
Querying Structured Information Sources on the Web

Sergio Mergen
Universidade Federal do Rio

Grande do Sul
Departamento de Informatica

Porto Alegre - RS - Brasil
mergen@inf.ufrgs.br

Juliana Freire
University of Utah

School of Computing
Salt Lake City - UT - U.S.
juliana@cs.utah.edu

Carlos Alberto heuser
Universidade Federal do Rio

Grande do Sul
Departamento de Informatica

Porto Alegre - RS - Brasil
heuser@inf.ufrgs.br

ABSTRACT
To provide access to distributed and heterogeneous sources,
information integration systems have traditionally relied on
the availability of a mediated schema, along with mappings
between this schema and the schema of the information
sources. Queries posed to the mediated schema are then
reformulated in terms of the source schemas. On the Web,
where sources are plentiful, autonomous and extremely volatile,
a system based on the existence of a pre-defined mediated
schema and mapping information presents several drawbacks.
Notably, the cost of keeping the mappings up to date as new
sources are found or existing sources change can be pro-
hibitively high. In this paper, we propose a new querying
mechanism for integrating a large number of sources that
requires neither a mediated schema nor source mappings.
In the absence of a mediated schema, the user formulates
queries based on what she expects to find. These queries are
rewritten using a best-effort approach: the rewriting compo-
nent compares a user query against the source schemas and
produces a set of rewritings based on the matches found. We
demonstrate the feasibility of this approach by providing a
query interface for integrating hundreds of (real) structured
Web information sources. We also discuss experimental re-
sults which indicate that our query rewriting algorithm can
be effective.

1. INTRODUCTION
From data produced by Web services and published from

online databases to Web tables, the volume of structured
data on the Web has grown considerably in the recent past.
In contrast to unstructured (textual) documents, the pres-
ence of structure enables rich queries to be posed against
these data. This creates new opportunities for mining, cor-
relating and integrating information from an unprecedented
number of disparate sources.

Existing approaches to data integration, however, are not
effective for integrating, on-the-fly, the very large number
of information sources that are available on the Web. Con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2008, November 24-26, 2008, Linz, Austria
Copyright 2008 ACM 978-1-60558-349-5/08/0011 ...$5.00.

sider, for example, information mediators [9]. These systems
define a global (integrated) schema, and a query over the
global schema is translated into queries over the information
sources based on pre-defined mappings between the global
and source (local) schemas [20, 10, 14, 8]. Clearly, it would
not be feasible to manually create and maintain such a sys-
tem for thousands (or even hundreds) of sources. Because
new sources are constantly added and existing sources modi-
fied (both content and structure) keeping track of sources as
they change and updating mapping information and global
schema can be prohibitively expensive. Besides, it is un-
likely that a single integrated schema would be suitable for
all users and information needs. Although solutions have
been proposed to amortize the cost of integration, either
through mass collaboration [15] or by using a peer to peer
architecture [18], there is still a need to create and maintain
mappings for data to be included in the integration system.

Contributions and Outline. In this paper we propose a
new approach to integration designed to deal with the scale
and dynamic nature of structured Web sources. Our goal is
to provide users the ability to query and integrate a large
number of structured sources available on the Web on the fly.
There are two key distinguishing features in our approach:

• It does not require a pre-defined global schema: Instead
of posing queries over a global schema, a user formulates
queries based on her knowledge of the domain and on what
she expects to find. The queries can be refined as the user
explores and learns more about the information sources.

• It automatically derives mappings: Instead of requiring
mappings to be pre-defined, a user query is rewritten into
queries over the sources based on correspondences (auto-
matically) identified between attributes in the query and
attributes in sources.

Of course this approach cannot give guarantees of coverage
(i.e., that all answers are retrieved) or even that the returned
answers are ‘correct’. Nonetheless, this best-effort integra-
tion can be useful for exploratory searches, and to help users
better understand a domain and identify relevant sources as
a prelude to a more comprehensive (e.g., mediator-based)
integration effort. The use of a best-effort approach repre-
sents a shift in paradigm for rewriting strategies and requires
(1) new algorithms that are able to handle a large number
of sources and to derive acceptable answers; (2) new mecha-
nisms for ranking the answers; and (3) taking user feedback
into account. In this paper we focus on the first two tasks.

