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ABSTRACT

Quantitative techniques for visualization are critical to the success-
ful analysis of both acquired and simulated scientific data. Many
visualization techniques rely on indirect mappings, such as transfer
functions, to produce the final imagery. In many situations, it is
preferable and more powerful to express these mappings as mathe-
matical expressions, or queries, that can then be directly applied to
the data. In this paper, we present a hardware-accelerated system
that provides such capabilities and exploits current graphics hard-
ware for portions of the computational tasks that would otherwise
be executed on the CPU. In our approach, the direct programming
of the graphics processor using a concise data parallel language,
gives scientists the capability to efficiently explore and visualize
data sets.

CR Categories: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques

Keywords: Visualization systems, hardware acceleration, multi-
variate visualization, volume rendering.

1 INTRODUCTION

The visualization and analysis process involves the investigation of
relationships between the numerical and spatial properties of one or
more data sets. Many different visualization processes use indirect
mappings, such as transfer functions, to assign optical properties
like color and transparency to data values. While these techniques
can be powerful, they have had limited acceptance in the scientific
community because they require scientists to work in a secondary
data space (e.g. the transfer function domain). This often makes it
difficult to efficiently express queries and mathematical operations
that would be natural in the original data space. As the success of
software packages like MATLAB and Mathematica have shown, it
is beneficial to have the ability to directly perform mathematical
operations when exploring and analyzing data. Although this ap-
proach is effective and expressive, due to the computational costs
involved in evaluating mathematical expressions, it often fails to
provide users with an interactive experience. The power and pro-
grammability of today’s commodity graphics hardware provides a
unique opportunity to help reduce the impact of these calculations.

We have developed Scout – a software system that provides expres-
sion based queries which are evaluated in the data space. In this
case, we consider a query to be a set of relational and conditional
expressions based on numerical values. This system reduces the
computational bottleneck by utilizing the graphics processor (GPU)
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not only for rendering, but also as a computational co-processor re-
sponsible for offloading portions of the work that would tradition-
ally be executed on the CPU. The language-based interface allows
domain scientists to process multivariate data, express derived data,
and define the associated mappings to the final image in a more fa-
miliar environment than many graphical user interfaces provide. A
key feature of our approach has been to keep the interface to the
GPU as simple and expressive as possible, while at the same time
revealing the underlying parallel capabilities of the hardware. This
has been done by using a data-parallel syntax that reflects the un-
derlying single-instruction-multiple-data (SIMD) characteristics of
vertex and fragment programs on the GPU.

In addition to reducing the workload on the CPU, Scout also ben-
efits from the computational performance rates of the GPU. In
our experiments, the graphics hardware routinely out-performs the
main processor. This performance gain is due to the parallel,
streaming architecture, and the high-speed local memory systems
of the card. The GPU architecture also allows for derived values to
be computed as part of the streaming process and thus avoids the
need to allocate system memory for intermediate storage. Finally,
by storing data sets on the graphics card we can amortize the cost of
transferring data across the system bus, which would generally be
a requirement if the CPU were responsible for computing derived
values. It is important to note that this benefit often increases the
amount of data that must be stored on the GPU.

In the following section, we discuss related efforts and present a
brief review of the latest GPU related research activities. Section 3
provides an overview of the features and design of the Scout soft-
ware and programming language. Section 4 presents the results
of applying Scout to different visualization tasks. Finally, Section
5 discusses conclusions, improvements, and future research direc-
tions.

2 RELATED WORK

2.1 Expression Evaluation for Visualization

The calculator paradigm of deriving data from equations is uti-
lized by the MATLAB and Mathematica systems, allowing scien-
tists to compute and plot the results of various mathematical expres-
sions [17, 26]. These packages provide excellent insight into for-
mal mathematical models, but are inefficient for processing large
data sets, and thus not typically used. Data-flow systems such as
OpenDX and SCIRun provide calculator interfaces through their
data-flow modules [1, 10, 20, 22]. These systems compute derived
field data, but employ the CPU and memory of the host system.
For large fields, the computation process of the derived field is non-
interactive.

