
Volume Rendering for Curvilinear and Unstructured Grids

Nelson Max, Peter Williams, Claudio Silva, and Richard Cook
Lawrence Livermore National Laboratory

{max2, plw, rcook}@llnl.gov, csilva@cse.ogi.edu

Abstract

We discuss two volume rendering methods developed
at Lawrence Livermore National Laboratory. The first, cell
projection, renders the polygons in the projection of each
cell. It requires a global visibility sort in order to compos-
ite the cells in back to front order, and we discuss several
different algorithms for this sort. The second method uses
regularly spaced slice planes perpendicular to the X, Y, or
Z axes, which slice the cells into polygons. Both methods
are supplemented with anti-aliasing techniques to deal
with small cells that might fall between pixel samples or
slice planes, and both have been parallelized.

1. Introduction

In volume rendering for scientific visualization, a 3D
scalar field is represented by a cloud of very small glowing
particles, whose color and density depend on the scalar
variable. The rendering then calculates how this cloud
would appear in a given view (see [1]).

If the scalar field is sampled on a cubical or rectilinear
grid, graphics hardware can render the volume in real
time, using texture mapping [2]. However, at Lawrence
Livermore National Laboratory we need to render volumes
from physics simulations on curvilinear grids, or on un-
structured finite element grids with mixed element types,
currently with the topology of tetrahedra, cubes, triangular
prisms, and square pyramids. Over the past 13 years, we
have worked on two methods for directly rendering the
cells of such general grids, without resampling the data
onto a rectilinear grid.

The cell projection method divides the projection of
each cell into polygons, and uses graphics hardware to
draw them. This was first done for tetrahedra by Shirley
and Tuchman [3]. Our extension to general polyhedra is
described in section 2 below. In order for the hardware to
composite these polygons correctly, the cell must sorted in
back to front order, and section 3 describes several method
for doing this. In our general grids, cells may have non-
planar quadrilateral faces, which may cause problems for
both the sorting and the polygon scan conversion. Section
4 describes a solution which selectively subdivides such

cells into tetrahedra, only for views where they would
cause problems.

The second method, described in section 5, involves
slicing the cells into polygons by a collection of closely
spaced parallel planes, as proposed by Yagel et al. [4], and
rendering these polygons. In section 6, we describe how
we slice only those cells above a specific volume thresh-
old, and render the others, which might lie between the
slice planes or between pixel samples in these planes, us-
ing the anti-aliased ellipsoidal splats of Zwicker et al. [5].

Large datasets require parallel processing for interac-
tive visualization, and in section 7 we describe how we
have parallelized parts of our two rendering methods.

2. Polyhedron Projection

The projections of the edges of a convex polyhedral
cell divide the image plane up into polygons. Each of these
polygons lies within the projection of a single front-facing
face and a single back-facing face of the cell. Therefore,
for an orthogonal projection, the length l of the viewing
ray segment within the cell varies linearly across the poly-
gon, and can be interpolated linearly by the hardware.

Figure 1. Projection of a triangular prism.

At the “thin” vertices A, B, C, D, and F in figure 1, the
segment length, and therefore the compositing opacity, is
zero, and the color is the one associated with the scalar
value at the vertex. At the thick vertices, the length of the
ray segment must be calculated geometrically, by finding
the segment endpoints on the front and back faces which
project to the vertex. We assume initially that the scalar
field varies linearly across the cell, and that the transfer

G

A

B

C

D

E

F

functions that specify the particle color and density as a
function of the scaler value are also linear. (See Max et al.
[6] for a discussion of these assumptions.) Then the color
at the ray segment endpoints can be obtained by interpola-
tion across polygons (for the rear endpoint at E) or edges
(for the endpoints of G). The densities κ for the cloud par-
ticles can similarly be interpolated. If κavg is average of κ
at the segment endpoints, the opacity α for compositing
the segment is

α(τ, l) = 1. - exp(-κavgl) (1)

as explained in [1]. Shirley and Tuchman [3] took the col-
or for the thick vertex as the average of the colors at the
segment endpoints. We have optionally used an analytic
integration formula, derived in [7] and [8], which takes
longer but more accurately accounts for the fact that the
particles at the front of the segment partially occlude those
at the rear. The color is then linearly interpolated across
the polygon by the Gouraud shading hardware. This is
only an approximation, but the results look good.

