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Abstract

We present a methodology based on discrete volumetric harmonic
functions to parameterize a volumetric model in a way that it can
be used to fit a single trivariate B-spline to data so that simulation
attributes can also be modeled. The resulting model representation
is suitable for isogeometric analysis [Hughes T.J. 2005]. Input data
consists of both a closed triangle mesh representing the exterior
geometric shape of the object and interior triangle meshes that can
represent material attributes or other interior features. The trivariate
B-spline geometric and attribute representations are generated from
the resulting parameterization, creating trivariate B-spline material
property representations over the same parameterization in a way
that is related to [Martin and Cohen 2001] but is suitable for appli-
cation to a much larger family of shapes and attributes. The tech-
nique constructs a B-spline representation with guaranteed quality
of approximation to the original data. Then we focus attention on
a model of simulation interest, a femur, consisting of hard outer
cortical bone and inner trabecular bone. The femur is a reasonably
complex object to model with a single trivariate B-spline since the
shape overhangs make it impossible to model by sweeping planar
slices. The representation is used in an elastostatic isogeometric
analysis, demonstrating its ability to suitably represent objects for
isogeometric analysis.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Curve, surface, solid,
and object representations G.1.2 [Mathematics of Computing]:
Approximation—Spline and piecewise polynomial approximation

Keywords: trivariate b-spline modeling and generation, volumet-
ric parameterization, model acquisition for simulation

1 Introduction

A frequently occurring problem is to convert 3D data, for instance
image data acquired through a CT-scan, to a representation on
which physical simulation can be applied as well as for shape rep-
resentation. Grids or meshes, based on primitives like triangles,
tetrahedra, quadrilaterals and hexahedra are frequently used repre-
sentations for both geometry and analysis purposes.

Mesh generation software like [Si 2005] generates an unstructured
tetrahedral mesh from given input triangle meshes. Unstructured
grids modeling techniques [Hua et al. 2004] improve the model-
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Figure 1: (a) triangle mesh of Bimba statue; (b) corresponding
trivariate B-spline, where interior represents material information
used in simulation.

ing and rendering of multi-dimensional, physical attributes of vol-
umetric objects. However, unstructured grid techniques have draw-
backs and certain types of simulation solvers have a preference for
structured grids. Creating a structured quadrilateral surface repre-
sentation and an integrated structured hexahedral internal volume
representation from unstructured data is a problem that has under-
gone significant research. Though topologically limited, structured
grids have advantages- especially with growing mesh sizes. For in-
stance, simulation like linear elasticity, multiresolution algorithms
like wavelet decomposition or multiresolution editing can be ef-
ficiently applied to them. Such structured hexahedral meshes are
highly prized in many types of finite element simulations, and gen-
erally still require significant manual interaction.

For smoothly modeling geometry, attributes, and simulations simul-
taneously, trivariate tensor product B-splines have been proposed in
isogeometric analysis [Hughes T.J. 2005; Zhou and Lu 2005], that
applies the physical analysis directly to the geometry of a B-spline
model representation that includes specified attribute data [Martin
and Cohen 2001] (such as Lamé parameters used in linear elastic-
ity). The user gets feedback directly as attributes of the B-spline
model analysis representation, avoiding both the need to generate a
finite element mesh and the need to reverse engineer from the finite
element mesh. However, it is necessary to have a representation of
the B-spline model suitable for this analysis. Generating a struc-
tured hexahedral grid, parameterizing the volume, and generating a
suitable trivariate B-spline model from unstructured geometry and
attributes is the main focus in this paper.

Our contributions in this work include

1. a framework to model a single trivariate B-spline representa-
tion from an exterior boundary, and possibly interior bound-
aries that have the same genus as the exterior boundary. The
boundaries are triangle surfaces, representing geometry or
material information, possibly generated from image data.



2. a technique to create a trivariate B-spline that has a consistent
parameterization across given isosurfaces.

3. demonstration of our framework on real unstructured data, a
femur obtained through a CT-scan and apply stress simula-
tion to it (see Figure 2). A femur consists of a cortical bone,
with high densities, and an interior part consisting of a porous,
trabecular bone. The transition between cortical and trabecu-
lar part is smooth, making trivariate B-splines a candidate to
model such a scenario.

