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Learning probability distributions of the shape of anatomic structures requires fitting shape repre-
sentations to human expert segmentations from training sets of medical images. The quality of
statistical segmentation and registration methods is directly related to the quality of this initial shape
fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a
set of general principles to guide such training. Our novel method is to jointly estimate both the best
geometric model for any given image and the shape distribution for the entire population of training
images by iteratively relaxing purely geometric constraints in favor of the converging shape prob-
abilities as the fitted objects converge to their target segmentations. The geometric constraints are
carefully crafted both to obtain legal, nonself-interpenetrating shapes and to impose the model-to-
model correspondences required for useful statistical analysis. The paper closes with example
applications of the method to synthetic and real patient CT image sets, including same patient male
pelvis and head and neck images, and cross patient kidney and brain images. Finally, we outline
how this shape training serves as the basis for our approach to IGRT/ART. © 2008 American
Association of Physicists in Medicine. �DOI: 10.1118/1.2940188�
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I. INTRODUCTION

Our target application, adaptive and image-guided radio-
therapy �ART,1 IGRT2�, requires a framework for accurately
mapping anatomical objects from inter-fractional images into
the same coordinate system as the planning or other refer-
ence image. Current research activity is aimed at developing
practical and reliable methods for space-filling nonrigid
mapping3–8 to overcome the shortcomings of current clinical
methods based largely on rigid registration. This work fo-
cuses on the framework required for probabilistic image seg-
mentation as a means for automatically computing nonrigid
mappings. Probabilistic segmentation can also provide a ba-
sis for image guided surgery �e.g.,9,10� and diagnosis.11

Probabilistic segmentation is based on understanding the
shape variability of the anatomic structures found in medical
images. Robust probability density estimates of shape have
been shown to be effective for object-based methods of
probabilistic segmentation9,12,13 for two reasons: �1� their
relatively low dimensionality allows us efficiently to com-
pute optimal solutions, and �2� the optimal solutions yield
anatomically credible objects. Geometrically legal space-
filling nonrigid mappings can be derived from differential
equations �e.g., optical flow,14,15 elastic flow,16 visco-elastic
flow6,17,18 or finite-element models19,20� and then reduced to
lower dimension for statistical analysis by means of control
points or decomposition via basis functions. However, as
shown in Fig. 1, these methods cannot be restricted to cred-
ible shapes because one must trade off spatial resolution with
the fact that the extremely high dimensions prevent learning
the feature space of credible shapes from the limited number
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of training cases available. Furthermore, while these meth-
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ods have been applied to images with similar topology such
as brain or inter-fractional or 4D scans, they have not been
shown to be applicable to cross-patient images. This article
therefore restricts its attention to models of one or more ana-
tomic objects, e.g., of their surfaces or skeletons.

The method presented here is based on statistical deform-
able shape models �SDSMs�, which are object-based para-
metric shape models that characterize shape changes relative
to a “typical” instance. The typical shape usually is taken to
be the mean shape, and relative changes are encoded as a
limited number of important eigenmodes of shape variability.
Using a SDSM, any particular shape in the space defined by
the training set can be completely and uniquely identified by
a few coefficients to within some small truncation error.
Once trained, SDSMs can be used as the basis of numerical
methods for shape discrimination, comparison, and interpo-
lation, for longitudinal shape studies,11 and for deformable
image segmentation and registration.22–24 �See Ref. 25 for a
recent summary of clinical applications of both space filling
and shape based image registrations.� Figure 2 diagrams the
process of training and use of the estimated probability dis-
tributions on the object�s�. This article is concerned primarily
with defining a framework for fitting parametric models to
training images while maintaining credible, legal shapes with
locational correspondence across the training population.
However, the method’s application to image guided radio-
therapy is outlined in the discussion section.

We consider shape training as a special case of Bayesian
image segmentation.26 In SDSM-based segmentation, a start-
ing shape is initialized to a target image and automatically

deformed based on the eigenmodes of shape variation to op-
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timally match the image data, as illustrated in Fig. 3. The
deformation is driven numerically through the SDSM param-
eter space by minimizing an objective function including a
term reflecting the probability of the deformed shape and a
term measuring how well the shape matches the image.
However, by using a shape parameterization that supports
reasonable physical deformations, it is possible to define
purely geometric conditions which establish and maintain
legality and the locational correspondence over the training
population we need to compute correct statistics. After the
training population has been fit, these first-round shape esti-
mates are used to compute coarse statistics. The training im-
ages are then refit about a new mean, relaxing the purely
geometric constraints as the shape statistics are iteratively
refined. This recomputation of an atlas, unbiased to a particu-
lar subset of the training instances, by computing a succes-

FIG. 1. Purely intensity driven registration can generate noncredible shapes
when pulling daily images back to the atlas for IGRT/ART. Here the bound-
ary of the prostate segmentation has drifted into the rectum during an
intensity-driven registration. Such segmentations are not allowed with our
shape based training �see Fig. 16�.

FIG. 2. The process of training and using probability distributions on object

with parametric models as input to statistical analysis, is the main subject of this
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sively better estimate of a mean as the fits improve, is com-
parable to the iterative computation of a Fréchet mean and
fits to it used in the nonrigid registration framework.18,27

However, in our method not only the mean but also the vari-
ability is being recomputed at each iteration.

