5.3.1).

• Initial sizing field (LFS): Personal implementation of an adaptive octree for quering dis-

tances to closests points.

• Smoothing of sizing field: Personal implementation of thegradient limitingalgorthim of

Persson [113].

• Initialization of particle system: Personal implementation of themarching cubesalgo-

rithm of Lorensen and Cline [90].

• Particle system: Personal implementation of the system described throughout this disser-

tation.

1teem.sourceforge.net

141

• Meshing particles: Executable provided by Tamal Dey2 based on the algorithm of Dey

and Goswami [44].

Chapter 6
• Downsampling and padding volumes:The teem3 software provided by Gordon Kindl-

mann.

• Binary morphology for eliminating small features: Personal implementation of the op-

erationserode,dilate,open, andclose, as defined by Gonzalez and Woods [54].

• Filing voids after morphology: Personal implementation of the voting algorithm described

in Section 6.6.1.

• Greyscale morphology for volume smoothing:Implementation by Ross Whitaker of the

tighteningalgorithm of Williams and Rossignac [160].

• Medial axis: Implementation by Ross Whitaker of an unpublished algorithm based on

footpoints(see Section 5.3.1).

• Initial sizing field (LFS): Personal implementation of an adaptive octree for quering dis-

tances to closests points.

• Smoothing of sizing field: Personal implementation of thegradient limitingalgorthim of

Persson [113].

• Initialization of particle system: Personal implementation of themarching cubesalgo-

rithm of Lorensen and Cline [90].

• Particle system: Personal implementation of the system described throughout this disser-

tation.

• Tetrahedralization of particles: TheTetgen4 software provided by Hang Si.

2www.cse.ohio-state.edu/ tamaldey/cocone.html

3teem.sourceforge.net

4tetgen.berlios.de

142

• Extraction of surface mesh(es):Personal implementation of the labeling algorithm de-

scribed in Section 6.4.3.

REFERENCES

[1] Open-source environment for interactive finite element modeling of optimal icd electrode
placement. InFIMH (2007), F. B. Sachse and G. Seemann, Eds., vol. 4466 ofLecture
Notes in Computer Science, Springer, pp. 373–382.

[2] A DAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. Adaptively sampled particle
fluids. ACM Transactions on Graphics 26, 3 (July 2007), 48.

[3] A LEXA , M., BEHR, J., COHEN-OR, D., FLEISHMAN , S., LEVIN , D., AND SILVA , C. T.
Computing and rendering point set surfaces.IEEE Transactions on Visualization and
Computer Graphics 9, 1 (January 2003), 3–15.

[4] A LLIEZ , P., COHEN-STEINER, D., YVINEC, M., AND DESBRUN, M. Variational
tetrahedral meshing.ACM Transactions On Graphics 24, 3 (2005), 617–625.

[5] A MENTA , N., AND BERN, M. Surface reconstruction by voronoi filtering.Discrete and
Computational Geometry 22(1999), 481–504.

[6] A MENTA , N., BERN, M., AND EPPSTEIN, D. The crust and the beta-skeleton: Combi-
natorial curve reconstruction.Graphic Models and Image Processing 60, 2 (Mar. 1998),
125–135.

[7] A MENTA , N., BERN, M., AND KAMVYSSELIS, M. A new voronoi-based surface
reconstruction algorithm. InProceedings of SIGGRAPH(July 1998), pp. 415–421.

[8] A MENTA , N., CHOI, S., DEY, T., AND LEEKHA, N. A simple algorithm for homeo-
morphic surface reconstruction. InACM Symposium on Computational Geometry(2000),
pp. 213–222.

[9] A MENTA , N., CHOI, S., AND KOLLURI , R. K. The power crust. InSMA ’01: Proceed-
ings of the Sixth ACM Symposium on Solid Modeling and Applications(New York, NY,
USA, 2001), ACM Press, pp. 249–266.

[10] ANDERSON, A. E. Computational Modeling of Hip Joint Mechanics. PhD thesis,
Department of Bioengineering, University of Utah, 2007.

[11] BABUSKA , I., AND AZIZ , A. K. On the angle condition in the finite element method.
SIAM Journal on Numerical Analysis 13, 2 (1976), 214–226.

[12] BERTRAM, M., REIS, G., VAN LENGEN, R. H., KÖHN, S., AND HAGEN, H. Non-
manifold mesh extraction from time-varying segmented volumes used for modeling a
human heart. InProceedings of EuroVis(June 2005), pp. 199–206.

[13] BISCHOFF, S., AND KOBBELT, L. Extracting Consistent and Manifold Interfaces from

144

Multi-valued Volume Data Sets. 2006.

[14] BISHOP, R. L., AND GOLDBERG, S. I. Tensor Analysis on Manifolds. Dover, 1980.