Moran and Henze describe a system based on the calculator
paradigm, the Demand Driven Visualizer (DDV), for computation
and visualization of fields derived from large datasets [18]. This ap-
proach employs both sparse traversal and lazy evaluation to avoid
computation at each grid location, thereby running faster than eager



evaluation systems. This work is similar to Scout since both sys-
tems are based on the application of visualization to derived fields
which are expressed by mathematical equations. The focus of DDV
is to expedite the computation of derived fields by using lazy eval-
uation. Since this system runs entirely on general purpose proces-
sors, the result is a fast but non-interactive visualization system.

Jankun-Kelly and Ma describe a spreadsheet-like system for data
exploration [9]. This system provides an interface through a script-
ing language for performing operations on data. As such, one can
view this system as providing a calculator functionality that exe-
cutes on the main CPU. Interactivity timings were not provided,
but using the CPU without sparse traversal and lazy evaluation was
shown to be non-interactive by Moran and Henze [18].

2.2 Graphics Hardware

Since the 1990s the power of commodity graphics hardware has
seen incredible growth. This has been realized in terms of perfor-
mance, programmability, and increased arithmetic precision – all
at an amazingly low price. Even though these capabilities have
been primarily driven by the entertainment industry, many active
research efforts are leveraging GPUs for advanced rendering, visu-
alization, and general purpose computation.

As several efforts have shown, the streaming architectures of the
latest graphics cards from ATI [2] and NVIDIA [19], are capable
of outperforming CPUs on specific computational tasks [8]. In par-
ticular, the GPU has been used for several general scientific com-
puting tasks. For example, Krüeger and Westermann, Goodnight
et al., and Bolz, et al. have implemented numerical solvers on
the GPU [3, 7, 13]. In addition, Lefohn et al. presented an in-
teractive sparse-grid level set solver [14]. The majority of these
projects have focused on the acceleration of particular algorithms
and have usually been implemented in low-level (assembly) lan-
guage or with one of the higher-level graphics shading languages
such as NVIDIA’s Cg [16].

The Brook programming language allows users to program the
GPU using a data streaming paradigm [4]. Under this model, a new
data type, referred to as a stream, is used to represent a collection
of data which can be operated on in parallel. These streams of data
are then operated on by kernels which are functions that execute
a specific set of instructions on stream data. In comparison to the
work described above, Scout and Brook allow the programmability
of the GPU to be exposed directly to the user through a data par-
allel paradigm. Given the underlying streaming architecture of the
GPU, Scout shares similarities with Brook. For example, data sets
in Scout are equivalent to Brook’s streams, and a Scout program is
a kernel with a result that maps data values to colors. Unlike Brook,
Scout is based upon a more traditional data parallel paradigm and
provides an interactive development environment for the visualiza-
tion and exploration of data.

3 IMPLEMENTATION

Current graphics processors must be programmed directly using a
graphics-specific API, such as OpenGL or DirectX. The clear dis-
advantage of this approach is that all operations must be expressed
in terms of graphics primitives. In this section we present the de-
tails of Scout’s underlying OpenGL-based architecture, the Scout
programming language, and the details of the runtime environment.

3.1 Data Model and Rendering

Scout represents all imported data sets as either one-, two-, or three-
dimensional OpenGL texture maps having from one to four chan-
nels. The main disadvantage of this texture-based representation
is that only regular grid structures are directly supported. One-
dimensional textures are most commonly used as lookup tables,
while two and three-dimensional textures normally represent scien-
tific data. Multi-channeled textures are most useful for representing
vector fields or for packing multiple variables into a single texture.
Data sets may be stored as bytes, shorts, integers, or floats. The
particular data type and the number of channels in a texture may
have an impact on how the data must be represented within a tex-
ture, and may also affect performance. For example, basic OpenGL
floating point textures (GL FLOAT) must have values in the range
[0,1] and a four-channel texture may align better in memory than
a three-channel texture, giving increased performance. The impact
of normalized texture values is discussed further in Section 3.2.