Our automatic method for shape training has been applied
to a variety of anatomic structures from both synthetic and
real 3D medical images, such as inter-fractional and cross-
patient male pelvis, inter-fractional head and neck, and cross-
patient brain and kidney images. Whereas inter-fractional
SDSMs cover day-to-day anatomic shape change, such as the
bladder filling and emptying, etc., cross-patient SDSMs must
be able to account for much broader anatomic shape variabil-
ity, such as how prostates differ in both shape and relation-
ship to the neighboring bladder, rectum, and pubic bones
from patient to patient.

es in clinical applications. The step outlined in bold, fitting training images

FIG. 3. Fitting a statistical deformable model to a target training image.
�Top� 3D surface views and �bottom� single sagittal slice views of bladder
template geometry �left� coarsely aligned to a target training image, �middle�
deformably fit to that image, and �right� in the context of the actual gray-
scale data.
shap

article.
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II. METHOD

Extraction of shape representations of training cases has
been accomplished in the following ways for the boundary-
only shape models that are common in the statistical shape
analysis literature. For these, the model is intialized by sam-
pling the boundary voxels of each training sample to produce
a nonfolding tiled surface. Then each case’s surface is repa-
rameterized to give correspondence according to geometric,
mechanical, or local image properties. As examples, Ref. 28
uses no image match grounds, but requires a regular sam-
pling with tight geometric distributions. Active appearance
models12,29 require both a tight geometric distribution as well
as similar local image intensities. The training method used
in Refs. 30 and 31 reparameterizes the sampled surface ac-
cording to an orthogonal decomposition based on spherical
harmonics, then resamples the surface at locations corre-
sponding to equally distributed points on the parameterizing
sphere in that framework. Reference 32 uses a finite element
model to track voxel correspondences for a retrospective
dose study. Reference 33 describes parametric topological
constraints for active contour models �snakes�24,34 or active
shape models. Many of these approaches can obtain good
results, but none directly constrain their shape statistics to
the generation of only credible shapes or, for most, even of
nonself-interpenetrating shapes.

To obtain correspondence while maintaining a space of
credible objects, our process is designed as a special case of
binary image segmentation within the probabilistic segmen-
tation framework. The goal of our training process is there-

FIG. 4. A detailed view of our method for the training step shown in Fig.
segmentation algorithm, with purely geometric terms relaxed in favor of con
representation and principal geodesic analysis.
fore to jointly estimate both a parametric shape space that
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covers the organ shape over all n images, and at the same
time to obtain the best set of corresponding descriptors of
parametric models for each organ in each image. As illus-
trated in Fig. 4 and overviewed in algorithm 1, in this frame-
work an energy function composed of internal geometric
forces and external image match forces is optimized over a
shape space. Typically this space comes from the trained
probability distributions, but in their absence, we rely on a
shape parameterization that supports reasonable physical
changes and a carefully written internal geometric term to
constrain possible shape changes.

The parameterization that we use is a discrete medial rep-
resentation called m-reps, although the ideas can be general-
ized to other SDSMs with a well defined volumetric coordi-
nate system and an explicit encoding of volumetric legality.
See the Appendix for a summary of m-reps12 and its govern-
ing statistical model, principal geodesic analysis.35 Since
m-reps capture not only positional information �i.e., of the
skeleton and the implied boundary� but also orientational
information �of spokes between the skeleton and the bound-
ary�, the parameterization handles plausible physical changes
such as local twisting and bending in a way that can be easily
captured by the statistical model. Further, we can leverage
differential geometry directly in our legality term to enforce
nonself-interpenetration.

This method section of this article is organized to follow
Fig. 4. After discussing the inputs to the process in Sec. II A,
we describe the initial model-to-image alignment in Sec.
II B. The energy function is overviewed in Sec. II C, the
internal geometric term is explained in Sec. II D, and

apes are fit to the training images iteratively according to a binary image
ing group statistics. See the Appendix for a summary of the discrete medial
2. Sh
verg
the external image term is explained in Sec. II E. The itera-
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tive optimization framework is described in Sec. II F. Algo-
rithm 1 gives an additional overview of the method. A major
contribution of this article is the iterative fitting of models
and shape probability estimation indicated in step 2 of algo-
rithm 1. Additional novel contributions are describing the
to be modestly representative of the shape we are attempting
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principles and design of shape terms for the energy function
used in steps 2.1.1–2.1.3 that maintain object correspondence
and legality during the training fitting, and describing the
iterative shape estimation where purely geometric terms are
relaxed as shape statistics become available.
Algorithm 1: Iteratively Training Models of Shape Variability

Input: I, a collection of image segmentations i defining geometric truth

1. Ro�HandFit �i in I s.t. i is reasonably typical)

2. Until difference (Rk ,Rk+1)� convergence error:

2.1. For each i in I:
2.1.1. Find mi s.t. mi=Arg /Min(sim trans of Rk) Energy(Rk ,i)
2.1.2. Find mi s.t. mi=Arg /Min(globai deformations of Rk) Energy(Rk ,i)
2.1.3. Find mi s.t. mi=Arg /Min(local deformations ofRk) Energy(Rk ,i)

2.2. (Rk+1, Shape stats)=Principal Geodesic Analysis (M={mi})
II.A. Materials

For inter-fractional shape study, our method begins with a
collection of CT scans from a single patient over the course
of a multi-day treatment regimen. Typical images are 512
�512�40 voxels in dimension and have 1�1�3 mm
voxel resolution. The CT images include both treatment and
nontreatment organs. Between 12 and 18 scans are collected
for inter-fractional studies. Other studies have slightly differ-
ent image characteristics, but the method remains the same;
details are given in the results section for the various case
studies presented.