[15] BLINN , J. F. A generalization of algebraic surface drawing.ACM Trans. Graph. 1, 3
(1982), 235–256.

[16] BLOOMENTHAL , J. Introduction to implicit surfaces. 1997.

[17] BLOOMENTHAL , J., AND FERGUSON, K. Polygonization of non-manifold implicit
surfaces. InSIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques(New York, NY, USA, 1995), ACM, pp. 309–316.

[18] BOBENKO, A. I., AND SCHRÖDER, P. Discrete willmore flow. InSGP ’05: Proceedings
of the Third Eurographics Symposium on Geometry Processing(Aire-la-Ville, Switzerland,
Switzerland, 2005), Eurographics Association, p. 101.

[19] BOISSONNAT, J.-D.,AND OUDOT, S. Provably good sampling and meshing of surfaces.
Graphical Models 67, 5 (Sept. 2005), 405–451.

[20] BONNELL, K. S., DUCHAINEAU , M. A., SCHIKORE, D. R., HAMANN , B., AND JOY,
K. I. Material interface reconstruction.IEEE Transactions on Visualization and Computer
Graphics 9, 4 (Oct./Dec. 2003), 500–511.

[21] BRASHER, M., AND HAIMES, R. Rendering planar cuts through quadratic and cubic finite
elements. InVIS ’04: Proceedings of the Conference on Visualization ’04(Washington,
DC, USA, 2004), IEEE Computer Society, pp. 409–416.

[22] BREEN, D. E., AND WHITAKER , R. T. A level-set approach for the metamorphosis of
solid models. IEEE Transactions on Visualization and Computer Graphics 7, 2 (2001),
173–192.

[23] BUNYK , P., KAUFMAN , A., AND SILVA , C. T. Simple, fast, and robust ray casting of
irregular grids. InProceedings of Dagstuhl ’97(2000), pp. 30–36.

[24] BUTT, M., AND MARAGOS, P. Optimum design of chamfer distance transforms. 1477–
1484.

[25] CABRAL , B., CAM , N., AND FORAN, J. Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware. InVVS ’94: Proceedings of the 1994
Symposium on Volume Visualization(New York, NY, USA, 1994), ACM Press, pp. 91–98.

[26] CALLAHAN , S. P., IKITS, M., COMBA , J. L., AND SILVA , C. T. Hardware-assisted
visibility ordering for unstructured volume rendering.IEEE Transactions on Visualization
and Computer Graphics 11, 3 (2005), 285–295.

[27] CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL , T. J., FRIGHT, W. R.,
MCCALLUM , B. C.,AND EVANS, T. R. Reconstruction and representation of 3D objects
with radial basis functions. InProceedings of ACM SIGGRAPH(Aug. 2001), pp. 67–76.

[28] CATES, J., MEYER, M., FLETCHER, T., AND WHITAKER , R. Entropy-based particle
systems for shape correspondence. InProceedings of the Workshop on Mathematical

145

Foundations of Computational Anatomy, MICCAI(2006), pp. 90–99.

[29] CHEN, W., REN, L., ZWICKER, M., AND PFISTER, H. Hardware-accelerated adaptive
EWA volume splatting. InProceedings of IEEE Visualization 2004(Oct. 2004).

[30] CHENG, S.-W., DEY, T. K., EDELSBRUNNER, H., FACELLO, M. A., AND TENG, S.-H.
Silver exudation.J. ACM 47, 5 (2000), 883–904.

[31] CHENG, S.-W., DEY, T. K., RAMOS, E. A., AND RAY, T. Sampling and meshing a
surface with guaranteed topology and geometry. InSCG ’04: Proceedings of the Twentieth
Annual Symposium on Computational Geometry(New York, NY, USA, 2004), ACM Press,
pp. 280–289.

[32] CHEW, L. P. Guaranteed-quality delaunay meshing in 3d (short version). InSCG ’97:
Proceedings of the Thirteenth Annual Symposium on Computational Geometry(New York,
NY, USA, 1997), ACM Press, pp. 391–393.

[33] COPPOLA, G., SHERWIN, S. J.,AND PEIRO, J. Nonlinear particle tracking for high-order
elements.J. Comput. Phys. 172, 1 (2001), 356–386.

[34] COTIN, S., DURIEZ, C., LENOIR, J., NEUMANN , P.,AND DAWSON, S. New approaches
to catheter navigation for interventional radiology simulation. pp. 534–542.

[35] CROSSNO, P.,AND ANGEL, E. Isosurface extraction using particle systems. InProceed-
ings of the 8th Conference on Visualization ’97(1997), IEEE Computer Society Press,
pp. 495–498.

[36] CSÉBFALVI , B., MROZ, L., HAUSER, H., KÖNIG, A., AND GRÖLLER, E. Fast visual-
ization of object contours by non-photorealistic volume rendering.Comput. Graph. Forum
20, 3 (2001).