As a proof of concept, we built a system that supports
queries over hundreds of (real) structured Web information

Proceedings of iiWAS2008 RED 2008

470

Source Relations

(s1)
MV1(title, genre)
MV2(title, year)

(s2) MV3(title, award)
(s3) MV4(title, year, award)
(s4) MV5(title, genre, year)
(s5) BK1(title, publisher, year)

Figure 1: Source Tables

sources. We focused on data that is structured as relations
and whose schema (i.e., attribute names) and contents can
be extracted automatically. We describe this implementa-
tion and we also discuss preliminary experimental results
that indicate the effectiveness of our query rewriting algo-
rithm.

The remainder of this paper is organized as follows. In
Section 2, we present a concrete example that illustrates
the limitations of existing integration approaches that rely
on pre-defined mappings. We also give a brief overview of
our solution. Section 3 gives a detailed description of the
proposed rewriting mechanism. In Section 4, we present ex-
perimental evaluation using hundreds of (real) Web sources.
In Section 5, we discuss the related work. We conclude in
Section 6, where we outline directions for future work.

2. MOTIVATING EXAMPLE AND SOLUTION
OVERVIEW

In what follows, we present an example that illustrates the
limitations of mapping-based query rewriting strategies. Al-
though we restrict our discussion to global-as-view (GAV) [20]
and local-as-view (LAV) [10], the same issues arise for other
techniques, such as BAV [14] and GLAV [8].

Consider we have four data sources (s1, s2, s3, s4) contain-
ing information about movies and one source (s5) contain-
ing information about books, as described in Figure 1. Also,
data sources may contain more than one table.

In GAV, the tables of the global schema are defined in
terms of the tables of the source schemas, or in other words,
they are views over the source tables. Suppose that we ini-
tially have only the sources s1, s2 and s3 (see Figure 1). A
GAV view could be created over these relations combining
information about movies, their titles and year of release:

all movies(title, year) : −MV2(title, year)
all movies(title, year) : −MV4(title, year, award)

The benefits of this approach is that query rewriting is sim-
ple - the queries just need to be unfolded [20]. However,
adding new sources may require changes to the definition of
the global schema. If a new source about movies is added
(e.g., s4), the definition of all movies needs to be modified
to include the new source:

all movies(title, year) : −MV5(title, genre, year)

In contrast to GAV, in LAV the source tables are defined
in terms of the tables of the global schema — they are views
over the global schema. LAV favors the extensibility of the
system: adding a new source requires only the addition of a
rule to define the source, the global schema does not need to
be modified. On the other hand, query rewriting is not as

easy as in GAV, since it involves the process of discovering
which sources have relevant data to the query [10].

For both LAV and GAV, changes to the global schema
require changes to the mappings. In the example above, if
users are interested in obtaining information about awards
received by movies, or new sources are added that contain
information about awarded actors, the mapping rules must
be modified or added to include this information.

Creating mappings and maintaining them as sources evolve
and the global schema changes can be expensive and time
consuming. This effort is required and justified for appli-
cations that are mostly static, cater to well-defined infor-
mation needs, and integrate a relatively small number of
sources. However, for exploring and integrating information
sources on the Web, expecting the existence of a pre-defined
global schema is not practical. To define a global schema,
one first needs to know about which sources are available.
And on the Web, there are too many of them. Besides,
a single global schema is unlikely to be sufficient to fulfill
the information needs of all users. Even if it is possible to
model a very large global schema that contains constructs
for comprehensive set of concepts, defining a large number
of mappings can be prohibitively expensive. Furthermore,
Web sources are too volatile, which would require the map-
pings to be constantly updated.