Expert raters segment structures of interest in each image
by drawing contours of target and nontarget organs on tran-
saxial slices. Methods to generate ground truth from these
segmentations comprise a separate area of research beyond
the scope of this article.36 Because the quality of the manual
segmentations is critical to the quality the derived model, at
the present time we train against individual raters whose seg-
mentations have been reviewed and, if necessary, edited by
other experts. Precautions are taken to control for intra-rater
variability across images of the same patient. For example,
segmentations from one image are transferred to the next,
coarsely registered with the corresponding objects, and then
edited to match the objects in that day’s image. Moreover the
prostate volume is not allowed to change from day to day.
Based on anecdotal evidence these precautions are believed
to control for random variations that would be observed
when segmenting each image de novo. The segmentations
are then scan converted to a label image per organ. These
label images have the same extent and resolution as the
source images, but all voxel values are set to either 1, if that
voxel is inside or on the segmentation’s boundary, or 0 oth-
erwise. Throughout this article, we will refer to these per
organ label training images as the set Il−n, where n is the
number of images in this population.

II.B. Initialization

Our training process starts by hand manipulating a model
to train. This typical shape is the presumptive geometric tem-
plate for the shape space, R0. R0 is our reference shape, from
which all other shapes will initially be derived and relative
distances measured. As long as the initial model has suffi-
cient sample resolution and correct topology �e.g., tubes for
vessels, a bent blob for kidney, a multi-blob figure for liver�,
our method converges for even arbitrarily poor starting mod-
els such as a generic slab. However, it is quite clear that the
quality of the SDSMs we compute and the speed of conver-
gence is directly related to the input quality at each step,
making a good initial shape estimate particularly important.

Using R0 as a coordinate system governing our region of
interest, we can identify in R0 a set of model-centric land-
marks, LM, which we wish to keep explicitly in correspon-
dence to within some tolerance throughout the training popu-
lation �see Fig. 5�. These LM correspond to a set of explicitly
identified anatomic features, LI, landmarks noted by the rat-
ers on the segmentations they manually produce. For ex-
ample, when training a prostate shape model, we use poste-
rior and anterior poles and the urethral entrance and exit.
Although we typically use only surface points as landmarks,
our shape parameterization provides a volumetric model-
centric coordinate system, which allows landmarking of po-
sitions both inside or on the object, such as the opening of
the prostatic urethra, and outside the object, such as the near-
est boney landmark to the prostate.

The initial step in fitting R0 to a particular label image is
then to align R0 to the image according to the landmark

FIG. 5. An image landmark identified at the tip of a segmentation with �left�

large tolerance and �right� a tighter tolerance.
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pairings LM to LI. This alignment can remove global trans-
formations such as translation, scale, or rotation from the
shape space we are attempting to estimate. The more tightly
aligned the training cases are to each other, the more tightly
the geometric template will be able to fit the data, and the
more representative the derived statistics of deformation will
be. We have explored a variety of methods for designating
this initial alignment: We frequently use a Procrustes simi-
larity transform, although with some highly variable objects,
we could use an affine transform. And one could imagine
integrating even more complex nonlinear landmark based
registrations such as Refs. 37 and 38, but then the probability
distributions would not be describing these shape changes. In
the absence of explicit landmarks, implicit landmarks from
curvature or other derived properties may be computed. For
simple synthetic objects, it is sometimes sufficient to align
the centroid, volume, and orientation of R0’s surface to by
similarity transform to the image moments of the binary
training image.

II.C. Defining the energy function

The best deformation of R0 into each training image is
computed numerically, by optimizing model parameters ac-
cording to a metric that measures the goodness of a model,
M, fit to a given image, I. This energy metric normally con-
sists of two terms, an “external” image match term and an
“internal” geometric typicality term. This division can be
theoretically founded in probabilistic terms. We seek
M =Arg MaxMp�M � I�, i.e., the model with the greatest prob-
ability density given the image. This formulation is fre-
quently called the posterior density, so the method is called
one of posterior optimization.26 An application of Bayes rule
together with an application of the logarithm to both sides of
the equation and removing terms that are constant in M
yields M =Arg MaxM�log p�M�+log p�I �M��; log p�M� then
measures the geometric typicality, and log p�I �M� measures
the image match. Other choices for these two terms are pos-
sible; but if one assumes Gaussian distributions, it is natural
to use squared distances as proxies for log p since the log of
a normal distribution is linear in a squared distance. The
remainder of this section describes how we go about design-
ing the distance terms that are minimized in our energy func-
tion.

II.D. Internal geometric energies

Without statistics, estimating shape likelihood requires
approximations specific to the characteristics of the underly-
ing parameterization. The essential problem is that the under-
lying parameter space from which the models are drawn is
much larger than the shape space that we are trying to cover.
Therefore, we restrict the models generated during training
to a compact and legal subspace where we are confident that
features are in correspondence across the training population.
To this end, we impose three purely geometric conditions on
the posterior.

First, we impose a penalty against nonuniformity of

samples, i.e., irregularity in the discrete medial grid. Second,
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we use a legality measurement based on differential geom-
etry to identify and prevent local self-intersections. And
third, we penalize shapes that are not near the presumptive
mean. In addition, in recent trials a reward for model
smoothness has been shown to be of use.

II.D.1. Sampling control

Establishing feature correspondence across the training
population implies that there is a unique set of parameters
that best describes each training case. However, it is possible
to find two quite different models that have nearly the same
image match in I, so we differentiate them by establishing an
additional geometric criterion. As an example, there are
many possible cubic approximations to a given function, but
by preferring certain end conditions, we can identify a
unique “best” approximating function.

In our case, we want a unique and legal best model to
represent a given training image. That is, if shape models M
and O both represent the same data, we need that M �O.
Otherwise, the correspondence requirements will not be met.
The geometric criterion that we use to distinguish medial
sheets with similar implied boundaries is the uniformity of
the medial grid. Medial sheets with samples bunched to-
gether form difficult to interpolate configurations that poorly
capture the object. Following the Markov assumption that
the likelihood of a sample conditioned on the model is the
same as the likelihood of the sample conditioned on its
neighbors, we define nonuniformity as a function of the
agreement between any sample and the expectation of its
neighbors. The total nonuniformity of the model is the sum
of such sample agreements. Since we are producing a dis-
similarity term, Nonuniform�M� is actually defined as the

distance d2�M ,M̄�, where M̄ =M smoothed by a low-pass
filter. As a side effect, this definition of smoothness also
tends to act as an ad hoc enforcement for shape legality.
Figure 6 shows an example of uniform and nonuniform or-
ganizations of medial samples.