[37] CUTLER, B., DORSEY, J.,AND MCM ILLAN , L. Simplification and improvement of tetra-
hedral models for simulation. InSGP ’04: Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing(New York, NY, USA, 2004), ACM,
pp. 93–102.

[38] DANIELSSON, P. Euclidean distance mapping. 227–248.

[39] DE FIGUEIREDO, L. H., DE M IRANDA GOMES, J., TERZOPOULOS, D., AND VELHO,
L. Physically-based methods for polygonization of implicit surfaces. InProceedings of
the Conference on Graphics Interface ’92(1992), pp. 250–257.

[40] DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H. Implicit fairing of
irregular meshes using diffusion and curvature flow. InSIGGRAPH ’99: Proceedings of
the 26th Annual Conference on Computer Graphics and Interactive techniques(New York,
NY, USA, 1999), ACM Press/Addison-Wesley Publishing Co., pp. 317–324.

[41] DESBRUN, M., TSINGOS, N., AND CANI , M.-P. Adaptive sampling of implicit surfaces
for interactive modeling and animation. InImplicit Surfaces’95(April 1995), pp. 171–185.
Published under the name Marie-Paule Gascuel.

146

[42] DEVILLE , M., MUND, E., AND FISCHER, P. High Order Methods for Incompressible
Fluid Flow. Cambridge University Press, 2002.

[43] DEY, T. K., AND GIESEN, J. Detecting undersampling in surface reconstruction. In
SCG ’01: Proceedings of the Seventeenth Annual Symposium on Computational Geometry
(New York, NY, USA, 2001), ACM Press, pp. 257–263.

[44] DEY, T. K., AND GOSWAMI, S. Tight Cocone: A water-tight surface reconstructor.
Journal of Computing and Information Science in Engineering 3, 4 (December 2003),
302–307.

[45] DEY, T. K., AND LEVINE, J. A. Delaunay meshing of isosurfaces. InSMI ’07:
Proceedings of the IEEE International Conference on Shape Modeling and Applications
2007(Washington, DC, USA, 2007), IEEE Computer Society, pp. 241–250.

[46] DILLARD , S., BINGERT, J., AND THOMA , D. Construction of simplified boundary
surfaces from serial-sectioned metal micrographs.IEEE Transactions on Visualization
and Computer Graphics 13, 6 (Nov./Dec. 2007), 1528–1535.

[47] DOI, A., AND KOIDE, A. An efficient method of triangulating equivalued surfaces
by using tetrahedral cells.IEICE Transactions Communication, Elec. Info. Syst E74, 1
(January 1991), 214–224.

[48] DREBIN, R. A., CARPENTER, L., AND HANRAHAN , P. Volume rendering. InSIG-
GRAPH ’88: Proceedings of the 15th Annual Conference on Computer Graphics and
Interactive Techniques(New York, NY, USA, 1988), ACM Press, pp. 65–74.

[49] EDELSBRUNNER, H., LI , X.-Y., M ILLER , G., STATHOPOULOS, A., TALMOR , D.,
TENG, S.-H., ÜNGÖR, A., AND WALKINGTON , N. Smoothing and cleaning up slivers.
In STOC ’00: Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing(New York, NY, USA, 2000), ACM, pp. 273–277.

[50] EDELSBRUNNER, H., AND M ÜCKE, E. P. Three-dimensional alpha shapes.ACM
Transactions on Graphics 13, 1 (1994), 43–72.

[51] ELLISMAN , M. National Center for Microscopy Image Research. University of California
San Diego.

[52] GALIN , E., ALLEGRE, R., AND AKKOUCHE, S. A fast particle system framework
for interactive implicit modeling. InSMI ’06: Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2006 (SMI’06)(Washington, DC, USA,
2006), IEEE Computer Society, p. 32.

[53] GLASSNER, A. S. Space subdivision for fast ray tracing.IEEE Computer Graphics and
Applications 4, 10 (1984), 15–22.

[54] GONZALEZ, R. C., AND WOODS, R. E. Digital Image Processing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[55] GOOCH, B., AND GOOCH, A. Non-photorealistic Rendering. A. K. Peters, Ltd, 2001.

147

[56] GOURAUD, H. Computer display of curved surfaces. PhD thesis, 1971.

[57] GROSS, M., AND PFISTER, H., Eds.Point-Based Graphics. Elsevier / Morgan Kaufman,
2007.

[58] HALES, T. C. Cannonballs and honeycombs.Notices of the American Mathematical
Society 47, 4 (April 2000), 440–449.

[59] HARDIN , D. P., AND SAFF, E. B. Discretizing manifolds via minimum energy points.
Notices of the American Mathematical Society 51, 10 (November 2004), 1186–1194.