Our Approach. We propose a search engine that allows
users to explore Web information, discover useful informa-
tion sources and their relationships. Instead of requiring a
global schema and mappings between this and the sources,
we use a best-effort approach to find answers to queries.

A screendump of our prototype (Structured Web Search
Engine - SWSE) is shown in Figure 2. Similar to a tradi-
tional search engine, such as Google and Yahoo!, we use a
Web crawler to locate structured information on the Web.
For this prototype, we collected Web pages that contain
HTML tables about movies (a more detailed description of
how the information was collected is given in Section 4).

Using the query interface, users can formulate structured
queries on the fly. As shown in the figure, the query "select

title, year, notes from movie" returns a list of rewrit-
ings that contain possible answers to the query. When the
user clicks on the result, our search engine accesses the ac-
tual Web Pages and extracts the desired information from
its HTML tables.1 She can then manipulate the results by,
for example, using the query expansion feature (illustrated
in Figure 2) to view all attributes of the original table. This
would help the user discover additional information that is
available and related to her query. Additionally, the drop
down list depicted in Figure 2 enables the user to refine the
query by switching any of the returned columns by any other
column that is available in the same table. Note that, since
the data is retrieved from the source, the result is always
fresh.2

The search engine maintains an index which contains meta-
data for the tables (e.g., the attribute names). This informa-
tion is used to derive the rewritings. The system can be set
to periodically crawl the Web to update the index as well as
to discover new information sources. The information will

1As we describe later, the name of the table movie is not
used in the rewriting, only the attribute names are consid-
ered.
2For efficiency, results could also be cached.

RED 2008 Proceedings of iiWAS2008

471

Figure 2: Query interface of the Structured Web Search Engine. Users pose SQL queries and the system
retrieves HTML tables that best match the queries.

Crawler Parser

Table

Metadata

Indexer

Web

page

Table

meta-

data

Query

Rewriter

Query

Engine

Query

Rewritings

Figure 3: High-level architecture of the Structured-
Web Search Engine

then be immediately available to the users.
The architecture of our search engine consists of five com-

ponents, shown in Figure 3. The Crawler is responsible for
finding relevant structured Web sources. Because structured
information is sparsely distributed on the Web, we use a fo-
cused crawler for this task [2, 3]. The Parser is responsible
for extracting tabular medatada (and records) from the re-
trieved Web pages. For our prototype, we implemented a
parser that automatically extracts Web tables and meta-
data associated with them, e.g., the attribute names and
values. The Indexer stores the extracted metadata into a
global repository. When a user poses a query to the query
engine, the Rewriter uses the information in the metadata
repository to derive rewritings for the user query. The Query
Engine then executes the rewritings and displays the results
to the user. In this paper, we focus on the Rewriter, which
is described in the following section.

3. DERIVING QUERY REWRITINGS
Before we discuss our approach to query rewriting, in what

follows we introduce the nomenclature, some background on
query rewriting techniques and the assumptions underlying
the query rewriter. Note that we assume that the structured
sources supported by SWSE can be represented in the rela-
tional model. In addition, users express requests in the form
of conjunctive queries.

Consider the conjunctive query Q1:

(Q1) q(t,g,d,a):- movie(t,g,d,y), award(t,a), y = 2005

where t = title, g = genre, d = director, y = year and a
= award. This query asks for movies released in 2005 that
received an award. We will use this query as the running
example for the remainder of the paper.

The subgoals in a query refer to tables (e.g., movie(t,g,d,y))
and the variables in a subgoal to the table attributes. For
the data sources, we use the terms source tables (or tables)
and source columns (or columns) to refer to the source rela-
tions and their attributes—in our prototype, HTML tables
and their columns.

In a query, variables that appear in multiple subgoals are
called shared variables (these correspond to join conditions);
and variables that appear in a selection condition are called
selection variables. In the query above, t is a shared variable
and y is a selection variable.

The query rewriting process consists of two steps. First,
the Matcher (Section 3.1) identifies matchings between vari-
ables mentioned in the query and the source columns in the
metadata repository. Then, the Combiner uses the match-
ing information to produce a set of rewritings (Section 3.2).