Shirley and Tuchman [3] also linearly interpolate the
compositing opacity α across the polygons in hardware.
This is a more serious approximation, because of the non-
linear exponential in equation (1). As shown in figure 2, it
can cause derivative discontinuities in α, which result in
disturbing Mach bands in the image.

Figure 2. Top: cross section for a scan plane through
two adjacent cubes. Middle: two curves linearly inter-
polating the α values for the two cubes. Bottom: the
results of compositing these two curves.

To avoid this problem, we use a 2D texture table for
alpha. The two texture coordinates are κavg and l, which
do vary linearly across the polygons, and therefore can be
correctly interpolated in the hardware. The texture is load-
ed with the values from equation (1), and then returns the
correct exponential per pixel during rendering.

Shirley and Tuchman [3] calculated the topology for
the projection of a tetrahedron into from one to four trian-
gles using a collection of dot and cross products involving
the vertices and the viewpoints to distinguish the different
cases. Recently, these computations have been accom-
plished in hardware, using an advanced programable ver-
tex “shader” engine [9].

For more general cells, we us an incremental method
to build the image plane subdivision. The projected edges
of the cell are added one by one to the subdivision, starting
with one infinite region with no boundary. An edge may
create a new boundary cycle (as the first one does), create
a new polygon by closing a cycle, or subdivide existing
polygons and edges by slicing across them.

This incremental method is slow, and not completely
robust, since it uses floating point computations to deter-
mine the topology of the projection. In curvilinear grids,
which are common in our simulations, the topology of the
projections of most of the cells will agree with one of the
three non-degenerate perspective projection topologies for
a cube. We use a collection of tests involving the vertex
projections to identify these cases, and look up the stan-
dard subdivisions for them. This speeds up our projec-
tions, even though the overhead of these tests is added to
the cost of doing the general incremental subdivision when
the tests fail. Schussman and Max [10] give a much faster
method for doing the tests and look-up for the case of a cu-
bical grid in perspective.

3. Visibility Sorting

For correct back-to-front hardware compositing, the
cells must be visibility sorted into an ordered list. By defi-
nition, this means that if cell A partially occludes cell B
from a particular viewpoint V, cell B must come before cell
A in the list.

The Newell, Newell, and Sancha sort [11] for poly-
gons was extended to the case of polyhedra in [12]. The
cells are initially sorted from back to front by the depth co-
ordinate of their rear-most vertex. The rearmost cell A
from the list is then tested against all the other cells. If it
does not occlude any of them, it is removed from the initial
list and placed on the output list. On the other hand, if a
cell B is found that is occluded by cell A, B is moved to the
rearmost position on the initial list and the testing pro-
ceeds with it instead. When cell B is moved, it is marked
as having been moved, and if there is a second attempt to
move it, it is part of a visibility cycle of cells, each of

which occludes the next cell in the cycle. In this case, we
know that no visibility sort is possible unless one of the
cells in the cycle is subdivided.

Testing pairs of cells for mutual occlusion is the most
expensive part of this algorithm, since it must be done
O(n2) times, for a data volume of n cells. Therefore a se-
quence of tests of increasing difficulty are used, in the
hope that the early tests in the sequence can eliminate the
possibility of occlusion before the more difficult tests are
needed.

There is a faster O(n) algorithm that works for a con-
vex grid of convex cells. It is based on pairwise ordering
relations between cells that share a common face. If the
viewpoint V is on the same side of the face F between cells
A and B as cell A is, then cell A occludes cell B, but cell B
cannot occlude cell A. In this situation, cell B must come
before cell A in the visibility sort for viewpoint V, and we
write B <vp A. This <vp relation defines a partial order on
the cells, and any (total) sorted order consistent with this
partial order is a visibility ordering. The reason is that if
cell A occludes cell B, there is a viewing ray R from V
which intersects cell A and then cell B. Since the grid vol-
ume is convex, the ray R does not leave the mesh between
cells A and B; instead it passes through a sequence of in-
tervening cells C1, C2, ..., Ck. Each pair of consecutive
cells in the list A, C1, C2, ..., Ck, B is separated by a com-
mon face, so we have the sequence of relations B <vp Ck
<vp Ck-1 <vp ... <vp C1 <vp A. Thus cell B must come before
cell A on the sorted list.

We represent the relations <vp as a directed graph,
whose nodes correspond to the cells. There is a directed
edge from B to A whenever B <vp A. A topological sort of
this directed graph will produce a visibility ordering. It
works as follows.