After one or more data sets have been stored in texture memory,
Scout allows users to write a program that maps data values to
a final rendered image. The source code from this program is
compiled to either a single fragment shader or a single vertex and
fragment program pair. The Scout compiler currently generates
low-level code that corresponds to the OpenGL ARB extensions
GL VERTEX PROGRAM ARB and GL FRAGMENT PROGRAM ARB [15].
Once these programs are downloaded to the GPU, geometry is ren-
dered according to the types of data sets that are stored in texture
memory. For two-dimensional data, a single quadrilateral (match-
ing the given data set dimensions) is rendered. In the case of three-
dimensional data, view-aligned slices are rendered that implement
texture based, direct volume rendering [5, 25].

3.2 The Scout Programming Language

In designing Scout we had several goals for the programming lan-
guage:

1. It should be simple and concise. The primary motivation for
this was to make the language easy to learn and use. In ad-
dition, we wanted to assure that compilation times would be
fast enough to guarantee interactive performance for the user.

2. It should reveal the parallel nature of the underlying hardware
without complicating the language. This should be true for
both the SIMD and the 4-vector arithmetic parallelism avail-
able on the GPU.

3. Where possible, the language should hide any nuances intro-
duced by the OpenGL API or the graphics hardware.

4. It should provide the user with flexible methods for producing
both general purpose computations and visualization results.

Of these goals, the most challenging are hiding the details of the
graphics API and the specific hardware limitations of the GPU.
Contemporary GPUs have many constraints; these include restric-
tions on the number of instructions a program may contain, the
number of textures that may be active, the number of local tem-
porary registers that can be used, and the number of parameters that
may be passed in via the OpenGL interface. In addition, OpenGL
(1.5) stores textures internally within the hardware as floating point
values in the range [0− 1]. This forces texture data to be normal-
ized, and when used with scientific data can lead to the loss of im-
portant information. Recent OpenGL extensions have eliminated
this restriction, allowing textures to be stored in an unnormalized
32-bit floating point format. Because current hardware does not



support the blending of these 32-bit values in the frame buffer, they
cannot be used when implementing direct volume rendering. When
possible, Scout uses 16-bit float point values and blending for three-
dimensional texture based volume rendering. 1

Fortunately, the first two goals for the Scout language are easier
to achieve. The instruction set of the GPU is small, and recently
added capabilities for flow control (e.g., loops, true branches, and
subroutine calls) have not yet been implemented in Scout; there-
fore, only simple language structures are currently supported. With-
out considering instruction-level optimizations (e.g., scheduling)
and multi-pass rendering, this limited functionality makes compila-
tion relatively straightforward – provided that the language closely
models the architecture of the hardware. Furthermore, because the
assembly-level instructions of the GPU already use a SIMD and
vector parallel paradigm, the task of supporting a data parallel lan-
guage is greatly simplified. Finally, the constraints that vertex and
fragment programs receive inputs via registers to which they can-
not write, and produce outputs from which they cannot read, can
easily be matched to a limited functional language. Given these
advantages we have loosely based the Scout language on the C*
Programming Language [23]. This results in a language structure
that is simple and can easily be applied to many areas within the
scientific and visualization communities.

All Scout programs achieve their effect by assigning values to pix-
els in the output image. This assignment is made to the prede-
fined 4-component vector variable, image, representing the output
(RGBA) register of the fragment engine. The simplest Scout pro-
gram is:

image = c;

where c is a scalar constant. When assigning a scalar value to a
vector value, the scalar value is simply replicated across all four
components of the vector. In the case of the variable image, the
channels are all clamped to the range [0,1]. Assigning a floating
point value in this range results in a gray-scale image.

The Scout language supports scalar and 4-component vector types,
arithmetic operators (+, -, *, /), relational operators (<, <=, ==, =>,
>, !=), and logical operators (&&, ||, !), matching the functional-
ity of the equivalent operators in the C programming language. In
addition, Scout provides built-in functions for all operators avail-
able on the fragment or vertex engines, such as sin, cos, pow, dot-
product, cross-product, and a few additional functions that are ex-
panded in-line by the compiler, such as hsva, norm, global min,
and global max.

In situations where 16-bit or 32-bit floating point textures are not
available, or when data has been quantized into a non-floating point
type, the Scout compiler automatically includes instructions that
de-normalize texture values into the range of the original data. In
the remainder of this section we will introduce the Scout language
by presenting a series of small programs that operate on a two-
dimensional data set produced by the POP ocean model [6].