[60] HART, J. C. Ray tracing implicit surfaces. InSIGGRAPH 93 Modeling, Visualizing, and
Animating Implicit Surfaces course notes. 1993, pp. 13–1 to 13–15.

[61] HART, J. C. Using the CW-complex to represent the topological structure of implicit
surfaces and solids. InProceedings of Implicit Surfaces(1999), pp. 107–112.

[62] HART, J. C., BACHTA , E., JAROSZ, W., AND FLEURY, T. Using particles to sample
and control more complex implicit surfaces. InProceedings of the Shape Modeling
International 2002 (SMI’02)(2002), IEEE Computer Society, p. 129.

[63] HARTMANN , E. A marching method for the triangulation of surfaces.The Visual
Computer 14, 3 (1998), 95–108.

[64] HARTMANN , E. On the curvature of curves and surfaces defined by normalforms.
Comput. Aided Geom. Des. 16, 5 (1999), 355–376.

[65] HECKBERT, P. Fast surface particle repulsion. InSIGGRAPH ’97, New Frontiers in
Modeling and Texturing Course(August 1997), ACM Press, pp. 95–114.

[66] HEGE, H.-C., SEEBASS, M., STALLING , D., AND ZÖCKLER, M. A generalized
marching cubes algorithm based on non-binary classifications. ZIB Preprint SC-97-05,
1997.

[67] HUGHES, T. J. R. The Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1987.

[68] HUGHES, T. J. R., COTTRELL, J. A., AND AZILEVS , Y. Isogeometric analysis: Cad,
finite elements, nurbs, exact geometry and mesh refinement. Tech. Rep. 04-50, ICES,
University of Texas at Austin, October 2004.

[69] JOHNSON, C., AND HANSEN, C. Visualization Handbook. Academic Press, Inc.,
Orlando, FL, USA, 2004.

[70] JONES, M. W., BAERENTZEN, J. A., AND SRAMEK , M. 3d distance fields: A survey of
techniques and applications.IEEE Transactions on Visualization and Computer Graphics
12, 4 (2006), 581–599.

[71] JU, T., LOSASSO, F., SCHAEFER, S.,AND WARREN, J. Dual contouring of hermite data.
ACM Transactions on Graphics 21, 3 (July 2002), 339–346.

[72] KARKANIS , T., AND STEWART, A. J. Curvature-dependent triangulation of implicit

148

surfaces.IEEE Computer Graphics and Applications 22, 2 (March 2001), 60–69.

[73] KARNIADAKIS , G., AND II, R. M. K. Parallel Scientific Computing in C++ and MPI.
Cambridge, New York, 2003.

[74] KARNIADAKIS , G. E., AND SHERWIN, S. J. Spectral/hp element methods for CFD.
Oxford University Press, New York, NY, USA, 1999.

[75] KEISER, R., MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND GROSS, M.
Contact handling for deformable point-based objects. InProceedings of the 9th Interna-
tional Workshop “Vision, Modeling, and Visualization”(Nov 2004), pp. 339–346.

[76] K INDLMANN , G. Visualization and Analysis of Diffusion Tensor Fields. PhD thesis,
School of Computing, University of Utah, 2004.

[77] K INDLMANN , G., AND DURKIN , J. W. Semi-automatic generation of transfer functions
for direct volume rendering. InVVS ’98: Proceedings of the 1998 IEEE symposium on
Volume visualization(New York, NY, USA, 1998), ACM Press, pp. 79–86.

[78] K INDLMANN , G., WHITAKER , R., TASDIZEN, T., AND M ÖLLER, T. Curvature-based
transfer functions for direct volume rendering: Methods and applications. InProceedings
of IEEE Visualization 2003(October 2003), pp. 513–520.

[79] KNISS, J., HUNT, W., POTTER, K., AND SEN, P. Istar: A raster representation for
scalable image and volume data.IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1424–1431.

[80] KRIM , H., AND YEZZI, A., Eds. Statistics and Analysis of Shapes. Birkhauser Boston,
2006.

[81] LABELLE , F. Sliver removal by lattice refinement. InSCG ’06: Proceedings of the
Twenty-second Annual Symposium on Computational Geometry(New York, NY, USA,
2006), ACM, pp. 347–356.

[82] LACROUTE, P.,AND LEVOY, M. Fast volume rendering using a shear-warp factorization
of the viewing transformation. InSIGGRAPH ’94: Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques(New York, NY, USA,
1994), ACM Press, pp. 451–458.

[83] LAU , T. S.,AND LO, S. H. Finite element mesh generation over analytic curved surfaces.
Computers and Structures 59, 2 (1996), 301–310.

[84] LEE, A., MORETON, H., AND HOPPE, H. Displaced subdivision surfaces. InSIG-
GRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques(New York, NY, USA, 2000), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 85–94.