In particular, in order to define regularity of a sampled
medial representation, we use the Riemannian distances and

means as described in the Appendix. We define M̄ as the
model such that each medial sample m̄ is the distance-
minimizing Fréchet mean of its neighboring samples. Practi-

¯

FIG. 6. A medial mesh �thick lines� and implied surface �thin lines� with a
�left� high nonuniformity penalty and �right� low nonuniformity penalty.
Meshes with high irregularity may imply similar surfaces as more regular
meshes, but can result in qualitatively inferior results and break our volu-
metric correspondence assumptions.
cally, using our parameterization, M is a curvature minimiz-
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ing medial sheet with regularly spaced samples.
Nonuniform�M�, the distance between M and its smoothed

M̄, can be reduced and rewritten as Eq. �1�.

Nonuniform�M� � �
mi�M

�
mj�Neighbrs�mi�

d2�mi,mj� �1�

This simple function, which essentially normalizes volume
per respective medial sample point, is suitable to our param-
eterization because medial representations inherently imply
desirable types of correlated surface deformation such as
bending, twisting, and magnification.

II.D.2. Legality

Correspondence assumptions can also be undermined by
illegal shapes. As we perturb the model parameters to find
the best fit to a segmented image, the model’s surface may
fold or develop self-intersections. Medial representations
have very precise analytic forms for computing shape legal-
ity on the medial manifold.39 The largest eigenvalue of the
radial shape operator yields a legality measure at every
sample point with a well defined threshold for identifying
folded surfaces.40 As we narrow down the shape space dur-
ing the fitting procedure, we tend to relax Nonuniform�� and
rely more on the legality measure. Similar smoothness and
legality functions can be mathematically derived for other
shape representations specifying local orientations.

The penalty for illegality for any medial sample is set to
zero when the largest eigenvalue of the radial shape operator
is non-negligibly less than its threshold. Then it rises first
slowly and then sharply as that eigenvalue passes its thresh-
old. The overall penalty is the sum of the penalties of the
samples.

II.D.3. Reference model

Given a space full of possible shapes, we desire to iden-
tify the mean shape and expand our shape model about it.
Under Gaussian assumptions, given a mean and the vari-
ances of the principal directions of deformation, this method
provides a shape-normalized Mahalanobis distance from any
particular shape to the mean shape. Using this as the geomet-
ric prior in optimization tends to keep the candidate models
clustered near the mean where our statistical shape model is
most likely to be valid.

However, with limited a priori knowledge, we use our
initializing model R0 as a tentative reference point for the
shape space. In the early iterations of model fitting we as-
sume an isotropic shape probability distribution, i.e., that the
difference between two shapes is measured only by a
weighted Euclidean distance, we can estimate a geometric
prior as the Riemannian model-to-model distance between a
candidate model, M, and R0, with distance defined as in the
previous section.

Reference�M,R� � �
mi�M

d2�mi,ri� �2�

As both of the geometric penalties, Nonuniform�� and Ref-

erence��, are in the form of a distance, they can equally be
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thought of as log probabilities on Gaussian distributions in
the feature space. Taken together with the illegality penalty,
they comprise the internal geometric energy in our optimiza-
tion metric.

II.E. External image energies

The external image terms of the energy function measure
how well the model’s surface fits the label image. This is
measured in two terms, one that computes distances between
specific landmark points in the model to corresponding land-
marks identified in the image, and another that computes a
general surface-to-surface distance between the model sur-
face points and the nearest boundary voxel in the label im-
age.

II.E.1. Landmarks

The landmarks identified automatically or manually in
Sec. II A require an explicit expression in the metric in order
to prevent them from drifting out of alignment during opti-
mization. We assume that the model coordinate landmarks
should be normally distributed about the landmarks identi-
fied in the image, that is, the model landmarks have the
distribution N�LI ,�2�, where �i is the standard deviation, i.e.,
tolerance, for the ith landmark. Because the log probability
of N�LI ,�2� is simply �−2d2�LI ,LM� with d2 the standard
Euclidean square distance, we can express the error in land-
mark match as Eq. �3�.

Landmark�LM,LI� � �
lmi�LM

1

�i
d2�lmi,lii� . �3�

II.E.2. Binary image match

The image match term is computed as the sum of squared
distances between the boundary voxels, B, of the label im-
age, found using a six-connected neighbor test, and the con-
tinuous boundary surface, �, implied by a candidate model
M �see Appendix�. This is equivalent to thinking of each
surface point or boundary voxel as an equally weighted land-
mark corresponding to its nearest point in the other set.

Ideally we desire to measure two terms, the distance from
each member of � to the closest voxel in B, denoted
d2�� ,B�, and the distance from each member of B to the
closest surface point on �, denoted d2�B ,��, which are not
equivalent. The distance d2�� ,B� can be computed fairly
quickly across many candidate models because the label
boundary remains static over all the trials. We generate a
single space filling lookup table for distance from the label
boundary by a modified anisotropic version of Danielsson’s
algorithm.41 Trilinear interpolation gives a very fast measure
of the distance at any point in space to the closest boundary
point on B. Discrete samples � are taken arbitrarily densely
from each candidate � and we then let d�� ,B� be the lookup
of the position of � in the distance map. Integrating over all
surface samples gives d2�� ,B�=��̄��d2��̄ ,B�.