When working with data produced by POP it is common to use a
land mask to represent locations where model results have not been
computed. This mask contains 1 at locations where land is present
and 0 for regions of water. The example presented in Figure 1 intro-
duces this mask (land), potential temperature at the ocean surface
(pt), and a one-dimensional array of RGB colors (colormap). We
also make use of the Scout functions, norm, to normalize values
from any dataset into the range [0,1], and positionsof, to return

1NVIDIA’s NV4X series of hardware currently supports this fea-
ture [19].

the number of elements (colors) in the color map. The simple pro-
gram shown in Figure 1 displays black for land values and mapped
color values for ocean temperatures.

// Display color mapped potential ocean surface temperature.

where (land == 1)

image = 0; // Render land as black.

else

// Map temperature values into color look-up table.

image = colormap[positionsof(colormap) * norm(pt)];

Figure 1: Sample Scout code and the resulting image showing the
color mapped potential temperatures and black landmasses.

Input data sets (textures) can be treated as either arrays or as scalars.
When treated as scalars, they are implicitly accessed with the
texture-coordinates of the current output pixel. This scalar syntax is
natural for data-parallel computations, whereas array syntax is use-
ful for referencing neighbors or values in a pre-computed lookup
table.

Scout preserves the ability of the GPU to treat floating point values
as indices (texture coordinates) of a data array. When such an index
value falls between existing array elements, the hardware performs
an interpolation between the neighboring values based on the rela-
tive position of the index. However, in contrast with assembly-level
GPU programming, Scout array indices are based on the dimen-
sion of the given variable (data set). This policy matches the syntax
used by many other languages for multi-dimensional array opera-
tions, and thus makes the language more familiar to scientists. The
array-indices of nearest neighbors are simply ±1 in a given dimen-
sion, relative to the current data-parallel position of the pixel. The
indices of this location are represented by the predefined variables
i, j, and k. We also arrange, where possible, for array index ex-
pressions to be computed on the vertex engine. This is often more
efficient, because the values need only be computed at the vertices
and can then be generated via hardware-supported interpolation at
all other points.

In the next example we add a conditional expression that isolates
a specific range of temperature values. The sample code uses the
hsva() function to produce an RGBA color described in terms of
the HSV color space with the addition of an alpha channel. In
comparison to the RGB color space, the continuous nature of the
HSV space makes it more suitable for mapping colors to a range of
data values. This approach allows users to define a color mapping
dynamically, and thus potentially use many different mappings for
different regions in the data. An rgba() function is also available,
allowing users to define the output color as an additive combination
of color channels. Figure 2 shows both the code and the resulting
image.

The display can easily be tailored with successive conditions to
either emphasize or de-emphasize features, or to present multiple
variables from one or more data sets. Furthermore, we can use spa-



where (land == 1)

image = 0; // render land as black.

// select data range(s) of interest and render as color.

else where (pt < 2.375 || (pt >= 21.0 && pt < 29.5))

image = hsva(240 - (norm(pt) * 240), 1,1,1);// blue to red

else

image = 0.6; // outside data range colored by gray pixels.

Figure 2: Sample source and the resulting image showing the selected
ranges of temperature values.

tial criteria to define regions of interest. Figure 3, illustrates the use
of mathematical expressions to define a circular clipping region,
with a radius of 600 grid units, centered at the point (2400,1000).
The interior of this circle is rendered with temperature values using
the same color mapping applied in Figure 1. The region outside of
the circle is colored by a function that displays blue decreasing from
full intensity to zero intensity, west to east, and green decreasing in
an identical fashion from south to north. The built-in symbols i and
j refer to the x and y coordinates of the current computational grid
cell. The example code also introduces a function that returns the
dimension of a variable along a given axis index, dimof.

The final component of the Scout implementation is the runtime
layer that provides users with an interactive environment for the
development of code and the exploration of data.

3.3 Runtime Environment

The Scout runtime environment consists of a user interface con-
taining a code editor and a rendering window. The user interface
provides support for invoking the Scout compiler in addition to
a mouse-based interface for navigation (rotation, translation, and
zooming) within the rendered data. A diagnostic window provides
feedback when warnings or errors are detected in the source code
or when hardware limits have been exceeded. The compilation
of a Scout program results in the generation of an assembly level
fragment program, and possibly an accompanying vertex program.
These two programs are interdependent and are treated as a unit.

