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ABSTRACT
In this work, we describe our preliminary experiences on the Stampede
system in the context of the Uintah Computational Framework.
Uintah was developed to provide an environment for solving a broad
class of fluid-structure interaction problems on structured adap-
tive grids. Uintah uses a combination of fluid-flow solvers and
particle-based methods, together with a novel asynchronous task-
based approach and fully automated load balancing. While we
have designed scalable Uintah runtime systems for large CPU core
counts, the emergence of heterogeneous systems presents consider-
able challenges in terms of effectively utilizing additional on-node
accelerators and co-processors, deep memory hierarchies, as well
as managing multiple levels of parallelism. Our recent work has ad-
dressed the emergence of heterogeneous CPU/GPU systems with
the design of a Unified heterogeneous runtime system, enabling
Uintah to fully exploit these architectures with support for asyn-
chronous, out-of-order scheduling of both CPU and GPU compu-
tational tasks. Using this design, Uintah has run at full scale on
the Keeneland System and TitanDev. With the release of the Intel
Xeon Phi co-processor and the recent availability of the Stampede
system, we show that Uintah may be modified to utilize such a co-
processor based system. We also explore the different usage models
provided by the Xeon Phi with the aim of understanding portabil-
ity of a general purpose framework like Uintah to this architecture.
These usage models range from the pragma based offload model
to the more complex symmetric model, utilizing all co-processor
and host CPU cores simultaneously. We provide preliminary re-
sults of the various usage models for a challenging adaptive mesh
refinement problem, as well as a detailed account of our experience
adapting Uintah to run on the Stampede system. Our conclusion is
that while the Stampede system is easy to use, obtaining high per-
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formance from the Xeon Phi co-processors requires a substantial
but different investment to that needed for GPU-based systems.
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1. INTRODUCTION
For the growing number of problems where experiments are im-

possible, dangerous, or inordinately costly, extreme-scale comput-
ing will enable the solution of vastly more accurate predictive mod-
els and the analysis of massive quantities of data, producing signif-
icant advances in areas of science and technology that contribute to
the mission of agencies such as NSF and DOE [2]. It is through
compute resources such as those provided by these agencies that
we carry out the petascale simulations of today, advancing sci-
ence and working toward designing software framework architec-
tures to solve problems at massive scale on next-generation sys-
tems. Individual processing units consisting solely of CPU’s are no
longer increasing in speed from generation to generation, yet the
demands on system architects for increased density and power ef-
ficiency steadily increase. With these demands in mind, traditional
systems are now augmented with an increasing number of graphics
processing units or co-processors such as the Intel Xeon Phi. This
architectural trend is most notable in machines such as the XSEDE
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Figure 1: Unified Scheduler and Runtime System with Xeon Phi support

resources Keeneland1, and Stampede2. This trend is also found in
the DOE Titan system3 with its large GPU counts.

Future compute nodes may have hundreds or thousands of cores
combined with accelerators or other co-processor designs, and extreme-
scale systems could potentially have up to a billion parallel threads
of control [2]. Such frameworks must address the formidable scala-
bility and performance challenges associated with running on these
systems. For Uintah [4], the challenges of running on accelera-
tor and co-processor based systems begins with developing novel
ways to hide latency across deep memory hierarchies, as well as
methods of managing multiple levels of parallelism. This must all
be accomplished in a manner that insulates the application devel-
oper from the inherent complexities involved with programming
these systems. Uintah is novel in its use of an asynchronous, task-
based paradigm, with complete isolation of the application devel-
oper from the parallelism provided by the framework. This ap-
proach allows computation to be expressed as individual tasks with
input and output data dependencies. The individual tasks are viewed
as part of a directed acyclic graph (DAG) and are automatically