For all cells C, set C.incount = 0. For all directed edg-
es corresponding to a relation B <vp A, increment A.in-
count. For each cell A, A.incount now counts the number
of cells that A directly occludes across a common face. For
all cells C, if C.incount is zero, put C on a queue of cells
that can be added to the output list at any time, because
they do not occlude any other cells.

While the queue is non-empty, remove a cell C from
the queue, and for all directed edges from C to a cell B,
decrement B.incount. If any such B.incount reaches zero,
put the cell B on the queue. Then add cell C to the next po-
sition on the visibility sorted output list.

The algorithm terminates when the queue becomes
empty. If this happens before all cells are added to the out-
put list, there is a visibility cycle. The steps in the initial-
ization of the C.incount values treat each cell twice, and
each directed edge once. Then in the while loop, each cell
and each edge are again treated once. Our cells have only a
finite number of allowed topological types, and the maxi-

mum number of faces (generating directed edges) per cell
is six. Therefore the algorithm takes time O(n).

This algorithm will not necessarily be correct for a
non-convex grid, because the viewing ray R may leave the
grid volume through an external face, cross a gap of space
outside the grid, and then re-enter another cell. Cells with
external faces are called boundary cells; suppose there are
b of them. If we can add extra relations between these
boundary cells, corresponding to the ray segments across
the gaps, the topological sort will again produce a visibili-
ty ordering.

If we perform pairwise occlusion tests between all
O(b2) pairs of boundary cells, we can find these extra rela-
tions in time O(b2), so the algorithm will cost O(n + b2). In
Comba et al. [13] we combine a BSP-tree sort of the exter-
nal faces and a brute force comparison of each cell having
an external face with a small list of p “partially projected”
cells. Takes time O(n + b p) when BSP trees are balanced,
but this is not always the case. There is also significant
preprocessing overhead to create the BSP trees.

Recently, we have tried a new approach [14]. We scan
convert all the exterior faces into a software A-buffer,
which maintains a sorted list of all the viewing-ray / exte-
rior-face intersections per pixel. Then we extract relations
for the ray segments across gaps by looking at successive
pairs of intersections in the A-buffer. By sorting the exteri-
or faces initially by depth of their centroids, we insure that
a new intersection almost always occurs at the head of the
A-buffer list for each pixel, so maintaining the list per pix-
el is inexpensive.

This algorithm usually takes time O(b log b + w h + a
+ n). The first term is for the sort of exterior faces, the sec-
ond term is the number of pixels in the final rendered im-
age, and represents the overhead in setting up and
checking the A-buffer lists. The third term represents the
cost of scan converting the exterior faces, extracting from
the A-buffer lists the extra relations across the ray gaps,
and processing them during the topological sort. This is
proportional to the projected area a of the external faces,
measured in pixels. The last term is for processing the re-
lations across shared faces, as in the case of a convex grid.

This algorithm does not produce a true visibility sort,
because cells may occlude each other along viewing rays
which do not pass through pixel centers. However, since
our A-buffer rays are the same as the pixel sample rays
used in the final hardware rendering, the image will be
correct. This sorting method is faster than any of the others
we have tried for general non-convex grids.

4. Non-Planar Faces

In a curvilinear grid, the four vertices of a quadrilater-
al do not in general lie in the same plane. If a cell has a
non-planar quadrilateral face, a viewing ray can leave the

cell and enter again across the same face, so a visibility
sort is impossible. In addition, such a face can project onto
the image plane with two of its edges crossing, a so-called
“bow tie” polygon that also presents problems for render-
ing. Whether or not a given quadrilateral presents such a
problem depends on the viewpoint. Therefore we have de-
veloped a viewpoint-dependent method of dividing the
problem quadrilaterals into two triangles, and the problem
cells into tetrahedra.

Our grids are defined by an ordered list of vertices
with 3D locations and scalar field values, and a list of cells
of each topological type, with index pointers for their ver-
tices. To subdivide a quadrilateral face into triangles, we
draw a diagonal from its vertex of lowest index. (For more
general cell topologies, whose faces could have more than
four vertices, we might draw more than one diagonal from
the lowest index vertex.) This choice of diagonals is con-
sistent for the two cells sharing a face, since it depends
only on the indices of the vertices on that face. It is also
compatible with subdividing any or all cells into tetrahe-
dra, by connecting with tetrahedra the vertex of lowest in-
dex in the whole cell to all triangles from faces not sharing
this vertex. This is because the lowest index vertex of the
whole cell is also the lowest index vertex of any cell face
sharing it.