[85] LEFOHN, A., KNISS, J., HANSEN, C., AND WHITAKER , R. Interactive deformation and
visualization of level set surfaces using graphics hardware. InIEEE Visualization 2003
(October 2003), pp. 75–82.

149

[86] LEVET, F., GRANIER, X., AND SCHLICK , C. Fast sampling of implicit surfaces by
particle systems. InSMI ’06: Proceedings of the IEEE International Conference on Shape
Modeling and Applications 2006 (SMI’06)(Washington, DC, USA, 2006), IEEE Computer
Society, p. 39.

[87] LEVOY, M. Display of surfaces from volume data.IEEE Comput. Graph. Appl. 8, 3
(1988), 29–37.

[88] L I , G.-S., TRICOCHE, X., WEISKOPF, D., AND HANSEN, C. Flow charts: Visualization
of vector fields on arbitrar y surfaces. submitted to IEEE Transactions on Visualization
and Computer Graphics.

[89] L ICHTENBELT, B., CRANE, R., AND NAQVI , S. Introduction to volume rendering.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[90] LORENSEN, W. E., AND CLINE , H. E. Marching Cubes: A high resolution 3d surface
construction algorithm. InProceedings of ACM SIGGRAPH(July 1987), pp. 163–169.

[91] MAX , N. L. Optical models for direct volume rendering.IEEE Trans. Vis. Comput.
Graph. 1, 2 (1995), 99–108.

[92] MERRIMAN, B., BENCE, J. K.,AND OSHER, S. J. Motion of multiple junctions: A level
set approach.J. Comput. Phys. 112, 2 (1994), 334–363.

[93] MEYER, M., GEORGEL, P., AND WHITAKER , R. Robust particle systems for curvature
dependent sampling of implicit surfaces. InProceedings of the International Conference
on Shape Modeling and Applications (SMI)(June 2005), pp. 124–133.

[94] MEYER, M., K IRBY, R. M., AND WHITAKER , R. Topology, accuracy, and quality
of isosurface meshes using dynamic particles.IEEE Transactions on Visualization and
Computer Graphics 12, 5 (September/October 2007), 1704–1711.

[95] MEYER, M., NELSON, B., KIRBY, R. M., AND WHITAKER , R. Particle systems
for efficient and accurate high-order finite element visualization.IEEE Transactions on
Visualization and Computer Graphics 13, 5 (2007), 1015–1026.

[96] MEYER, M., WHITAKER , R., KIRBY, R. M., LEDERGERBER, C., AND PFISTER, H.
Particle-based sampling and meshing of multimaterial volumes.submitted.

[97] M ILLER , M., KEISER, R., NEALEN, A., PAULY, M., GROSS, M., AND ALEXA , M.
Point based animation of elastic, plastic and melting objects. InSCA ’04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation(New York,
NY, USA, 2004), ACM Press, pp. 141–151.

[98] M ITCHELL , D. P. Robust ray intersection with interval arithmetic. InProceedings on
Graphics interface ’90(Toronto, Ont., Canada, Canada, 1990), Canadian Information
Processing Society, pp. 68–74.

[99] M ÖLLER, T., MUELLER, K., KURZION, Y., MACHIRAJU, R., AND YAGEL, R. Design
of accurate and smooth filters for function and derivative reconstruction. InVVS ’98:
Proceedings of the 1998 IEEE Symposium on Volume Visualization(New York, NY, USA,

150

1998), ACM Press, pp. 143–151.

[100] MORSE, B. S., YOO, T. S., CHEN, D. T., RHEINGANS, P.,AND SUBRAMANIAN , K. R.
Interpolating implicit surfaces from scattered surface data using compactly supported
radial basis functions. InSMI ’01: Proceedings of the International Conference on Shape
Modeling & Applications(Washington, DC, USA, 2001), IEEE Computer Society, p. 89.

[101] MULLIKIN , J. C. The vector distance transform in two and three dimensions.CVGIP:
Graph. Models Image Process. 54, 6 (1992), 526–535.

[102] MUSETH, K., BREEN, D. E., WHITAKER , R. T., AND BARR, A. H. Level set surface
editing operators. InSIGGRAPH ’02: Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques(New York, NY, USA, 2002), ACM Press,
pp. 330–338.

[103] NELSON, B., AND K IRBY, R. M. Ray-tracing polymorphic multi-domain spectral/hp
elements for isosurface rendering.IEEE Transactions on Visualization and Computer
Graphics 12, 1 (2006), 114–125.

[104] NEMITZ , O., RUMPF, M., TASDIZEN, T., AND WHITAKER , R. Anisotropic curvature
motion for structure enhancing smoothing of 3D MR angiography data.Journal of
Mathematical Imaging and Vision(December 2006). published online.

[105] NIELSON, G., AND FRANKE, R. Computing the separating surface for segmented data.
In IEEE Visualization(Nov. 1997), pp. 229–236.