1Keeneland is a hybrid CPU/GPGPU cluster administered by NICS
with 264 HP SL250G8 compute nodes, each with 32GB mem-
ory, (2) Intel Xeon E5 (8-core Sandy Bridge) processors, and (3)
NVIDIA M2090 GPU accelerators [8].
2Stampede is a Dell PowerEdge C8220 cluster, administered by
TACC with 6,400+ Dell PowerEdge server nodes, each with 32GB
memory, (2) Intel Xeon E5 (8-core Sandy Bridge) processors and
an Intel Xeon Phi Coprocessor (MIC Architecture) [21].
3Titan is a DOE supercomputer located at Oak Ridge National
Laboratory with 18,688 compute nodes, each of which con-
tains32GB memory, a single 16-core AMD Opteron 6200 Series
(Interlagos cores @2.6GHz) processor and a single Tesla K20
GPU, giving 299,008 processing cores and 18,688 GPU acceler-
ators [16].

mapped onto the parallel machine and executed adaptively, asyn-
chronously and often out of order [15].

Prior to the emergence of heterogeneous systems, a fundamen-
tal scalability barrier for Uintah was significantly less memory per
core as the numbers of cores per socket grew. In order to address
this challenge, as recognized by a number of authors [3,17], Uintah
moved from a model that only uses MPI to one that employs MPI
to communicate between nodes and a shared memory model us-
ing Pthreads to map the work onto available cores in a node [13].
This approach led to the development of a multi-threaded MPI run-
time system, including a multi-threaded task scheduler that enabled
Uintah to show excellent strong and weak scaling up to 196K cores
on the DOE Jaguar XT5 system and good initial scaling to 262k
cores on the upgraded DOE Jaguar XK6 system [20]. Using this ap-
proach reduced Uintah’s on-node memory usage by up to 90% [13].

With the arrival of the Keeneland Initial Delivery System (KIDS)
and the upgrade path of the DOE Jaguar system to Titan, Uintah’s
multi-threaded task scheduler and runtime system were further ex-
tended to use a combination of MPI, Pthreads and Nvidia CUDA
in order to leverage an arbitrary number of on-node GPUs [11].
In preparation for the imminent release of the Intel Xeon Phi co-
processor, this design was refined to become the Unified Scheduler
and Runtime System (Figure 1, [14]), providing Uintah with a uni-
fied approach to supporting and scheduling computational tasks
on heterogeneous accelerator/co-processor systems. This design
maximizes system utilization by simultaneously using all available
processing resources on-node with advanced techniques to harness
the additional computational power of both accelerators and co-
processors.

In this paper we detail our experiences moving Uintah onto the
TACC Stampede system with its Intel Xeon Phi co-processors us-
ing the Uintah Unified Scheduler and Runtime System to support,



schedule and execute both host CPU and co-processor tasks simul-
taneously. Throughout this paper, we refer to the Intel Xeon Phi
Coprocessor (MIC Architecture) as Xeon Phi when referring to
the co-processor in general, and MIC when we talk specifically
about the architecture of the Xeon Phi. We explore the various
usage models provided by the Xeon Phi with a key aim of un-
derstanding the portability of a general purpose framework such
as Uintah on such an architecture. Although the Xeon Phi sym-
metric model is given focus in this work, as it best fits the current
Uintah model, our work here clearly illustrates the Directed Acyclic
Graph or DAG [5] approach used by Uintah provides the ability to
leverage all usage models provided by the Xeon Phi. Ultimately,
we provide results from computational experiments using the host-
only, native and symmetric models using two challenging compu-
tational simulations, one being an incompressible flow calculation
(host only) and the other a fluid-structure interaction problem (na-
tive and symmetric models) with adaptive mesh refinement (AMR).