Once we decide on the diagonals, there are straight-
forward tests to detect whether a cell with its faces so tri-
angulated can intersect a viewing ray in more than one
segment. For example, in figure 3, cell A is a problem cell
for the visibility sort if a viewing ray can intersect both tri-
angles EFG and EGH. The presence of this problem de-
pends on the viewpoint V, and can be detected using the
plane equations of the triangles, and the locations of V, H,
and F. In the figure, cell A is a problem cell and would be
subdivided into tetrahedra for this viewpoint. However,
cell B is not a problem cell, and would not be subdivided.

Figure 3. Two cells sharing a non-planar face.

We also subdivide into tetrahedra any cells that con-
tain contour surfaces. Since the scalar field is interpolated
linearly across tetrahedra, the contour surfaces intersect a
tetrahedron in a collection of parallel polygons, which
subdivide the tetrahedron into polyhedral slabs. The con-
tour polygons and volume slabs are sorted from back to

front, based on the position of the viewpoint with respect
to the contour planes, and rendered in hardware, using the
general polyhedron projection method for the slabs.

This method assumes that the transfer functions spec-
ifying the particle density and color are linear, but our sys-
tem also supports piecewise linear transfer functions, with
scalar value breakpoints separating the linear pieces. Any
cell whose scalar range contains one or more of these
breakpoint values is also subdivided into tetrahedra and
then into slabs by the breakpoint contours. Then the trans-
fer functions are linear each slab.

5. Plane Slicing

In our second method, described in detail in [15], we
take several hundred evenly spaced slicing planes perpen-
dicular to each of the three X, Y, and Z axes, and slice each
cell incrementally into polygons on these three planes. We
use a variant of the marching cubes algorithm to slice the
cells. The polygons for each slice are grouped into an ar-
ray for efficient OpenGL rendering. The slicing phase is
done once in a preprocessing step. The scalar values for
the polygon vertices are normalized so they can used as
1D texture coordinates to access the transfer functions
which are stored in a texture map.

Keeping the transfer functions in texture allows sever-
al optimizations, including an alpha dithering technique
[16]. This technique expands the range of allowable opaci-
ty values on graphics hardware that uses only 8 bits per
channel. This is important because the majority of poly-
gons in typical scientific volume renderings have a very
low opacity in order to create sufficient transparency to
give a penetrating view of the object, and as the slice den-
sity increases, the per-slice opacity must be reduced. Fre-
quently, this means the opacity becomes too small to
register. This texture map is adjusted for the appropriate
per-slice opacity whenever the slice plane spacing is
changed. In the future, we hope to add opacity corrections
per pixel to account for the varying length of the viewing
rays between slanted slice planes in a perspective view.

At rendering time, the set of slices whose axis is clos-
est to the viewing direction is rendered from back to front
with opacity blending using graphics hardware, if avail-
able. Images may be generated using progressive refine-
ment: initially a few slices are rendered, then as time
permits the resolution of the image is improved by render-
ing it with more slices. For any viewing direction, the user
may request that a new set of slices be generated perpen-
dicular to that direction.

6. Anti-aliasing for Small Cells

Small cells may be missed between slice planes, or
there may be no pixel centers inside their slice polygons,

A B

E

F

G

H

so that they are missed during scan conversion. Keeping
such small polygons wastes space, communication band-
width, vertex transformations, and polygon set-up.

An adaptive mesh is designed to concentrate small
cells in regions of complex geometry, high gradients,
shocks, or other potentially important regions in the simu-
lation. If these small cells do not contribute to the image,
important details in the volume rendering may be absent.

Such missed data is caused by inadequate sampling,
and the standard solution is to apply a pre-sampling filter
to remove high frequencies and produce anti-aliased out-
put after sampling. The filtered version of a cell or poly-
gon is a complex entity which is difficult to render.
Therefore we have used splatting (see Westover [17]) to do
the anti-aliasing.

Our first approach was described in Williams et al.
[8]. Small cells were detected by counting the pixels in a
software scan conversion of their projections, and were
rendered using a 3 by 3 pixel square piecewise quadratic
spine splat. The subpixel location of the center of gravity
of the cell was used to analytically compute the splat
weights. These were multiplied by the cell volume and the
particle density from the transfer function to find the com-
positing opacity. Compositing was done in software, but
the whole process could also be done in hardware, using
the subpixel location to determine the vertex texture coor-
dinates for a small textured square, and storing the splat
weights in a texture.