Background. The concepts of query containment and equiv-
alence enable us to compare a user query and its rewrit-

Proceedings of iiWAS2008 RED 2008

472

User Query Subgoals Source table

movie(t,g,d,y)

MV5(t, g, y)

MV2(t, y)

MV4(t, y,−)

BK1(t,−, y)

award(t, a)
MV3(t, a)

MV4(t,−, a)

(a) Table matches for query Q1

Variable Column Score
title (t) title 1.0
genre (g) genre 1.0
year (y) year 1.0
award (y) award 1.0
director (d) - -

(b) Column matches for Q1

Figure 4: Matching examples

ings [5]. We say that a query Q1 is contained in the Q2,
denoted by Q1 ⊆ Q2, if the answers to Q1 are a subset of
the answers to Q2 for any database instance. The query
Q1 is equivalent to Q2, denoted as Q1 ≡ Q2, if and only if
Q1 ⊆ Q2 and Q2 ⊆ Q1. In such cases, the answers of Q1 are
equal the answers of Q2.

Considering that the tables we are interested in reach-
ing are distributed over the Web and belong to autonomous
sites, our work falls into the Open World Assumption (OWA)
category, where the extension of each source is incomplete
with respect to the whole set of source [1]. Under this as-
sumption, a rewriting can never be equivalent, even if the
containment conditions stated above are satisfied. Thus,
there may be many possible ways to answer a user query,
each of them using a different set of sources and yielding
different answers as the result. We call each individual way
to answer a query a local rewriting. Under the OWA, the
goal is to find a maximally contained rewriting, that is, one
that returns the maximal set of answers from the sources [7].
For a maximally contained rewriting, it is necessary to per-
form a union over all computed local rewritings.

Even though our work fits into the open world environ-
ment, instead of building a maximally contained rewriting,
we present each local rewriting to the user. The reasons
behind this choice are threefold:

1. Having each local rewriting listed separately makes it
easier to relate the resulting tuples to their respective sources.
Knowing the location from where each tuple is retrieved can
help the users identify which tables are better sources of
information.

2. Since our approach relies on a best-effort matching
mechanism, it is not possible to ensure that all rewritings
will lead to relevant answers. By having the rewritings pre-
sented to the user individually, it is possible to associate
answers that the user understood as irrelevant to a specific
rewriting and ignore all answers that come from this rewrit-
ing.

3. Users can provide feedback on the individual rewrit-
ings. For example, a user can tell the system that the answer
for a specific column in a rewriting are incorrect. Based on
this information, the system could run the same rewriting,
but switching the incorrect column with the correct one.

3.1 Computing Table Matches
The Matcher is responsible for computing table matches,

i.e., a match between a user query subgoal and a source
table. Within a table match there is a finer grained level of
matching, which we term column match. A column match is
a match between a variable of the user query and a column
of the source table. Figure 4(a) shows table matches for the
subgoals of Q1. For example, the source table MV5(title,

genre, year) (Figure 1) is a possible table match for the
subgoal movie(title,genre,director, year).

The variables of a query can be either required or optional.
The difference is that a required variable always need to be
matched to a source column. We consider shared and selec-
tion variables as required—all other variables are optional.
Other alternatives are possible, for example, the user could
define which variables are optional and which are required.

Next we discuss some details about how the table matches
are computed. The process consists of two steps: the Col-
umn Matching and the Table Matching.

Column Matching. This step involves finding column
matches for every variable of the query: we compute the
similarity between each variable and a list of the repository
columns. A repository column is a column that appears
in the definition of at least one table (in our case: title,
genre, year, award and publisher).

The column match for a variable will be the one whose
similarity is greater. If more than one column has the high-
est score, we arbitrarily select one of them. If the incorrect
column is selected, the user can change the selection using
the answer refinement mechanism mentioned in Section 2.

The name similarity is computed using a normalized string
similarity technique that gives a high score for cases where
the strings have substrings in common, even if they appear
in different positions (i.e. ”movieTitle”and ”titleOfMovie”)3.