[106] NIELSON, G. M., HUANG, A., AND SYLVESTER, S. Approximating normals for
marching cubes applied to locally supported isosurfaces. InIEEE Visualization(2002),
pp. 459–466.

[107] NISHIMURA , H., HIRAI , M., KAWAI , T., KAWATA , T., SHIRAKAWA , I., AND OMURA ,
K. Object modelling by distribution function and a method of image generation. In
Transactions of the Institute of Electronics and Communication Engineers of Japan(1985),
vol. J68-D, pp. 718–725.

[108] OHTAKE , Y., BELYAEV, A., ALEXA , M., TURK, G., AND SEIDEL, H.-P. Multi-level
partition of unity implicits.ACM Transactions On Graphics 22, 3 (July 2003), 463–470.

[109] OKA , M., NAKATA , S.,AND TANAKA , S. Preprocessing for accelerating convergence of
repulsive-particle systems for sampling implicit surfaces. InSMI ’07: Proceedings of the
IEEE International Conference on Shape Modeling and Applications 2007(Washington,
DC, USA, 2007), IEEE Computer Society, pp. 232–240.

[110] OUDOT, S., RINEAU , L., AND YVINEC, M. Meshing volumes bounded by smooth
surfaces. InProc. 14th International Meshing Roundtable(2005), pp. 203–219.

[111] PARKER, S., PARKER, M., L IVNAT , Y., SLOAN , P.-P., HANSEN, C., AND SHIRLEY, P.
Interactive ray tracing for volume visualization.IEEE Transactions on Visualization and
Computer Graphics 5, 3 (1999), 238–250.

[112] PASCUCCI, V. Isosurface computation made simple: Hardware acceleration, adaptive

151

refinement and tetrahedral stripping. InProceedings of IEEE TVCG Symposium on
Visualization(2004), pp. 293–300.

[113] PERSSON, P.-O. Mesh size functions for implicit geometries and pde-based gradient
limiting. Eng. with Comput. 22, 2 (2006), 95–109.

[114] PFISTER, H., HARDENBERGH, J., KNITTEL , J., LAUER, H., AND SEILER, L. The
volumepro real-time ray-casting system. InSIGGRAPH ’99: Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques(New York, NY,
USA, 1999), ACM Press/Addison-Wesley Publishing Co., pp. 251–260.

[115] PFISTER, H., ZWICKER, M., VAN BAAR , J.,AND GROSS, M. Surfels: surface elements
as rendering primitives. InSIGGRAPH ’00: Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques(2000), pp. 335–342.

[116] PHONG, B. T. Illumination for computer-generated images.PhD thesis, 1973.

[117] POHL, K., BOUIX , S., NAKAMURA , M., ROHLFING, T., MCCARLEY, R., KIKINIS , R.,
GRIMSON, W., SHENTON, M., AND WELLS, W. A hierarchical algorithm for mr brain
image parcellation.IEEE Transactions on Medical Imaging 26, 9 (2007), 1201–1212.

[118] PONS, J.-P., ŚEGONNE, F., BOISSONNAT, J.-D., RINEAU , L., YVINEC, M., AND

KERIVEN, R. High-quality consistent meshing of multi-label datasets. InInformation
Processing in Medical Imaging(2007), pp. 198–210.

[119] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1992.

[120] REITINGER, B., BORNIK, A., AND BEICHEL, R. Constructing smooth non-manifold
meshes of multi-labeled volumetric datasets. InWSCG (Full Papers)(2005), pp. 227–234.

[121] RHEINGANS, P., AND EBERT, D. Volume illustration: Nonphotorealistic rendering of
volume models.IEEE Transactions on Visualization and Computer Graphics 7, 3 (2001),
253–264.

[122] ROETTGER, S., KRAUS, M., AND ERTL, T. Hardware-accelerated volume and isosurface
rendering based on cell-projection. InProceedings of IEEE Visualization(Oct. 2000),
pp. 109–116.

[123] RÖSCH, A., RUHL , M., AND SAUPE, D. Interactive visualization of implicit surfaces
with singularities.Eurographics Computer Graphics Forum 16, 5 (1996), 295–306.

[124] ROSENFELD, A., AND PFALTZ , J. L. Sequential operations in digital picture processing.
J. ACM 13, 4 (1966), 471–494.

[125] RUBIN , S. M., AND WHITTED, T. A 3-dimensional representation for fast rendering
of complex scenes. InSIGGRAPH ’80: Proceedings of the 7th Annual Conference on
Computer Graphics and Interactive Techniques(New York, NY, USA, 1980), ACM Press,
pp. 110–116.

152

[126] RUPPERT, J. A new and simple algorithm for quality 2-dimensional mesh generation. In
SODA ’93: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (Philadelphia, PA, USA, 1993), Society for Industrial and Applied Mathematics,
pp. 83–92.