In what follows Section 2 provides an overview of the Uintah
software, while Section 3 describes the Stampede system and the
Intel Xeon Phi co-processor design. Section 4 briefly describes the
host-only compute model, and provides scaling results of a pro-
duction run simulating a helium plume (turbulent reacting flow).
Section 4 also compares these results running the same problem on
NSF Kraken. Section 5 examines Uintah running the benchmark
AMR problem using the Xeon Phi native model. In Section 6 we
expose unexpected challenges with the offload model and propose
a design solution using techniques in [11]. This solution is left as
future work. We concentrate on the Xeon Phi symmetric model
in Section 7, as this approach best fits the current Uintah runtime.
Here we give scaling results over a range of host and Xeon Phi core
counts and provide a subtle floating point accuracy issue encoun-
tered. The paper concludes in Section 8 with future work in this
area.

2. UINTAH OVERVIEW
The Uintah Software was originally written as part of the University

of Utah Center for the Simulation of Accidental Fires and Explosions
(C-SAFE) [7]. C-SAFE, a Department of Energy ASC center, fo-
cused on providing science-based tools for the numerical simula-
tion of accidental fires and explosions. The aim of Uintah was to
be able to solve complex multi-scale, multi-physics problems.

Uintah may be viewed as a sophisticated computational frame-
work that can integrate multiple simulation components, analyze
the dependencies and communication patterns between them, and
execute the resulting multi-physics simulation [18]. Uintah com-
ponents are implemented as C++ classes that follow a very simple
interface to establish connections with other components in the sys-
tem. Uintah utilizes an abstract representation (called a task-graph)
of parallel computation and communication to express data depen-
dencies between multiple physics components. The task-graph is a
directed acyclic graph (DAG) of tasks. Each task consumes some
input and produces some output (which is in turn the input of some
future task). These inputs and outputs are specified for each patch
in a structured AMR grid. Associated with each task is a C++
method which is used to perform the actual computation. Each
component specifies a list of tasks to be performed and the data
dependencies between them [4].

This component approach allows the application developer to
only be concerned with solving the partial differential equations on
a local set of block-structured adaptive meshes, without worrying
about explicit message passing calls, or notions of parallelization.
The Uintah infrastructure even performs automatic load balancing.
This approach also allows the developers of the underlying paral-

lel infrastructure to focus on scalability concerns such as load bal-
ancing, task (component) scheduling, communications, including
accelerator or co-processor interaction. This component-based ap-
proach also allows improvements in scalability to be immediately
applied to applications without any additional work by the applica-
tion developer.

Uintah currently contains four main simulation algorithms, or
components: the ICE compressible multi-material Computational
Fluid Dynamics (CFD) formulation, the particle-based Material Point
Method (MPM) for structural mechanics, the combined fluid-structure
interaction algorithm MPMICE [10], and the ARCHES combustion
simulation component. Development work is also underway on a
new MD component to provide basic Molecular Dynamics (MD)
capabilities within Uintah. Uintah is regularly released as open
source software [9].

3. STAMPEDE AND XEON PHI
ARCHITECTURE

3.1 Stampede
Stampede is the latest, largest, and fastest system (ranking num-

ber 7 on the top 500 [1]) that is part of the National Science Foundation’s
XSEDE program. The Texas Advanced Computing Center (TACC)
administers Stampede as well as other resources available under the
XSEDE program. Operational since January 7, 2013, Stampede is
available to scientists and engineers in all domains of science, as
well as offering a research tool in the humanities, digital media and
the arts.

Stampede was built by Dell and contains Intel’s new co-processor
technology, the Xeon Phi. The host processors are an eight core
PowerEdge C8220, Xeon E5-2680 operating at 2.7GHz with an
Intel Xeon Phi co-processor operating at 1.0GHz. Each compute
node has two eight core sockets with 32 GBytes of memory. Stampede
is outfitted with 6, 400 compute nodes and 102, 400 cores provid-
ing greater than 2 PFlops for the compute cluster and greater than 7
PFlops for the co-processors). The total system memory is 205
TB with over 14 PBytes of shared disk space using the Lustre
file system. The system components are connected via a fat-tree
FDR InfiniBand interconnect. SLURM (Simple Linux Utility for
Resource Management) is used for job submission and scheduling.
The operating system is the CentOS Linux distribution [6].