Figure 4(b) shows the column matches for query Q1. Note
that there is no column match for variable director. Since
this is not a required variable, the matching process can pro-
ceed.

Table Matching. In this step we use the column matches
for computing the similarity between the subgoals of a query
and the source tables. The similarity between a subgoal S
and a source table T is computed using Equation 1. Let |S|
be the number of variables of S and {w1, w2, ..., wn} be the
list of matching scores between S and T , for every variable
of S.

sim(S, T) =

∑n
j=1 wj

2
√∑n

j=1(wj)2 × |S|
(1)

The equation returns a normalized score between zero and
one. We do not use the length of the table (|T |) as part of
the normalization factor to prevent the size of the table from
affecting the score.

3.2 Combining Table Matches
In this section we describe an algorithm that generates

rewritings using the table matches computed by the Matcher.
3The code for the string similarity
computation can be downloaded from
http://www.cs.utah.edu/̃ juliana/downloads/Carla.java

RED 2008 Proceedings of iiWAS2008

473

The algorithm, named M-Bucket, works similarly to the
Bucket algorithm[13] and the MiniCon Algorithm[16], used
to generate rewritings from LAV mappings.

Generally speaking, the goal of the M-bucket algorithm
is to fill buckets with source tables and generate rewritings
combining one entry from each bucket. The steps of our
algorithm are described below:

1. For each subgoal S in the query, create a m-bucket B;

2. Add an entry in B for every source table from which tuples
of S can be possibly retrieved, i.e, the source tables that are
matched with S;

3. Rank the entries of each bucket using their table match
score;

4. Generate rewritings as conjunctive queries by combining
one entry from each m-bucket ;

5. Bind the selection variables predicates of the user query
to its respective variables of the rewritings.

Our algorithm differs from the previous ones in three no-
table ways:

• It does not rely on pre-defined mappings. Since there
is no mapping previously defined, the M-Bucket algorithm
needs to compute rewritings based on assumptions on how
the subgoals of the query and the source tables correspond
to each other.

• It does not have to check for containment. Contain-
ment check only makes sense when there is mapping infor-
mation. In our case, we not only lack this information, but
we expect that the rewritings may bring incorrect answers.

• It uses a ranking. As we rely on some inference mecha-
nism to compute the rewritings, and considering there can
be many different rewritings for the same query, we use a
ranking mechanism so the more relevant rewritings appear
first.

The entries of a bucket are ranked according to the sim-
ilarity score between the subgoal and the source tables, as
presented in Section 3.1. Other ranking criteria are possible,
including the number of records of the matched tables and
the relevance of the Web source (e.g., the pagerank) from
where the matched table was extracted.

If we populate the buckets with the tables matches pro-
vided by Figure 4(a), the M-Bucket Algorithm would gen-
erate eight rewritings for query Q1. Figure 5 shows these
rewritings.

Query: q(t,g,a) :- movie(t,g,y), award(t,a), y=2005

Rewriting 1: MV5(t,g, y), MV3(t,a), y=2005

Rewriting 2: MV5(t,g, y), MV4(t, , a), y=2005

Rewriting 3: MV2(t,y), MV3(t,a), y=2005

Rewriting 4: MV2(t, y), MV4(t, ,a), y=2005

Rewriting 5: MV4(t,y,), MV3(t,a), y=2005

Rewriting 6: MV4(t,y,), MV4(t, , a), y=2005

Rewriting 7: BK1(t, , y), MV3(t,a), y=2005

Rewriting 8: BK1(t, , y), MV4(t, , a), y=2005

Figure 5: Rewritings for the User Query Q1 Asking
for Awarded Movies

Note that rewritings 7 and 8 include information about
books instead of movies. These rewritings are derived be-
cause the source table BK1 contains columns title and year

which match the query variables. Although it is conceiv-
able that a user may want to integrate information about
books and movies (e.g., finding movies and books that have
the same title), in some cases, these rewritings are not de-
sirable. Tuning the rewriting component to better match
a user’s preference is a problem we plan to study in future
work.