The assembly program(s) generated by the compiler depend on the
creation of an OpenGL environment by the runtime system. For
example, texture lookups depend upon variables being assigned to
compiler specified texture-units on the GPU. These references are
currently implemented by associating the compiled Scout program
with a set of dependencies. The dependencies identify data sets
used by the program and values for support of operations, such as
normalization, queries of data-range, dimension-size, etc. When a
compiled program is being executed, the runtime system first re-
solves all of the associated dependencies and then binds data to the
proper texture units and loads local variables into the proper reg-
isters. Once these steps are complete, the associated geometry is
generated and sent to the GPU for execution.

// Compute the distance from our location (i,j) to the center

// of the circle clip region at (2400, 1000).

float radius = sqrt(pow(abs(2400-i),2) + pow(abs(1000-j),2));

where (land == 1)

image = 0; // Render land as black.

else where (radius < 600) // Color by pt within the circle.

image = colormap[positionsof(colormap) * norm(pt)];

else

// Color by spatial location. dimof() returns the dimension

// of pt along the given axis index (0: x axis, 1: y axis).

image = rgba(0, i/dimof(pt, 0), j/dimof(pt, 1), 1);

Figure 3: Scout code and rendered image showing temperature within
a circular clipping region and spatially-controlled coloring outside of
the region.

4 RESULTS

The development of Scout has been motivated by the need to solve
advanced visualization and analysis problems in various application
areas. In this section we present examples of this, with a particular
focus on multi-dimensional transfer functions, multivariate visual-
ization, and the derivation of data using the Scout language.

4.1 Multi-dimensional Transfer Functions

Volume rendering applications commonly encounter data sets in
which it is difficult to distinguish between regions due to overlap-
ping boundaries. Multi-dimensional transfer functions are com-
monly used to address this issue, as demonstrated by Kniss et
al. using the Simian volume renderer [11, 12]. The flexibility of
Scout’s programming language allows the implementation of multi-
dimensional transfer functions based on many different variables
(limited only by the number of textures supported on the GPU).

To demonstrate the use of multi-dimensional transfer functions in
Scout we have duplicated one of the results produced by the tri-
angular widget used in Simian. Using Simian, it is possible to set
the transfer function by probing the data and placing widgets in-
teractively with keystrokes. While this is a powerful exploratory
technique, these widgets do not support the use of direct quantita-
tive bounds. We have implemented the triangular transfer function
in Scout by using the density and the gradient magnitude of the
computed tomography generated tooth data set that was explored
by Kniss et al. [11]. The domain of the transfer function is defined
by the range of density values along the horizontal axis, U , and
gradient magnitude values along the vertical axis, V . The imple-
mented triangle function is an isosceles triangle positioned within
the domain such that it’s base is parallel to the U axis and the apex
is pointed downward. The edges of this triangle are defined by the
half angle at the apex θ , the minimum and maximum allowed gra-
dient magnitudes Gmin and Gmax, and the density center point C of



// Compute the half width of the triangle.

width = tan(theta) * gm;

// Compute and clamp the distance from the

// center to density.

where (d >= (C - width) && d < (C + width))

dist = abs(d - C);

else

dist = width;

// Scale alpha value by distance from the center.

where (gm > G_min && gm < G_max)

alpha = 1 - dist / width;

else

alpha = 0.0;

Figure 4: Volume rendered results using triangular transfer functions
from Scout (top) and Simian (bottom). Both images are rendered
with diffuse lighting. This was implemented directly in Scout, but
removed from the sample code for clarity.

the triangle.

To quantitatively calculate the triangle function for a given input
value, we first calculate half the width of the triangle at the gradient
magnitude gm using θ . The distance from the center, to the cur-
rent density value d is calculated and clamped to width. If gm falls
outside of the limits Gmin and Gmax alpha is assigned zero, other-
wise, the alpha value is scaled according to the distance from the
center tapering off to zero as it approaches the edges of the trian-
gle. The Scout code presented in Figure 4 shows the basic details of
this implementation. For comparison, the figure shows the results
produced by both Simian and Scout using triangular functions.