The inverse distance d2�B ,��, however, is computation-

ally exorbitant given the finely sampled subdivision surfaces
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required for accurate matches and the large number of can-
didate surfaces generated for optimization. However, simply
ignoring this part of the term can lead to undesirable results
in areas of high curvature. In these areas, the d2�B ,��
distance-minimizing � tends to be more volume filling than
the minimizer of the d2�� ,B� distance. Our solution is to
compute the d2�B ,�� distance at only a minimal number of
points where we would expect large distance asymmetries.
We identify such points on � by computing the angle be-
tween the gradient of the distance map and the surface nor-
mal. If the angle is greater than a threshold, we compute a
new distance along the surface normal at that point as can be
seen in Fig. 7. With �2�x ,y� as this modified minimum dis-
tance function, then our data likelihood term can be ex-
pressed as in Eq. �4�.

Image�M,I� � �
�i��

�2��i,B� . �4�

This modified distance map method is dramatically faster
and produces superior results to the standard approach of
understanding binary images using local edge detectors, such
as the derivative of Gaussian filter. While edge detectors are
a logical extension of the model-to-image match as it would
be computed in a grayscale image, they suffer from signifi-
cant problems with capture range and orientation.

An additional advantage to using a medial parameteriza-
tion for M is that M and B are strongly related according to
morphological erosion. To fit models to images with struc-
tures that are only a few voxels in thickness, we can fit an
initially dilated model to a dilation of the labeling, and then
contract the model surface by the same amount by an inverse
scaling of the thickness parameter. As seen in Fig. 8, this
morphologically closed model approximates the thin object
much better than is possible otherwise.

In the Bayesian framework, the image term, P�I �M� is the
probability that the surface of the model is in alignment with
the boundary voxels of the segmentation. The landmark and
binary image match energies we describe can be thought of
as the log probabilities of a joint distribution and added to-

FIG. 7. A slice from a distance map and a suboptimally fit surface illustrat-
ing �. The light gray lines show the distance map gradient direction; dark
gray lines show the surface normal direction.
gether into the optimization metric.
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II.F. Optimization framework

We now have an initial geometric template, R0, that has
been coarsely aligned to the image and a well defined non-
statistical objective function which has as its minimum a
model configuration which should be both well fit to the
target image and qualitatively similar to other models fit to
other images of the population. Our process is then to de-
formably fit each image in the training population about R0.
The mean of the population of the fit models, R1, is com-
puted along with an estimate of the principal modes of de-
formation. The population is then refit iteratively about R
until R converges to a suitable mean of the training popula-
tion when Ri−l�Ri.

Each step of the iteration is a search for the error mini-
mizing M, with error, E, computed via our complete dissimi-
larity metric, that is, the sum of �1–4� and the Legal�� term
described in Sec. II D 2, using �, 	, 
, and � as relative
weighting factors.

E = � Landmark + 	 ImageMatch + 
 Nonuniform

+ Legal + � Reference. �5�

Our optimization engine uses a conjugate gradient
descent.42 Because conjugate gradient search performs best
given a relatively isotropic global minimum, some experi-
mentation is required to fine tune the weighting factors to
new shape studies. These weighting factors are essentially
scaling between the Euclidean voxel-space distances and the
Riemannian sample-space distances.

Before we have modes of shape change, we assume that
samples can move about freely in their feature space, re-
stricted only implicitly by the distance metrics in the geomet-
ric constraints. After the first round of fitting, we can com-
pute intermediate shape statistics by looking at correlations
in feature relationships across the training samples. For
boundary models with implicitly Gaussian distributions, Ref.
12 proposes using principal component analysis, which relies
on the eigenstructure of the feature covariance to describe
correlated shape change. Reference 43 gives a relevant ex-
ample of applying PCA to anatomic shape variability. M-reps
and other representations with explicit orientational compo-
nents cannot use PCA because distances between features
that encode orientation and scale are not Euclidean. These

FIG. 8. Two candidate model meshes compared to tiled surface of a segmen-
tation of the thin masseter muscle in the neck. The mesh on the right has
been fit naïvely; the better fitting mesh on the left has been fit to a dilated
image and then contracted.
representations are governed by a generalized PCA known as
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principal geodesic analysis �PGA�.35 As with PCA, an obser-
vation matrix relating measurements of corresponding fea-
tures across the training population is formed and the cova-
riance of the observation matrix is computed and
diagonalized. However, the nonlinear orientation and size
terms of our feature vectors are first mapped onto a tangent
plane fit locally to the Fréchet mean of the shape space, R.
The eigenvectors of the system orthogonal basis of corre-
lated feature changes which are projected back into the non-
linear feature space and imply correlated surface deforma-
tions such as those shown in Fig. 9. This basis can be
truncated according to eigenvalue thresholds, which describe
the significance of each of direction of shape change. See the
Appendix for details of how to decompose a set of m-reps
according to PGA and how to apply the resulting statistics to
individual instances.

As we iterate and gain confidence in our intermediate sta-
tistics, we replace our sampled medial shape parameteriza-
tion with a short vector of coefficients of each principal
mode of deformation. This restricts the shape changes we
optimize over and both obviates our smoothness requirement
and allows us to compute the geometric prior by the correct
shape-to-mean Mahalanobis distance. This covariance
weighted distance is computed directly as the eigenvalue
scaled PGA coefficients. That is, the Mahalanobis distance
squared=��i

2 /�i
2, where �i are the coefficients of M ex-

pressed in PGA eigenvectors and �i are the corresponding
eigenvalues.