3.2 Xeon Phi Architecture
Stampede provides five programming models: Host-only, MIC

native, offload, reverse offload and symmetric. Our focus will be on
the four models in Figure 2, and will not cover the reverse offload
model, as it is not yet supported by the Intel MPI implementation.
In the host-only model, programs run only on host CPUs in the
system without any utilization of the Xeon Phi co-processors. Host
processors between multiple nodes can communicate though MPI.
This model is similar to running on most other CPU-only clusters.
The Xeon Phi native model uses only the Xeon Phi co-processors
in the system, disregarding the host CPUs. On a Xeon phi card, a
very basic version of Linux is installed. After being compiled to
MIC binary, a program can then run on the Xeon Phi directly and
can use using MPI and OpenMP/Pthreads. The offload model is
similar to using accelerators such as a GPU (in conjunction with
OpenACC [12]), where the program runs on host CPU and uses of-
fload directives to run certain parts of the computation on Xeon Phi.
In this model, all MPI messages are sent and received by host pro-
cessor. Reverse offload is similar though to offload mode in that the
offload region simply runs on host CPU while MPI ranks are run on
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Figure 2: Xeon Phi Execution Models

the Xeon Phi. For the symmetric model, programs can run on both
the host CPU and the Xeon Phi co-processor card natively. MPI
messages can be processed by host CPU and Xeon Phi directly.

There are two MPI libraries available on Stampede, Intel MPI
and MVAPICH. MVAPICH does not yet have a build for Xeon Phi,
but host-only and offload models are supported at this time. Intel
MPI has both host and MIC builds and supports four MPI commu-
nication modes besides host only:

1. within a single Xeon Phi co-processor,

2. between the Xeon Phi co-processor and the host CPU inside
one node,

3. between multiple Xeon Phi co-processors inside one node,

4. between the Xeon Phi co-processors and the host CPU’s be-
tween several nodes.

4. HOST-ONLY MODEL
In this section a host-only calculation is described. In prepara-

tion for the simulations, the standard compiler chain (Intel C++,C,
and Fortran) was used to build Uintah as well as the hypre linear
solver library. The MVAPICH MPI library was used for all runs,
since the Intel MPI version had issues working beyond 2048 cores.
The hypre (version 2.8.0b) linear solver package was built with the
-no-global-partition option using the Intel C compiler.

Uintah has several CFD algorithms that are under active develop-
ment that are used both in production mode and for bench-marking
and performance analysis of new systems. The ARCHES CFD
component is an implementation of a three-dimensional, Large Eddy
Simulation (LES) algorithm which uses a low-Mach (Ma< 0.3),
variable density formulation of the Navier-Stokes equations to sim-
ulation heat, mass and momentum transport in reacting flows. The
set of filtered equations is discretized in space and time and solved
on a staggered finite volume mesh. Flux limiters are used to avoid
nonphysical solutions. The low-Mach, pressure formulation re-
quires a solution of an implicit pressure projection at every time
sub-step. Various linear solver packages including PETSc and hypre

have been used for the solution of these equations. A dynamic large
eddy turbulence closure model for momentum and species trans-
port equations is used to account for sub-grid velocity and species
fluctuations. Various combustion models exist for doing gas phase
and particle phase combustion chemistry. The energy balance in-
cludes the effects of radiative heat-loss/gains in the IR spectra by
solving the radiative intensity equations using a discrete-ordinance
solver. The formulation of the intensity equations at discrete ordi-
nances results in a system of linear equations that are solved us-
ing hypre. The solid particulate fuel phases are represented using
the direct quadrature method of moments (DQMOM). DQMOM is
completely coupled to the the gas phase description resulting in a
closed mass, momentum, and energy balances [19].

While the ARCHES finite-volume component is essentially a
stencil-based p.d.e code, the implicit formulation of the pressure
projection and the concomitant requirement of a linear solve at
each time step is the potential bottleneck for achieving scalabil-
ity at large core counts. Recent results [19] suggest good weak
scalability for incompressible flow calculations on other large core
count systems.