In our slicing implementation, we compared the vol-
ume of the cell to a threshold, to select small cells that
should be splatted instead of sliced. This test will detect
cells that may fall between slices, as well as ones whose
slice polygons may be missed by pixel samples. Each
small cell is assigned to the closest slice plane, and fit by a
guassian ellipsoid which approximated its shape. In a cur-
vilinear grid with a slowly varying Jacobian derivative ma-
trix for the mapping from computational to physical
coordinates, such splats will sum to near unity at any point
in the volume, and thus smoothly interpolate the sampled
scalar field.

As explained in Zwicker et al. [5], the “footprint” pro-
jection of each splat is convolved with a gaussian presam-
pling filter in the image plane, to give an enlarged 2D splat
for anti-aliasing. The elliptical footprint of the enlarged
splat is enclosed in a rectangle, which is rendered in tex-
ture mapping hardware by multiplying a 2D circular gaus-
sian texture by a polygon RGBA color determined from
the transfer function, the cell volume, and the enlarged
footprint size.

In a preprocess, the small cells closest to each slice
are sorted by the depth of their centers of gravity, and
splatted into an image in back to front order. The image is
read back, and a rectangle enclosing its non-zero values is

determined. Then a sequence of texture maps is created
per slicing direction, with each map containing as many of
the textured rectangles from consecutive slices as would
fit.

During the interactive rendering, the texture maps for
the current slicing direction are loaded into texture objects,
which are bound one by one as the slices are rendered.
When the polygons for the larger cells in a slice are ren-
dered, their presence is recorded in a stencil buffer. Then
the rectangle representing the splats is positioned on the
slice plane, and composited using texture mapping. A
stencil test restricted its effect to the region where poly-
gons are absent. Thus the splats, which are enlarged for
anti-aliasing and would otherwise overlap the polygons,
do not contribute to regions where the full opacity for the
ray segment between slices is already accounted for.

7. Parallelization

We have partially parallelized both the cell projection
and the slicing code. For the cell projection, the slow step
is computing in software the polygons in the projection.
Therefore we assigned several threads on our 64 processor
SGI Onyx2 to do the projection, and load the resulting po-
lygonal information into vertex arrays. One thread does
the sorting, and one thread makes the OpenGL calls on the
full vertex arrays. For details of this implementation, see
Bennett et al. [18]. For tetrahedral cells with the Shirley -
Tuchman projection [3], the speed-up curve leveled out af-
ter about 5 projection threads, while for the general grids,
where the cell projection code is more time consuming, it
leveled out after 18 projection threads. We believe this lev-
eling out is due to communications overhead.

For the slicing method, the Scalable Distributed Vol-
ume Rendering (SDVR) System [15] for unstructured data
is targeted to large (16-1000+ node) PC clusters some of
whose nodes have graphics cards. The system runs under
LINUX/UNIX and uses OpenGL and MPI. The primary
goal of the system is scalability: as the data set size in-
creases, if additional computational nodes are provided,
rendering time remains constant. In addition, the system is
designed to run with or without graphics hardware, and on
any platform, although not at peak performance.

For distributed rendering, the data set is first parti-
tioned into small load-balanced chunks in a preprocessing
step using an out of core algorithm based on a modified k-
d decomposition. These brick-shaped chunks are distribut-
ed to the nodes of the cluster. Each node then slices, clips,
and renders its chunks, and the resulting subimages are
gathered and accumulated over the interconnect system. A
prototype of the system has been constructed and has run
successfully at interactive rates on up to 32 nodes of a PC
cluster all of which had Nvidia GeForce-3 graphics cards.

Acknowledgments

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under contract no. W-7405-Eng-48. We
wish to thank Randall Frank for helpful conversations,
Mark Duchaineau for the cell slicing code, and our co-au-
thors in the papers below, whose work we have summa-
rized.

References
[1] Nelson Max, “Optical Models for Direct Volume Rendering”,

IEEE Transactions on Visualization and Computer Graphics,
1(2) 1995, pp. 99-108.

[2] Brian Cabral, Nancy Cam, and Jim Foran, “Accelerated Vol-
ume Rendering and Tomographic Reconstruction Using Tex-
ture Mapping Hardware”, 1994 Volume Visualization
Symposium, ACM Press, pp. 91 - 98.