Following an intermediate step of statistical shape optimi-
zation, local refinements may still be required for individual

FIG. 10. Tiled surfaces from two procedurally generated warped ellipsoid

FIG. 9. A mean bladder �darker upper object� and its first two principal mod
modes of deformation together cover over 65% of the shape variability acro
test objects showing bending and tapering.
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samples within the model. These refinements can be com-
puted deterministically, by another optimization of our error
metric �5� restricted to the parameters of a given sample, or
they can be probabilistically estimated by PGA over the dif-
ferences between the results of the statistical stage and the
deterministic refinement. Tracking the residual optimization
work on individual samples still required after an intermedi-
ate statistical fitting gives us a measurement of when the
training is complete.

Extensions of the statistical model allow us to compute
joint statistics of interdependent multiple figure shapes44 and
multiple object shape models, which leads to the multiscale
methods for describing both global and local phenomena dis-
cussed in our image segmentation paper.12

III. RESULTS

Our method is routinely tested by computing a shape tem-
plate and modes of deformation for a set of procedurally
generated binary 3D images of bent, twisted, and tapered
ellipsoids such as those in Fig. 10. A set of images is gener-
ated by randomly sampling values for each of the three pa-
rameters, analytically generating the corresponding ellipsoid
and scan converting it into voxels. Vertex landmarks are
computed for each image. The medial manifold of a standard
ellipsoid is a simple primitive in our framework. This stan-
dard ellipsoid is designated R0. R0 is initially aligned by
landmarks to each of the training cases, and then the param-
eters of each medial sample are optimized according to the
error function described in our method section. When the
best model for each image has been found, we compute the
final average and maximum voxel distances from each model
to its corresponding image as shown in Fig. 11. Figure 12 is
a histogram of these distances over the standard 20 test
cases. Shape statistics as in Fig. 13 are computed and we refit
the population by optimizing over the principal geodesics of
shape change. Note that PGA has substantially reduced the
complexity of the optimization. We input a three parameter
distribution into the problem, our initial fitting optimizes on
the order of 100 parameters, and using PGA we can recon-

deformation relative to the mean prostate �lighter lower object�. These two
e 18 images of this patient.
es of
ss th
struct over 90% of the shape variability using only five
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model parameters. The distance histogram of the statistically
fit models is also given in Fig. 12. Another encouraging re-
sult is that while the two training outliers we see in Fig. 12
were thrown out of the statistical analysis, they have been
adequately covered by the statistical fitting.

The ultimate indication of our methodology’s effective-
ness is its application to real medial and scientific problems,
such as modeling shape variability in inter-patient and cross-
patient images. In Fig. 3, we show a mean bladder being
initialized and deformably fit to a patient image, represented
by a single sagittal slice of the label and corresponding gray
image. In this case, we start with a model hand fit to day 1 of
each patient series. Subsequent daily images are aligned ac-
cording to the position and orientation of the urethral land-
marks. We then proceed with two iterations of the training as
outlined in our method, first a nonstatistical and then a coarse
statistical stage. This procedure is repeated for the bladder
and prostate. Figure 14 shows a histogram of average and
maximum distances over models fit to bladders, prostates,
and rectums from sets of inter-fractional images of 25 differ-
ent patients. The average error across all organs is less than a
voxel and the large maximum distance seen in the rectum
training is artifactual of segmentation variability. The bladder
is a particularly challenging object to model effectively be-
cause it exhibits large shape changes from day to day. The
first two PGA modes of shape change for one patient’s blad-
der and prostate are shown in Fig. 9. These two modes ac-
count for over 65% of the patient’s daily shape variability in
those two organs, and as we would hope, could be seen as

FIG. 11. Relationship between the boundary voxels of an ellipsoid binary
training image �gray� and the fitted model’s surface �black� through a tran-
saxial slice.

FIG. 12. Histogram of average and max distances for warped ellipsoid mod-
els over 20 training cases. The two outliers were excluded from the first
round statistics, but were successfully fit in the next round using the recov-

ered statistical modes of deformation.
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roughly accounting for the bladder filling and emptying. The
statistical deformable shape models for each patient from
such training, combined with a suitable CT image match
term, allowed us to produce leave-one-out segmentations of
actual images from four of the patients with mean volume
overlaps �intersection/average� of 92.5%, 93.7%, 91.6%, and
94.7% respectively using only eight modes of deformation.45

We also applied out method to a set of 50 cross-patient
kidney images. In this case, the SDSM must account for
actual anatomic variability across patients, a much broader
kind of shape change than that usually seen in sets of within-
patient images. The eigvenvalues of the recovered principal
modes of deformation show that we now need 15 modes of
variance cover 95% of the anatomic variability. Our training
resulted in 95.3% volume overlaps �int/ave� of the models to
the segmentations. The trained 15 parameter SDSM applied
to leave one out segmentation of the actual patient images
resulted in models with volume overlaps only slightly lower,
on average, 91.1%. For details of our kidney segmentation
results, see Refs. 46–48.

Our method has also been applied to several other target
areas. Head and neck models suitable for radiotherapy plan-
ning are shown in Fig. 15, left. The deep brain structures
shown Fig. 15, right, were taken from an autism shape study
where the researcher used the SDSM based shape-to-shape
metric to discriminate autism by shape characteristics.11 We
have also modeled hippocampi for a large statistical shape
study. Temporal extensions to the method have enabled stud-
ies of heart motion,49 which has obvious extensions to lung
motion and 4D-ART. Reference 50 uses a SDSM trained
with our method to establish feature correspondences in dog
hip joints for a longitudinal study characterizing canine hip
dysplasia.

FIG. 13. As we would expect, the first two principal modes of deformation
trained from 20 bent, twisted, and tapered ellipsoids reflect bending and
tapering.