The illustrative incompressible flow calculation using the ARCHES
CFD component is a Helium plume problem, which requires the
full solution of the Navier-Stokes equations including density vari-
ations. In addition, various sub-models are used to account for any
unresolved turbulence scales that are not directly resolved by the
computational mesh. The helium plume represents the essential
characteristics of a real fire without introducing the full complexi-
ties of combustion and thus serves as an important validation prob-
lem for the ARCHES code.

The computational scenario consists of a 3m3 domain with a 1m
opening that introduces the helium into a quiescent atmosphere of
air with a co-flow of air. Velocity and density conditions at these
boundaries are known. The sides and top of the computational cube
are modeled using pressure and outlet boundary conditions respec-
tively. The CFD solution procedure exercises major components of
the overall ARCHES algorithm, including the modeling of small,
sub-grid turbulence scales. Additionally, the coupled problem com-
bines the effects of fluid flow and turbulent scalar mixing for a full



spectrum of length and time scales without introducing the compli-
cations of combustion reactions.

The overall scalability of the ARCHES algorithm is dictated by
the scalability of the linear solver package. Through a judicious
choice of solver parameters available in the hypre package, good
weak scalability was achieved as in [19]. For the results presented
below in 3, a non-symmetric red black Gauss Seidel preconditioner
was used while skipping levels during the multi-grid solves. Skipping
levels reduces the overall solve time by using interpolated results
at the “skipped” levels. The grid resolution of the problem was ad-
justed such that each core had an equal amount of work. Owing
to the number of cores per node for Kraken and Stampede, the ac-
tual breakdown of the work load was slightly different, i.e. 330K
unknowns/core (Kraken) versus 335K unknowns/core (Stampede).
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The results show that Stampede is roughly three times faster on
a per core basis than Kraken.

5. NATIVE MODEL
As the Intel Xeon Phi is based on X86 technology, porting exist-

ing code to the Xeon Phi is relatively easy. Most codes, including
Uintah, can be compiled to run on the Xeon Phi by simply adding
the -mmic compiler flag. The Uintah framework infrastructure code
and most of its simulation components are written in C++, with
some legacy components written in Fortran. Both C++ and Fortran
are supported by the Intel compiler for the MIC architecture. The
parallel programming libraries used by Uintah, MPI and Pthreads
are also supported natively. However, Uintah depends on many
third party libraries such as libxml2 and zlib. Those libraries are
not currently installed on the Xeon Phi and needed to be built. To
get both Uintah and the other libraries built, cross compiling is re-
quired, as the binaries compiled with the -mmic compiler flag can-
not run on the head nodes of Stampede. As Uintah uses autotools
for its build system, only minor changes were made to support cross
compiling. We were able to get a native Uintah build up and run-
ning on a single Xeon Phi card within 24 hours of having access to
the machine.

When running on a single Xeon Phi card, Uintah uses both MPI
and Pthreads for parallelization. When running with Pthreads on a
shared memory node, Uintah also uses lock-free data structures to
allow concurrent access to shared object such as the Data Warehouse
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Figure 4: Strong scaling of Uintah AMR MPMICE simula-
tion on single Xeon Phi card (MPI, Pthreads and Pthreads with
lock-free data structures)

(a simulation variable repository) without using high-level and typ-
ically high-overhead Pthread read-write locks. This lock-free Data
Warehouse uses built-in atomic operations that are supported in
the gcc compiler such as fetch_and_add and compare_and_swap.
Those gcc built-ins are not supported in earlier versions of the Intel
compiler. However, this issue has been solved by using equivalent
atomic operations in older Intel compilers or by using the newer
Intel compiler. Figure 4 shows strong scaling results of the Uintah
AMR MPMICE simulation on a single Xeon Phi card comparing
pure MPI, Pthreads with read-write locks and Pthreads with lock-
free data structures. Two MPI ranks or Pthreads per Xeon Phi
core are used for this benchmark. These results show that Uintah
performs and scales better when using a combination of MPI and
Pthreads as opposed to an MPI-only approach.