[3] Peter Shirley and Allan Tuchman, “A Polygonal Approxima-
tion to Direct Scalar Volume Rendering”, Computer Graph-
ics 24(5) 1990, pp. 63 - 70.

[4] Roni Yagel, David M. Reed, Asish Law, Po-Wen Shih, and
Naeem Shareef, “Hardware Assisted Volume Rendering of
Unstructured Grids by Incremental Slicing,” 1996 Volume
Visualization Symposium, IEEE Computer Society Press,
pp. 55-62.

[5] Matthias Zwicker, Hanspeter Pfister, Jeroen van Barr, and
Markus Gross, “EWA Volume Splatting”, Proceedings of Vi-
sualization 2001, IEEE Computer Society, pp. 29 - 36.

[6] Nelson Max, Peter Williams, and Claudio Silva, “Cell Projec-
tion of Meshes with Non-Planar Faces”, in Data Visualiza-
tion: The State of the Art, Fritz Post, Gregory Nielson, and
Georges-Pierre Bonneau, editors, Kluwer Academic Publish-
ers, Boston, 2003, pp. 157 - 168.

[7] Peter Williams and Nelson Max, “A Volume Density Optical
Model”, 1992 Workshop on Volume Visualization, ACM
Press, pp. 61 - 68.

[8] Peter Williams, Nelson Max, and Clifford Stein, “A high ac-
curacy volume renderer for unstructured data”, IEEE Trans-
actions on Visualization and Computer Graphics, 4(1) 1998
pp. 37 - 54.

[9] Brian Wylie, Kenneth Morland, Le Anne Fisk, and Patricia
Crossno, “Tetrahedral Projection using Vertex Shaders”, Vol-
ume Visualization and Graphics Symposium 2002, Chris
Johnson and Klaus Mueller, editors, ACM Press, pp. 7 - 12.

[10] Greg Schussman and Nelson Max, “Hierarchical Perspec-
tive Volume Visualization usingTriangle Fans”, International
Workshop on Volume Graphics 2001, Stoney Brook, NY,
(Klaus Mueller, Editor), pp. 195 - 200.

[11] M. Newell, R, Newell, and T. Sancha, “Solution to the Hid-
den Surface Problem”, Proceedings of the ACM National
Conference, 1972, pp. 443 - 450.

[12] Clifford Stein, Barry Becker, and Nelson Max, “Sorting and
Hardware Assisted Rendering for Volume Visualization”,
Proceedings of the 1994 Symposium on Volume Visualiza-
tion, (Arie Kaufman and Wolfgang Krueger, editors), ACM
Press, pp. 83 - 89.

[13] Jao Comba, James Klosowski, Nelson Max, Joseph Mitch-
ell, Claudio Silva, and Peter Williams, "Fast Polyhedral Cell
Sorting forInteractive Rendering of Unstructured Grids",
Proceedings of Eurographics 1999, pp. C-369 - C-376.

[14] Richard Cook, Nelson Max, Claudio Silva, and Peter Will-
iams, “Image-Space Visibility Ordering for Cell Projection
Volume Rendering of Unstructured Data”, Lawrence Liver-
more National Laboratory Technical Report UCRL-JC-
146582-REV-1, submitted to IEEE TVCG, 2003.

[15] Peter Williams, Mark Duchaineau, Randall Frank, and Nel-
son Max, "A Scalable Distributed Volume Rendering Sys-
tem," Lawrence Livermore National Laboratory Technical
Report UCRL-JC-152158-EXT-ABS, 2003.

[16] Peter Williams, Randall Frank, and Eric LaMar, ‘‘Alpha
Dithering to Correct Low-Opacity 8 Bit Compositing Er-
rors,’’ Lawrence Livermore National Laboratory Technical
Report UCRL-JC-147797, 2003.

[17] Lee Westover, “Interactive Volume Rendering”, Proceedings
of the Chapel Hill Workshop on Volume Visualization, May
1989, pp. 9 - 16.

[18] Janine Bennett, Richard Cook, Nelson Max, Deborah May,
and Peter Williams, “Parallelizing a High Accuracy
Hardware_assisted Volume Renderer for Meshes with Arbi-
trary Polyhedra”, 2001 Symposium on Parallel and Large-
Data Visualization and Graphics, ACM, pp. 101 - 106.