FIG. 14. Histogram of average and max distances for fit bladder, prostate,
and rectum models over 328 training cases pooled from 25 sets of same

patient inter-fractional images.
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All the results discussed were produced using a C++
implementation of the algorithm. Using our implementation
on a modern 2 GHz desktop, a model can be fit to an image
in less than 2 min. Batch fitting is trivially parallelizable
onto any number of machines up to the number of images in
the training population. Using such a parallel computing
framework and given a set of segmented images and land-
marks, a completely trained SDSM can be produced in less
than 1 h.

IV. DISCUSSION

IV.A. Applications to IGRT/ART

The model-fitting methodology described in this article
and the shape statistics computed from the resulting models
are being routinely used in ongoing research involving seg-
mentation of CT images acquired for IGRT and ART. An
overview of this work in progress is presented here and
greater detail will be provided in a future article. The main
idea behind CT-guided radiotherapy is to extract anatomic
information from images acquired immediately before or
during treatment to guide patient positioning and perhaps
beam shaping. In ART, treatment images are used to calcu-
late delivered doses for comparison with the original treat-
ment plan, followed when necessary by replanning.1 Image
segmentation is not required when the only goal is to posi-
tion the isocenter within the target volume. Our research cur-
rently is focused on segmentation, via posterior optimization
using m-reps as discussed, of target organs and organs at risk
in the male pelvis as needed for IGRT beam shaping and
ART dose calculation. So far we have investigated segmen-
tation of the prostate, bladder, and rectum from conventional
kV fanbeam CT images. This work makes use of the training
methods and tools described in this article and more recently
an image processing tool called ConStruct,51 which applies
the resulting shape statistics to segment target images via
posterior optimization.

We distinguish between two modes of segmentation based
on the method for statistical training, i.e., cross-patient �xpat�
versus within-patient �inpat� training. When a random target
image is segmented, e.g., the planning CT image, the shape
statistics for that patient are unknown. In this case only xpat
statistics can be applied. These shape statistics describe geo-
metric variation from one patient to another and comprise a

FIG. 15. Multi-object shape models. �Left� A 15 object complex of struc-
tures from the head and neck. �Right� Deep brain structures from an autism
study, left and right hippocampus, amygdala, putamen, caudate, and globus
pallidus.
mean shape with principal modes of variation computed
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from collections of models fit as described in this article to
expert human contours across many patients, one sample im-
age per patient. Currently we train from 30–75 patients de-
pending on experimental design. Segmentation quality is af-
fected by a number of factors still being investigated for the
male pelvis that are beyond the scope of this article to dis-
cuss in detail. Perhaps the most critical factors are the shape
of the starting model and its initialization in the target image.
If the model starts too far in shape and/or position from the
target object, our gradient-descent optimization algorithm
will get trapped in a local optimum. Moreover, when the
target shape is far from the population mean, the geometric
penalty is more likely to prevent the starting model from
completely deforming to match the target shape. We note that
these considerations apply to all posterior optimization meth-
ods. Our strategy for dealing with these issues is discussed
later. The segmentation of a target object yields a patient-
specific estimated mean shape that can be used as a starting
mean for segmentation of subsequent target images, e.g.,
treatment CT images. In this case the principal modes ap-
plied to the estimated mean are computed from inpat shape
statistics that capture day-to-day shape changes. These statis-
tics are computed from collections of models fit to human-
drawn contours across multiple sample images per patient,
e.g., 10–20, and across many patients. Currently we are
working with approximately 15 images each for 30 patients
��450 images total�.

Our general approach for both IGRT and ART using Con-
Struct is to create a patient-specific estimated mean model
for each target object on a reference image, preferably a
planning image acquired without contrast medium to avoid
artificial intensity patterns that will confound the image-
match term of our objective function. If the planning image
is available only with contrast medium, then the first day-
treatment image serves as the reference. There are several
ways to create estimated mean models. One method is to
carefully hand segment the reference image, and then fit a
model to the contours for each object via posterior optimiza-
tion using population shape statistics for the geometric term
and distance to contour points to compute the image match
term. This can be implemented by performing only the final
step of the shape training described here on a single image.
Another method is to segment the gray-scale reference image
directly with m-reps. One way to achieve good initialization
of the starting m-rep for this approach is via posterior opti-
mization as just described to deform the model to match
points in the target image that are known to be on the surface
of a target object, followed by fully automatic segmentation
using gray-scale intensities to compute image match. We cur-
rently use several user-drawn contours per object, usually
three, to define boundary points. This approach so far has
yielded segmentations that are clinically acceptable in close
to 90% of cases. When an automatic segmentation is unac-
ceptable it can be edited with standard contour editing tools,
and a model can be fit to the edited contours as just de-

scribed. Although some level of user interaction likely will
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be required for creating reference models, interaction is un-
desirable and we are looking into ways to minimize it, espe-
cially for segmentation of treatment images.

When patient-specific models are created, ConStruct ini-
tializes the prostate in a treatment image by registration with
the reference image, eliminating user interaction to define
surface points. The registration is multiscale and concludes
by focusing on a small region of interest including the pros-
tate and its immediate surrounds. Fully automatic segmenta-
tion follows by applying inpat shape statistics to deform to
model. Since the starting position and shape are close to the
target, the final prostate segmentation compares well with
expert human contours, as seen in Fig. 16. Because of the
very large day-to-day variations of the shapes and intensity
patterns associated with the bladder and rectum, initialization
via registration alone often yields regions that do not agree
well with human contours. These unacceptable regions are
usually distant from the prostate, that is, out of the treatment
beams. Agreement proximal to the prostate often is clinically
acceptable and therefore useful for beam shaping and dose
calculation. At the present time, user-identified surface points
are needed to achieve good agreement away from the pros-
tate.