6. OFFLOAD MODEL
Although the directive-based approach, using the Xeon Phi syn-

chronous offload model seems the most attractive to use initially,
we discovered this model is more difficult to implement than we
originally anticipated for a general purpose framework like Uintah.
In order to use this pragma-based offload model, all functions called
from the Xeon Phi must be defined with the offload attribute:

__target(mic)

Due to the complexity of the heavily templated Uintah code, we
essentially need to define almost everything with this attribute or
rewrite a particular task with a simple C/C++ structure, avoiding
the complexities of the infrastructure code. For Uintah to make
effective use of this model, the Xeon Phi asynchronous offload fea-
tures must be used. These features include:

1. asynchronous data transfer

2. asynchronous compute

3. memory management without data transfer.

Using these asynchronous API offerings, PCIe latency can be hid-
den by overlapping MPI communication with computation on both
the host CPU and the Xeon Phi co-processor. The key component
in making this work is to implement a mechanism to detect comple-
tion of the asynchronous data copies to-and-from the co-processor.
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This approach is nearly a perfect analog to the mechanism cre-
ated in [11] to orchestrate and manage asynchronous data copies
to-and-from on-node GPUs. In the context of the Xeon Phi asyn-
chronous offload model, an offload region can be executed asyn-
chronously when a signal clause is included with the directive. All
asynchronously offloaded data and computation can be associated
with this signal clause. Detecting completion of this operation is
achieved with explicit API calls. For example, the API call:

_Offload_signaled(mic_no, &c)

tests whether the computation signaled with c has finished. This is
a non-blocking mechanism to check if offload has been completed.

Using the Xeon Phi asynchronous offload features, we simply
generalize the existing GPU task queues to become device task
queues and add the associated logic to the Unified Scheduler and
Runtime System from [14] to become what was shown in Figure 1
of Section 1. This implementation is currently underway and test-
ing it is part of our future work.

7. SYMMETRIC MODEL
Uintah’s directed acyclic graph (DAG) based runtime system al-

lows full utilization of all available cores on the host CPU and
Xeon Phi co-processors easily through the symmetric programming
model. The simulation grid in Uintah is partitioned into hexahe-
dral patches by a highly scalable regridder and assigned to nodes
by a measurement-based load-balancer [4]. In each MPI process,
the Uintah runtime system will schedule tasks on local patches by
using a local task graph and data warehouse. The task graph is
a DAG [5] which is compiled by making connections on task’s
required and computed variables. The Uintah scheduler uses the
task graph to determine the order of execution, assign tasks to lo-
cal computing resources and ensure that the correct inter-process
communication is performed. Uintah use Pthreads for intra-node

task scheduling. Each core directly pulls tasks from multi-stage
ready-task queues without any intra-node communications taking
place. This runtime system is shown to fully use all available cores
on-node, regardless of the number of cores.

When running with the Xeon Phi symmetric model, two bina-
ries are required, one for host CPU(s) and one for Xeon Phi co-
processor. Since the Xeon Phi has significantly more cores than
the host CPU, more threads are created in MPI ranks running on
the Xeon Phi than MPI ranks running on the host CPU. In a typi-
cal Uintah run, we create 120 threads per Xeon Phi and 16 threads
(one per core) for the host CPU(s). For example, to run symmetric
mode, we used the following command line:
mpirun.hydra -n 4 ./sus -nthreads 16 input.ups;
-n 4 ./sus-mic -nthreads 120 input.ups

This will run Uintah on 4 CPU hosts with 16 threads per host and
4 Xeon Phi cards with 120 threads per card at the same time.