3.2.1 Removing Duplicate Subgoals
There is a possibility that the M-Bucket algorithm gen-

erates rewritings with duplicate subgoals, that is, subgoals
that refer to the same source table T . In some cases, such
rewritings can be folded by removing the duplicate occur-
rences of T .

Query folding can be applied whenever the duplicate sub-
goals share variables, and these shared variables appear in
the same position in their respective subgoals (i.e., the du-
plicated tables are self-joined by the same column). In such
cases, the duplicate subgoals can be removed. In our running
example, rewriting 6 contain such duplicate subgoals. After
the folding, the body of rewriting 6 becomes MV4(t,y,a).

4. EXPERIMENTS
Below, we describe a preliminary experimental evaluation

we carried out to assess the quality of the derived rewritings.

The prototype. Our prototype is available to use at http:
//cumbuco.cs.utah.edu:8080/servlets-examples/servlet/

Mesa. The prototype currently indexes tables in the movie
domain extracted from wikipedia. The tables were collected
using the ACHE focused crawler [2].

ACHE was configured to retrieve pages that have an HTML
table whose header has at least 3 columns and where either
title, film or movie appear in the header. The purpose of
this condition was twofold: i) detect tables that are used for
data tabulation purposes instead of formatting purposes and
ii) discover relevant sources of data for the movie domain.

A Wikipedia page that brings a list of the 100 best Amer-
ican movies4 was used as the seed for the crawl. We stopped
crawling after 400 web pages were retrieved. From this col-
lection of pages, we extracted 993 HTML tables that satisfy
our condition. We manually checked a sample of 10% of the
collection and we verified that 98% of the extracted tables
are indeed related to movies.

Currently the prototype accepts select-project-join queries
in SQL. Wildcards and the LIKE operator are not imple-
mented. As a next step we intend to make the query inter-
face more friendly by providing a simpler query language.

User study. We have asked two students to formulate SQL
queries asking for information about the movie domain. We
then evaluated the precision of the top-k results for each
query, varying the size of k (1,5,10,20). Given a rewriting,
precision was measured based on the number of columns
that were correctly retrieved. For instance, if the query asks
for five columns, and the first rewriting brings four correctly
identified columns, precision in the top-1 is 80%. If the
second rewriting brings two correct columns, precision in

4The list was created by the American Film Institute http:
//en.wikipedia.org/wiki/100_Years...100_Movies

Proceedings of iiWAS2008 RED 2008

474

top-k
Query

1 2 3 4 5 6 7 8
1 100 100 100 100 75 75 66 66
5 100 100 100 90 75 75 66 53
10 100 100 95 75 75 70 66 43
20 100 100 85 62 75 60 66 38

Figure 6: Precision measured for top-k rewritings

the top-2 falls to 60% (not 40%, since we take into account
the previous rewritings).

Each user formulated four queries. The complete list of
queries is given below. As we can see, the queries vary in
the number of variables and subgoals.

Query 1: select t1.title,t2.year, t1.actors,t1.genre
from t1, t2 where t1.title=t2.title

Query 2: select title, year from movie
Query 3: select title, director, genre, year from movie
Query 4: select title,year, actors,genre from movies

where genre=’drama’
Query 5: select t1.title,t2.director, t1.genre,t1.year

from t1, t2 where t1.title=t2.title
Query 6: select name, genre, year, direction from movie
Query 7: select title, year, rate from t
Query 8: select name, movie, role from movies

Figure 6 shows the precision achieved for each query. Note
that for some queries, precision remains on 100% even when
k = 20. In the worst case, precision falls to 38% when k =
20. One of the reasons for this decrease is that the system
is reaching a small subset of the Web, and most of the in-
dexed tables cannot answer a specific information need. For
instance, no source table contains the column name, which
explains the lower precision in queries 6 and 8.

In the case of queries 3 and 4, we could get a better cover-
age by joining complementary source tables. However, our
current implementation only performs joins between differ-
ent source tables if the user query explicitly specify the join
in the query.