IV.B. CONCLUSIONS

Shape training is a key step in the application of deform-
able shape models to such problems as image registration
required for IGRT or ART, shape classification, and longitu-
dinal shape studies. Our novel methodology for training sta-
tistical deformable models is a special case of image seg-

FIG. 16. Manual �white� and computed �black� segmentations of the prostate
in a treatment image, trans-axial slice on the left, saggital slice on the right.
The segmentation computed based on shape training described in this article
agrees with the manual segmentation for this day agree with an 89% int/ave
volume overlap.

FIG. 17. Discrete medial representations. �Left� A medial sample with two
skeletal sheet for a kidney with neighbor relations marked. �Middle� Spokes
�Mid Right� A densely sampled surface can be interpolated from the medial

seminal vesicles.
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mentation, where both the best geometric model for any
given image and the shape distribution for the entire popula-
tion of training images is jointly estimated by iteratively re-
laxing purely geometric constraints in favor of the converg-
ing shape probabilities. The internal geometric terms that we
use in the absence of a priori shape probabilities are crafted
to guarantee training shapes that are regularly sampled, legal,
and compact about a mean, which together cause credible
shapes to be reflected in the converging statistics. The
method described is fast and routinely gives good meshes for
a variety of target shapes. The framework has been described
in the context of the discrete medial representation, but
should extend to b-reps with orientation or other representa-
tions where measures for sampling regularity and nonself-
interpenetration can be analytically computed.
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APPENDIX: THE DISCRETE MEDIAL
REPRESENTATION

Medial geometry52 describes 3D objects in terms of a
skeletal surface, a 2D curved sheet lying midway between
opposing surfaces of the object, and a set of spokes extend-
ing to the object boundary from both sides of the skeletal
surface. The medial manifold, M, of a three-dimensional ob-
ject has eight parameters at each point �u ,v� :M�u ,v�
�	position�3�, spoke length�1�, and two spoke directions�2
�2�
. Some additional complexity is introduced along the
crests at the edges.

The discrete medial representation, m-reps, samples the
continuous manifold on a grid, yielding a set of eight-
dimensional medial samples which taken together act as con-
trol points for the object’s volume, as shown in Fig. 17.
Additional medial points can be interpolated according to
Ref. 53, which in turn imply a denser surface sampling. Al-
ternatively, additional surface points can be approximated
directly using a modified Catmull–Clark subdivision

length spokes that touch opposing surface patches. �Mid Left� A sampled
ch medial sample describe the orientation of the implied surface at that hub.
ples. �Right� A prostate model with subfigures defined for the left and right
equal
at ea
sam
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algorithm54 with additional normal constraints. M also im-
plies a volume filling hexahedral mesh useful for computing
mechanical deformations according to finite element
methods.55 An object made from a single grid of medial
samples is called a figure. A single column grid implies a
tube figure; a multi-column grid implies a slab figure. Inden-
tations and protrusions are handled as attached subfigures.44

A figure along with any associated subfigures is called a
model, shown in Fig. 17 �right�.

The discrete medial representation is well suited to Baye-
sian segmentation because it provides �1� a volumetric coor-
dinate system in which to gather image intensity statistics,
�2� a low dimensional parametric shape space amenable to
numerical optimization, and �3� an analytic description of
legality. Each figure can be examined sample by sample
where we need only eight parameters to represent complex
object-based deformations such as bending, twisting, and
magnification. Parameter changes can be constrained to im-
ply only legal models by computing a radial shape operator
similar to the surface shape operator described in Ref. 56, but
dependent both on local shape and on local orientation. Mea-
suring the largest eigenvector of the spoke length radial
shape operator at each grid position39,40 gives an immediate
indication of local self-interpenetration in the volume.

1. Distances and means of samples and models

Every medial sample can be understood as a translation,
magnification, and rotation of any other. Thus, we can define
Riemannian distances between them for computing means
and variabilities. The spoke directions describe a rotation,
which along with the radius, are multiplicative terms which
must be logarithmically mapped so that sample-to-sample
distances can be computed in a Euclidean space.35 The
Fréchet mean, m̄ of a set of samples 	mi
 can be computed as
the point in the parameter space that minimizes its distance
to every member of 	mi
. Samples on the grid are also given
neighbor relationships, which along allows for Markov fash-
ion predictions �see Sec. II D 1�. Sample-to-sample distances
can be extended to a distance between two models, M and O
with samples 	m1 , . . . ,mn
 and 	o1 , . . . ,on
, respectively, by
taking the sum of the Riemannian distances between corre-
sponding samples as d2�M ,O�=�mi�Md2�mi ,oi�. Distances
taken from object to object and then refined sample by
sample provide the basis for multi-scale shape analysis.

Using these definitions for distance, a typical shape and
descriptions of shape variability can be computed from a set
of models according to a generalizing of principal compo-
nent analysis called principal geodesic analysis.35 The mean
for each atom over a training population is computed by the
Fréchet approach of minimizing the sum of squared geodesic
distances to the result point. The atoms in each training
m-rep are projected �mathematically called the Log map� to a
tangent space at the computed mean, where PCA is done on
the collection of atoms. Mapping the resulting principal di-
rection vectors back into an m-rep increment from the mean
creates modes of global variability that encode not only po-

sition but orientation and width. The relative weight of the
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associated eigenvalues give a reciprocal standard deviation
weighting to this space of deformations and provide the basis
for a shape-to-shape Mahalanobis distance. The Mahalanobis
distance from the mean gives the log likelihood of the shape,
except for a linear multiplier and an additive constant and
thus it serves as the basis for methods for Bayesian segmen-
tation or statistical shape analysis.

See Refs. 12 and 48 for additional details of the discrete
medial shape representation and its applications to medical
image analysis.
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