[127] SAFF, E. B., AND KUIJLAARS, A. B. J. Distributing many points on a sphere.Mathe-
matical Intelligencer 19, 1 (1997), 5–11.

[128] SCHREINER, J., SCHEIDEGGER, C., FLEISHMAN , S., AND SILVA , C. Direct
(re)meshing for efficient surface processing.Computer Graphics Forum (Proceedings of
Eurographics 2006) 25, 3 (2006), 527–536.

[129] SCHREINER, J., SCHEIDEGGER, C., AND SILVA , C. High-quality extraction of isosur-
faces from regular and irregular grids.IEEE Transactions on Visualization and Computer
Graphics 12, 5 (Sept./Oct. 2006), 1205–1212.

[130] SCHROEDER, W. J., BERTEL, F., MALATERRE, M., THOMPSON, D., PÉBAY, P. P.,
O’BARA , R. M., AND TENDULKAR , S. Framework for visualizing higher-order basis
functions. InIEEE Visualization(2005).

[131] SETHIAN , J. A. Curvature flow and entropy conditions applied to grid generation.J.
Comput. Phys. 115, 2 (1994), 440–454.

[132] SETHIAN , J. A. Fast marching methods.SIAM Review 41, 2 (1999), 199–235.

[133] SETHIAN , J. A. Level Set Methods and Fast Marching Methods. Cambridge Monograph
on Applied and Computational Mathematics. Cambridge University Press, 1999.

[134] SHERWIN, S. J.,AND PEIRO, J. Mesh generation in curvilinear domains using high-
order elements.International Journal of Numerical Methods in Engineering 53, 1 (2002),
207–223.

[135] SHEWCHUK, J. R. What is a good linear finite element? interpolation, conditioning,
anisotropy, and quality measures. Tech. Rep. Manuscript, 2002.

[136] SHIRLEY, P., AND TUCHMAN , A. A polygonal approximation to direct scalar volume
rendering.Proceedings of San Diego Workshop on Volume Visualization 24, 5 (Nov. 1990),
63–70.

[137] SIDDIQI , K., BOUIX , S., TANNENBAUM , A., AND ZUCKER, S. W. The hamilton-jacobi
skeleton. InICCV ’99: Proceedings of the International Conference on Computer Vision-
Volume 2(Washington, DC, USA, 1999), IEEE Computer Society, p. 828.

[138] SZABÓ, B., AND BABUŠKA, I. Finite Element Analysis. John Wiley & Sons, New York,
1991.

[139] SZELISKI , R., AND TONNESEN, D. Surface modeling with oriented particle systems.
In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive
Techniques(1992), ACM Press, pp. 185–194.

[140] SZELISKI , R., TONNESEN, D., AND TERZOPOULOS, D. Modeling surfaces of arbitrary

153

topology with dynamic particles. InIEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’93)(New York, NY, June 1993), pp. 140–152.

[141] TALMOR , D. Well-Spaced Points for Numerical Methods. PhD thesis, Carnegie Mellon
University, Pittsburgh, August 1997. CMU CS Tech Report CMU-CS-97-164.

[142] TASDIZEN, T., AWATE, S. P., WHITAKER , R. T., AND FOSTER, N. L. Mri tissue classi-
fication with neighborhood statistics: A nonparametric, entropy-minimizing approach. In
MICCAI (2) (2005), pp. 517–525.

[143] TASDIZEN, T., WHITAKER , R., BURCHARD, P., AND OSHER, S. Geometric surface
smoothing via anisotropic diffusion of normals. InVIS ’02: Proceedings of the Conference
on Visualization ’02(Washington, DC, USA, 2002), IEEE Computer Society.

[144] TAYLOR , C. A., AND DRANEY, M. T. Experimental and computational methods in
cardiovascular fluid mechanics.Annual Review of Fluid Mechanics 36(2004), 197–231.

[145] THOMPSON, D. C., AND PEBAY, P. P. Visualizing higher order finite elements: Final
report. Tech. Rep. SAND2005-6999, Sandia National Laboratories, 2005.

[146] TOUMA , C., AND GOTSMAN, C. Triangle mesh compression. InGraphics Interface
(1998), pp. 26–34.

[147] TROTTENBERG, U., OOSTERLEE, C. W., AND SCHÜLLER, A. Multigrid. Academic
Press Inc., San Diego, CA, 2001. With contributions by A. Brandt, P. Oswald and K.
Stüben.

[148] TURK, G. Re-tiling polygonal surfaces. InProceedings of the 19th annual conference on
Computer graphics and interactive techniques(1992), ACM Press, pp. 55–64.

[149] TURK, G., AND O’BRIEN, J. F. Variational implicit surfaces. Tech. Rep. GIT-GVU-99-
15, Georgia Institute of Technology, 1999.