In some other cases, it would be possible to increase pre-
cision by using better matching techniques, such as the ones
that holistically find element correspondences[11]. For in-
stance, every source table provides either title, movie or
film for representing the title of a movie. If these correspon-
dences were available, the quality of the rewritings would be
improved, specially for query 8.

Precision could also be improved if additional informa-
tion were collected from the Web pages other than the ta-
bles. Our Table Parser module only extracts information
that appear inside HTML tables. For instance: in our col-
lection, there are no tables that contain both the name of
an artist and its role in different movies. However, we have
noticed that the column role usually appears in Web pages
of a particular artist. Thus, even though the name of the
artist is not directly represented in the table, it could be
found in the surroundings, or sometimes even in the URL
itself.

We have also tested the system against some queries of our
own, and the preliminary results showed promising. In par-
ticular, the ability to join data from different source tables
allowed us to discover some interesting information. For ex-
ample, by issuing the query select d.director from d,c

where d.director=c.cast, it was possible to discover that
Burt Reynolds (amongst others) has not only worked act-

ing, but also directing movies.

5. RELATED WORK
Current approaches to data integration rely on pre-defined

mappings between a global schema and the underlying in-
formation sources [20, 10, 14, 8]. This architecture, how-
ever, is not suitable for integration tasks on the Web, where
there is a very large number of information sources and these
sources are highly volatile. In an attempt to improve scal-
ability, recent approaches have been proposed to amortize
the cost of integration, such as for example, peer-to-peer
systems [18] and community-based information integration
systems [15]. In the former, users provide mappings between
peers, whereas in the latter, users collaborate in the creation
of mappings between the sources and the global schema. In
all of these approaches, mappings are used to support query
rewriting, i.e., the reformulation of a query posed against
the global schema into queries that conform to the local
schemas [4, 12].

We take a different approach, and instead of requiring
mappings to be defined, based on source metadata, we derive
mappings automatically in response to user queries. Similar
to the universal relation [19], queries are expressed in terms
of attributes the user is interested in, the system then deter-
mines how the relevant source relations and how they can
be composed to cover the query. Davulcu et al. [6] used
an extension of universal relation, the structured univer-
sal relation (SUR), as the interface to query dynamic Web
content from multiple sources (e.g., content published by
Web services and online databases). SUR was developed as
the infrastructure to support webbases that are designed for
well-defined domains (e.g., cars, jobs, houses) by experts in
those domains. They assume that an expert will define com-
patibility constraints among information sources, as well as
concept hierarchy which relates the different attributes of
the universal relation. Clearly, these assumptions do not
hold if queries must be supported over sources that can be
added on the fly.

6. DISCUSSION AND FUTURE WORK
In this paper we presented a new framework that sup-

ports ad-hoc queries over structured sources available on
the Web without requiring pre-defined schemas or mappings.
An important benefit from not having pre-defined mappings
is that the cost of maintenance is reduced: new sources can
be added to the system and queried without the overhead of
creating new mappings (or updating a global schema). On
the flip side, the framework cannot provide guarantees with
respect to recall and precision. Instead, it uses a best-effort
approach to match user queries against the information in
the sources.

This approach is not a substitute for the traditional inte-
gration approaches, which are needed for applications that
require precise answers. However, it provides the means
whereby users can more easily explore structured informa-
tion on the Web, learn about different sources, and how they
can be connected. These are important tasks and can help in
the construction of (more traditional) integration systems.

Many new challenges arise when one considers mapping-
free integration strategies. In this paper, we take a first
step in exploring this direction. Even though we have made
progress towards creating a usable querying system, there
are many open problems and ample room for improvements.