In Scout the elliptical widget can be succinctly described for a 2D
transfer function similar to the 2D spatial clipping circle presented
in section 3.2. While this approach is not as flexible for exploring
unknown data, the ability to directly control the transfer function
using quantitative expressions provides a versatile, and often more
accurate interface for scientists.

4.2 Multivariate Visualization

When analyzing computational modeling results, it is often valu-
able for scientists to study the relationships between several differ-
ent variables. This can be especially true when exploring anomalies
and temporal data. In this section we investigate the multivariate
data produced by a simulation of an of an El Niño-Southern Oscil-
lation (ENSO) event generated by the POP ocean model [6].

During normal Pacific Ocean conditions, the trade winds blow from
east to west across the tropics. These winds cause warm surface wa-
ter to pile up in the western portion of the Tropical Pacific. In the
east, the water that has been pushed to the west is replaced by the
upwelling of cooler water. The ocean state can therefore be sum-
marized as increased sea surface height, increased potential tem-
perature, and an increased thermocline depth in the western Pacific
relative to the east. The thermocline is a sharp temperature gradi-
ent separating the upper layers of ocean water from those at depth.
Under El Niño conditions, the east-west trade winds relax over the
central and western Pacific. This results in a decreased sea surface
height and an elevated thermocline in the west, and an increased sea
surface height and a depressed thermocline in the east.

In order to explore the details of a simulated ENSO event, we have
extracted a 414× 128× 17 region from a global ocean simulation.
The visualization of ocean simulations is often difficult because the
horizontal extent of the data is much greater than the depth. To
make it easier to see details in the data, the data is resampled along
the z axis to produce a 414× 128× 64 data set. Using Scout we
visualize several key features that show the changes that occurred
during the simulation of the 1998 El Niño. Figure 5 shows the
results.

The Figure presents land masses as tan colored regions rendered
with diffuse lighting; with the western Pacific on the left-hand side
of the image. The first condition that we are interested in studying
is the difference between the potential ocean temperature during the
January of the ENSO event and the mean of all January conditions
from the model run. The rendered results show the regions where
this difference exceeds 2.5◦ C as solid magenta (in the east), and
locations where the difference is less than −2.5◦ C as solid blue (in
the west). Both regions are clipped as they pass south of the equa-
tor. This result shows how the increased depth of the thermocline
in the east causes an overall warming in the surface waters, while
the shoaling of the thermocline in the west leads to cooler water
temperatures.

Figure 5 also includes the position of the thermocline near the equa-
tor. The white strip of data shown in the rendered image represents
the position of the El Niño thermocline over the temperature range
19.0◦ C – 21.0◦ C; which is traditionally used as a proxy for the
thermocline in the tropics. The thermocline for the January mean is
also shown for the same temperature range; this surface is colored
by the difference in sea surface height between the ENSO and the
mean data. The differences are color mapped from blue (low) to
red (high). Note the relationship between the two different thermo-
clines: the white, ENSO, surface is higher in the west and lower
in the east. This shows, along with the differences in sea surface
heights, the see-saw pattern that is consistent with the occurrence
of an El Niño.

4.3 Computing Derived Fields

In the process of analyzing data it is often necessary for scientists
to compute one or more derived values. This section demonstrates
the computation of derived variables using Scout.



Figure 5: The result of studying several features that are consistent with an El Niño event. Anomalies in water temperature are shown as solid
magenta and blue and are clipped south of the equator. The white region represents the ENSO thermocline and the color mapped region shows
the mean January thermocline; the colors show the difference in sea surface heights. Land masses are rendered in tan. All variables have been
rendered with diffuse lighting.

The Terascale Supernova Initiative (TSI) project is currently study-
ing the mechanisms responsible for driving core collapse super-
novae [24]. A core collapse supernovae occurs when a iron core
forms in an aging super-giant star. This core is a result of several
sequences of fusion reactions which come to a halt once the iron is
produced. In this state, the core no longer supports these reactions,
and internal gravity pulls inward on the core until it collapses into
an incredibly dense region that will eventually become a neutron
star. The core becomes so dense that the collapse stops, and a shock
wave is sent outward through the gas layers that are rushing in to
the fill the void left from the collapse. The expanding shock wave
from the core, and the inward collapse of the outer gases result in
the explosion of the star.