[150] TURK, G., AND O’BRIEN, J. F. Modelling with implicit surfaces that interpolate.ACM
Trans. Graph. 21, 4 (2002), 855–873.

[151] UITERT, R. V., JOHNSON, C., AND ZHUKOV, L. Influence of head tissue conductivity
in forward and inverse magnetoencephalographic simulations using realistic head models.
IEEE Transactions on Biomedical Engineering 51, 12 (2004), 2129–2137.

[152] VAN WIJK, J. J. Image based flow visualization for curved surfaces. InVIS ’03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03)(Washington, DC, USA, 2003),
IEEE Computer Society, p. 17.

[153] VELHO, L. Simple and efficient polygonization of implicit surfaces.J. Graph. Tools 1, 2
(1996), 5–24.

[154] WEILER, M., KRAUS, M., MERZ, M., AND ERTL, T. Hardware-based ray casting for
tetrahedral meshes. InProceedings of IEEE Visualization 2003(Oct. 2003), pp. 333–340.

[155] WESTOVER, L. A. Splatting: A parallel, feed-forward volume rendering algorithm. PhD
thesis, Chapel Hill, NC, USA, 1991.

154

[156] WHITAKER , R. T. Reducing aliasing artifacts in iso-surfaces of binary volumes. InVVS
’00: Proceedings of the 2000 IEEE Symposium on Volume Visualization(New York, NY,
USA, 2000), ACM Press, pp. 23–32.

[157] WHITTED, T. An improved illumination model for shaded display.Commun. ACM 23, 6
(1980), 343–349.

[158] WILEY, D. F., CHILDS, H., HAMANN , B., AND JOY, K. I. Ray casting curved-quadratic
elements. InData Visualization 2004(2004), Eurographics/IEEE TCVG, ACM Siggraph,
pp. 201–209.

[159] WILEY, D. F., CHILDS, H. R., GREGORSKI, B. F., HAMANN , B., AND JOY, K. I.
Contouring curved quadratic elements. InData Visualization 2003, Proceedings of VisSym
2003(2003).

[160] WILLIAMS , J., AND ROSSIGNAC, J. Tightening: Curvature-limiting morphological
simplification. InProceedings of the Symposium on Solid and Physical Modeling(2005),
pp. 107–112.

[161] WILLIAMS , P. L. Visibility-ordering meshed polyhedra.ACM Transactions on Graphics
11, 2 (Apr. 1992), 103–126.

[162] WITKIN , A. P., AND HECKBERT, P. S. Using particles to sample and control implicit
surfaces. InProceedings of SIGGRAPH(July 1994), pp. 269–277.

[163] WOOD, Z. J., SCHRODER, P., BREEN, D., AND DESBRUN, M. Semi-regular mesh
extraction from volumes. InVIS ’00: Proceedings of the Conference on Visualization ’00
(Los Alamitos, CA, USA, 2000), IEEE Computer Society Press, pp. 275–282.

[164] WYVILL , B., GUY, A., AND GALIN , E. Extending the csg tree - warping, blending and
boolean operations in an implicit surface modeling system.Comput. Graph. Forum 18, 2
(1999), 149–158.

[165] WYVILL , G., MCPHEETERS, C., AND WYVILL , B. Data structure for soft objects.The
Visual Computer, 2 (1986), 227–234.

[166] ZHANG, Y., HUGHES, T. J. R.,AND BAJAJ, C. Automatic 3d mesh generation for a
domain with multiple materials. InIMR (2007), pp. 367–386.

[167] ZHANG, Y., XU, G., AND BAJAJ, C. Quality meshing of implicit solvation models of
biomolecular structures.Comput. Aided Geom. Des. 23, 6 (2006), 510–530.

[168] ZHAO, H.-K., CHAN , T., MERRIMAN, B., AND OSHER, S. A variational level set ap-
proach to multiphase motion.Journal of Computational Physics 127, 1 (1996), 179–195.

[169] ZONENSCHEIN, R., GOMES, J., VELHO, L., AND DE FIGUEIREDO, L. H. Controlling
texture mapping onto implicit surfaces with particle systems. InProceedings of Implicit
Surfaces ’98(June 1998), pp. 131–138.

[170] ZWICKER, M., PFISTER, H., VAN BAAR , J., AND GROSS, M. Surface splatting. In
SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and

155

Interactive Techniques(New York, NY, USA, 2001), ACM Press, pp. 371–378.

[171] ZWICKER, M., PFISTER, H., VAN BAAR , J., AND GROSS, M. Ewa splatting. IEEE
Transactions on Visualization and Computer Graphics 8, 3 (2002), 223–238.

[172] ZWICKER, M., ROSNEN, J., BOTSCH, M., DACHSBACHER, C., AND PAULY, M. Per-
spective accurate splatting. InGI ’04: Proceedings of the 2004 Conference on Graphics
Interface(2004), pp. 247–254.