RED 2008 Proceedings of iiWAS2008

475

Our approach to determine connections among informa-
tion sources is very simple and based solely on the string
similarity between the names of subgoal variables and the
column names of sources (Section 3.1). This may lead to
false positives (in the case of homonyms) or false negatives
(in the case of synonyms). As a result, rewritings can be
derived that do not contain any answers or that contain an-
swers that do not make sense. Although users experienced
with search engines are already used to ignoring irrelevant
answers and refining queries, we believe that new mecha-
nisms are needed to better guide them to formulate queries
as well as adapt to their needs, for example, by taking into
account user feedback on the quality of the rewritings. Be-
sides leveraging user feedback to tune the query rewriting
process, we also intend to investigate more sophisticated
approaches to matching. For example, applying techniques
for schema matching [11, 17], we could use both the source
metadata and contents to determine the compatibility of
the sources and prune rewritings that involve incompatible
sources.

7. REFERENCES
[1] S. Abiteboul and O. M. Duschka. Complexity of

answering queries using materialized views. In ACM
Ssymposium on Principles of database systems, pages
254–263, 1998.

[2] L. Barbosa and J. Freire. An adaptive crawler for
locating hidden-web entry points. In WWW, pages
441–450, 2007.

[3] S. Chakrabarti, K. Punera, and M. Subramanyam.
Accelerated focused crawling through online relevance
feedback. In WWW, pages 148–159, 2002.

[4] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. D. Ullman, and
J. Widom. The TSIMMIS project: Integration of
heterogeneous information sources. In 16th Meeting of
the Information Processing Society of Japan, pages
7–18, Tokyo, Japan, 1994.

[5] C. Chekuri and A. Rajaraman. Conjunctive query
containment revisited. Theoretical Computer Science,
239(2):211–229, 2000.

[6] H. Davulcu, J. Freire, M. Kifer, and I. V.
Ramakrishnan. A layered architecture for querying
dynamic web content. In SIGMOD ’99: Proceedings of
the 1999 ACM SIGMOD international conference on
Management of data, pages 491–502, New York, NY,
USA, 1999. ACM Press.

[7] O. M. Duschka and M. R. Genesereth. Answering
recursive queries using views. In ACM Symposium on
Principles of database systems, pages 109–116, 1997.

[8] M. Friedman, A. Y. Levy, and T. D. Millstein.
Navigational plans for data integration. In
AAAI/IAAI, pages 67–73, 1999.

[9] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, and
J. Widom. The tsimmis approach to mediation: Data
models and languages. Journal of Intelligent
Information Systems, 8(2):117–132, 1997.

[10] A. Y. Halevy. Theory of answering queries using
views. SIGMOD Record (ACM Special Interest Group
on Management of Data), 29(4):40–47, 2000.

[11] B. He and K. C.-C. Chang. Statistical Schema

Matching across Web Query Interfaces. In ACM
SIGMOD, pages 217–228, 2003.

[12] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The
Information Manifold. In C. Knoblock and A. Levy,
editors, Information Gathering from Heterogeneous,
Distributed Environments, Stanford University,
Stanford, California, 1995.

[13] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In Proceedings of the Twenty-second
International Conference on Very Large Databases,
pages 251–262, 1996.

[14] P. McBrien and A. Poulovassilis. Data integration by
bi-directional schema transformation rules, 2003.

[15] R. McCann, A. Doan, V. Varadaran, A. Kramnik, and
C. Zhai. Building data integration systems: A mass
collaboration approach. In WebDB, pages 25–30, 2003.

[16] R. Pottinger and A. Y. Levy. A scalable algorithm for
answering queries using views. In VLDB ’00:
Proceedings of the 26th International Conference on
Very Large Data Bases, pages 484–495, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[17] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal:
The International Journal on Very Large Data Bases,
10(4):334–350, 2001.

[18] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy,
D. Suciu, N. Dalvi, X. L. Dong, Y. Kadiyska,
G. Miklau, and P. Mork. The piazza peer data
management project. SIGMOD Record, 32(3):47–52,
2003.

[19] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, Volume II. Computer
Science Press, 1989.

[20] J. D. Ullman. Information integration using logical
views. Theoretical Computer Science, 239(2):189–210,
2000.

Proceedings of iiWAS2008 RED 2008

476