The goal of the computation presented below is to model the behav-
ior of the core during the time in which the shock wave is expand-
ing. The simulation is a hydrodynamics-only calculation in which
the shock wave is modeled after it has moved approximately 200
km from the center of the star. The simulation is computed on a
320× 320× 320 grid and produces the following variables: pres-
sure (p), density (ρ), and velocity (−→v ). From these variables we
can define two additional variables of interest: entropy (e) and tan-
gential velocity (vt ). Entropy is given by the equation, e = p/ρ4/3.

Tangential velocity is computed as follows. Let −→r represent the
radius vector from the center point C of the grid to a given location
on the grid. Then for each point P on the computational grid:

−→r = (Px−Cx)i+(Py−Cy)j+(Pz−Cz)k. (1)

Next we compute the square of the radial velocity (vr):

v2
r =

−→v ·−→r
−→r ·−→r

. (2)

This then allows us to compute the tangential velocity:

vt =
√
−→v ·−→v − v2

r . (3)

Using these derived fields we can begin to explore the results pro-
duced by the simulation.

Due to the size of the full floating point data sets, it is not pos-
sible to fit two variables in the texture memory of most graphics
cards, which are commonly limited to 256 MB. This is perhaps the
most limiting factor to our approach of leveraging the GPU. In or-
der to compute entropy and tangential velocity we have resampled
the data to 256×256×256. Figure 6 shows the computed entropy.
The image was produced by a Scout program that computes en-
tropy, selects two different ranges of entropy using a where state-
ment, and finally colors them by the magnitude of the velocity field.
The first entropy range is between 0.070 and 0.076 and represents
high entropy values. This region is partially clipped away to reveal
the structure of the turbulent flow in the interior of the core. The
second range (0.01 to 0.04) represents lower entropy values and
isolates the details of the shock front.

The computation of vt gives insight into the structure and behavior
of the flow created by the shock wave within the core. Figure 7
shows the results produced by computing vt and volume rendering
the results. The transparent white region represents low entropy
values, and is displayed to show the shock front as a frame of ref-
erence. The shell is clipped away by two arbitrary clipping planes
that were computed using the plane equation. The code for this ex-
ample follows directly from the equations given above and is not
presented.

4.4 GPU Versus CPU

The ability to derive data values as part of the rendering process
can reduce the amount of required system memory, and eliminate
the travel of recomputed data between the CPU and GPU. It is im-
portant to note that these benefits often come at the price of re-
quiring that more texture memory be used on the GPU. As noted
earlier, this is a clearly a major disadvantage of using the GPU. In
order to complete the comparison between the CPU and GPU this
section reviews the performance of the computations carried out in
Section 4.3.

Table 1 presents the execution times for the computation of entropy,
magnitude of the velocity field, and the tangential velocity. The ta-
ble compares two different versions of the CPU code. The first
version is compiled using GNU GCC 3.3.3 with full optimization
(-O3) and the second uses version 8.0 of the Intel C++ compiler



// Compute entropy.

float ent = pressure / pow(density, 4.0/3.0);

// Compute |v|.

float vmag = sqrt(dot3(v, v));

where(i > 115 && ent > 0.070 && ent < 0.076)

image = hsva(...);

else where(ent > 0.01 && ent < 0.04) // shock wave

image = hsva(...);

else

image = 0; // transparent black

Figure 6: Volume rendered results of two selected entropy ranges
colored by corresponding velocity magnitude. Both the entropy and
velocity magnitude were computed directly using Scout.

which is capable of producing code that uses the Streaming SIMD
Extensions (SSE). The use of the SSE instructions can result in
dramatic performance improvements. The CPU timing results are
measured using the hardware counters available on the main pro-
cessor. The benchmarks were run on a 3.0 GHz Intel Xeon EM64T
processor with 4 GB RAM and an NVIDIA Quadro 3400 (con-
nected via PCI Express).