With some MPI ranks running on one architecture while other
MPI ranks run on a different architecture, it is important to make
sure that all ranks execute in a consistent way. Errors may happen
when control logic based results differ between the Xeon Phi and
host CPU, such as MPI messages based on floating point calcula-
tions. In Uintah, a common operation when running with AMR
is to find cells in a finer level based on a point that is computed
from coarser level, which are then sent from the finer level cells
to coarser level. Figure 5 shows a real AMR example in Uintah,
in which a point is computed by the division of two double pre-
cision numbers that are known globally to all MPI ranks. The al-
gorithm guaranteed that all ranks should compute this point as the
same value such that the sending side will pick the same interval of
cells as the receiving side (left side: host-only model). However,
while the algorithm is consistent, when one rank runs on the Xeon
Phi, the computed value may be inconsistent. In this example, the
CPU side receiver picks intervals beginning with 162 however the
Xeon Phi sender picks interval beginning with 161. Hence, an MPI
buffer mismatch error occurs due to a floating point operation that
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is not consistent between the Xeon Phi co-processor and host CPU
(right side: symmetric model). To fix this error, a higher precision
compiler flag was used at the cost of lower performance for this
method.

Figure 6 shows preliminary scaling results on Stampede with
multiple Xeon Phi cards and host nodes using the symmetric model.
Usign this model, Uintah can strong scale up to 16 Xeon Phi cards
(the current Stampede MIC development queue limit), however the
scaling efficiency is limited due to load imbalance between host
CPU and Xeon Phi. The reason being that the Uintah load bal-
ancer currently assigns host MPI ranks and Xeon Phi ranks the
same workload. We detected a load imbalance up to 60% for this
benchmark. The workload ratio of CPU to Xeon Phi should be
computed based on profiling. We will develop a new load balancer
to profile and predict the work load on the host CPU and Xeon Phi
card separately to solve this problem.

8. CONCLUSIONS AND FUTURE WORK
We have described our preliminary experiences with Stampede

using the Uintah Computational Framework with an emphasis on
understanding the performance implications of the new Intel Xeon
Phi Coprocessor (MIC Architecture). Using only the host CPUs
for computations, Stampede is nearly 3X faster than Kraken for
a complex reacting flow CFD calculation. The Uintah architec-
ture has a runtime environment which has been shown to be highly
adaptable to the heterogeneous architectures that are emerging in
the high performance computing world [11, 14]. This adaptability
has allowed Uintah to utilize the range of usage models provided
by the Xeon Phi. Of these usage models, we found the symmetric
model to best fit Uintah, and required only very small modifica-
tions to the Uintah runtime system to use both the host CPUs and
Xeon Phi together. Using the Xeon Phi symmetric model yielded
excellent strong scaling characteristics up to 16 Xeon Phi cards (the
Stampede MIC development queue limit at the time).

Due to different performance characteristics between the host
CPU and the Xeon Phi, our scaling efficiency was limited. This
will require us to develop an improved load balancer as part of our
future work on Stampede to make efficient use of the Xeon Phi
symmetric model. Specifically, the load balancer needs to be up-
dated to distribute a given workload according to which processing
unit an MPI process is running on. This will expand the current
forecast method to profile the host CPU and Xeon Phi separately,

as the Xeon Phi and host CPU have different levels of concurrency.
For the Xeon Phi, finer patch sizes should be used to keep the many
available threads busy and for the host CPU, larger patches are
needed to better utilize the larger cache. This change will require
the Uintah regridder to be able to generate different patch sizes
based on the target processing unit.

To efficiently use the Xeon Phi asynchronous offload model,
work is now underway within the Uintah runtime system to gen-
eralize its existing GPU task queues to become device task queues
with associated logic. Using this design, we hope to provide the
Uintah framework with an additional way to achieve high perfor-
mance from the Xeon Phi co-processor.

We have also discovered the necessity in making use of the long
vector units available on the Xeon Phi, and will so investigate ex-
plicitly using its 512-bit vector instructions as the C++ iterator
loops currently used throughout Uintah cannot be easily be opti-
mized automatically by the compiler.
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