The GPU benchmarks are measured by instrumenting Scout with
the CPU’s hardware counters and then rendering the same image
multiple times and taking the average of the resulting execution
times. In order to study the performance of the GPU directly, the
cost of the first rendered frame is discarded to avoid including the
costs of transferring textures and other data to the GPU. It is im-
portant to note that this does not present an accurate overall view
of Scout’s performance but is done intentionally to measure perfor-
mance characteristics of the graphics hardware.

Code CPU CPU w/ SSE Quadro FX 3400 (NV45)
entropy 3.3 0.42 (7.9×) 0.12 (27.5×)
|−→v | 0.27 0.19 (1.4×) 0.10 (2.7×)
vt 0.62 0.40 (1.55×) 0.17 (3.65×)

Table 1: Table 1: CPU vs. GPU computation times in seconds. All
times reflect computation times only, overhead costs are not included.
Values in parentheses show the speed up achieved in relation to the
times presented in the CPU column.

All Scout programs incur an overhead cost associated with the pro-
cess of compiling code, downloading textures, downloading the
compiled fragment and vertex programs, sending the necessary ge-

Figure 7: A volume rendered representation of tangential velocity.
The shell of low entropy regions is shown as transparent white to
emphasize the shock front as a frame of reference.

ometry to the GPU, and other tasks carried out by the runtime sys-
tem. Of these operations texture download rates clearly dominate
the overhead execution time; the other operations require only a
few microseconds each to complete. Large 32-bit floating point
textures can be downloaded at approximately 200-300 MB/second.
Our benchmarks show that a large data set, such as the TSI veloc-
ity field, takes approximately 1 second to download to the graphics
card. It is possible to download textures at a faster rate (700-800
MB/second) over PCI Express – these rates require the use of byte-
based texture data and therefore were not benchmarked. Overall,
the GPU can achieve very fast computational rates, but in order to
outperform the CPU it is necessary to amortize the cost of the trans-
fer of data between main memory and the graphics card.

5 CONCLUSIONS AND FUTURE WORK

This paper has introduced Scout, a hardware-accelerated software
system for the visualization and analysis of data using quantita-
tive, query based expressions. This approach allows scientists to
work directly in the original data space using a direct programming
methodology. By leveraging the GPU as a co-processor we have
allowed for interactive response rates, reduced main memory costs,
and, in several situations, decreased the amount of data transfered
over the system bus.

Although Scout allows the use of quantitative expressions to con-
trol the visualization process, it does not yet provide the user with
a complete set of general purpose operations or direct quantitative
feedback. Supporting these features is critical to providing a com-
plete analysis environment. The task of providing more advanced
language features on the GPU can be challenging. In particular,
the limits of the GPU (number of supported instructions, number
of textures, and number of temporary variables) require the deter-
mination and management of multiple rendering passes. We are
collaborating with UC Davis to incorporate their multi-pass parti-
tioning technology to limit the impact of these restrictions [21].

Although Scout provides interactive performance, there are many
data sets that easily exceed the capabilities of a single GPU. To ad-
dress this challenge we are exploring the use of Scout in a parallel,
cluster-based, environment. In addition, there are likely to be many



situations where a GPU-based co-processor may not be the most
advantageous approach. In this situation we are investigating the
use of other processor technologies to help improve the data visu-
alization and analysis process.

6 ACKNOWLEDGMENTS

This work was sponsored by the Mathematical, Information, and
Computational Sciences Program which is part of the DOE Office
of Science. A very special thanks to John Blondin and Tony Mez-
zacappa of the TSI project, and JoAnn Lysne, Matthew Hecht and
Mat Maltrud from the COSIM project. Without their help, lively
discussions, and enthusiasm, this paper would have been impossi-
ble. Thanks to Nick Triantos from NVIDIA and Mark Segal at ATI
for their technical help as well as donating hardware to our effort.
Gordon Kindlmann’s help and advice as well as his nnrd software
were used for data manipulation. Finally, thanks to the reviewers
for their comments and suggestions. This paper has been released
under LA-UR-04-6226.

REFERENCES

[1] G. Abram and L. Treinish. An extended data-flow architecture for
data analysis and visualization. In In Proceedings of Visualization
’95, pages 263–270. IEEE CS, October 1995.

[2] ATI. ATI Technologies Inc. http://www.ati.com, 2004.
[3] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse
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