After discussing related literature, we review trivariate B-splines
and harmonic functions in Section 3. A framework overview is
given in Section 4. On a global view, modeling the exterior (Sec-
tion 5) is the first stage in our framework, followed by modeling the
interior in Section 6. A trivariate B-spline is fitted against an inter-
mediate hexahedral mesh in Section 7. In the last sections (8, 9), we
discuss extensions to our framework and experiments, respectively.

2 Previous Work

Parameterization is a hard problem for surfaces and even more so
for volumes. In addition to use in modeling and remeshing, surface
parameterization techniques have a wide variety of applications in-
cluding texture mapping, detail transfer, fitting and morphing. For a
more detailed description, please refer to the surveys [Sheffer et al.
2006; Floater and Hormann 2005]. Surface parameterizing tech-
niques such as [Loop 1994; Grimm and Hughes 1995; Tong et al.
2006] deal with surface related issues and are not designed to be ex-
tended to model volumes. For instance, the authors in [Alliez et al.
2003] motivate anisotropic remeshing and align mesh elements us-
ing the principal direction of curvature of the respective triangle
mesh. Their approach yields a high quality quadrilateral mesh that
has no relationship to the interior. If one were to offset the mesh
in the normal direction, one would quickly get self intersections
among the elements. Even if this can be avoided, eventually the
hexahedral elements have degeneracies and eventually touch each
other without proper alignment. Requiring parameterization of the
interior makes this problem even more difficult since it is prone to
self intersecting offsets and has to deal with skewed and twisted
parameterizations.

Usually, the above-mentioned techniques involve “patch gluing”
where a certain level of smoothness along the patch boundaries is
desired. In [Loop 1994], quadratic B-splines are generalized to fit
arbitrary meshes creating hybrid triangular and rectangular surface
patches. The lack of structure in the irregularities makes it clear that
volumetric extensions do not immediately follow. Similarly, mani-
fold splines [Grimm and Hughes 1995] extend B-splines to surfaces
of arbitrary topology, by modeling the domain of the surfaces with a
manifold whose topology matches that of the polyhedral mesh, then
it embeds this domain into 2-space using a basis-function/control-
point formulation. The domain of this technique is more compli-
cated than the domain of a standard tensor product surface. As in
[Loop 1994], this approach also generates spline patches and glues
them together by overlapping them, to get a “match” in the param-
eterization. The “glue” consists of mathematical operations such as
control point constraints. In the case of a volume, patch boundaries
are surfaces. Establishing smoothness and continuity between them
is very difficult. Converting a triangle mesh into a single trivari-
ate B-spline has two advantages: First, smoothness is preserved
throughout the object, which simplifies analysis. Second, modeling
is simplified, avoiding any gluing.

The nature of B-spline surfaces or volumes does not naturally lend
itself to bifurcations which may exist in the data. Also, objects with
higher genus are difficult to model. However, in many applications,

like for instance, in the case of the femur, the object has a “topol-
ogy” of a cylinder but shows local concavities and overhangs, that
are not bifurcations, but cause representational complexity. Solu-
tions to handle these concavities have been proposed for the surface
case [Dong et al. 2005] but not for the trivariate case appropriate for
tensor product B-spline volumes. Our approach enables the gener-
ation of a consistent parameterization and B-spline volume repre-
sentation for these kinds of geometric objects.

The decomposition of 3D objects into simpler volumetric parts and
the description of parts and the relationships between them is a good
way of representation. [Binford 1971] proposed the generalized
cylinder-based (GC) shape representation which was extended by
[Chuang et al. 2004]. The solid of a CG is obtained by sweep-
ing a planar cross-section according to a scaling function along a
space curve. Similarly, [Jaillet et al. 1997] outlines a technique
to generate B-spline surfaces from a set of planar cross-sections
acquired from image data. They allow branches, solve the corre-
spondence problem and skin the frame with B-spline surfaces. The
overhang regions using [Jaillet et al. 1997]’s method require gluing
of patches, a problem we do not have to deal with in our method.
Our technique, however, currently is not suitable for models with
branches, but since we deal with nonplanar cross-sections we do
not require additional patch gluing for overhangs.

While being able to reconstruct some types of real world objects,
the GC approaches and the approach by [Jaillet et al. 1997] are
limited, because they require planar cross-sections. Note, repre-
sentations that rely on planar cross-sections fail for objects with
overhangs such as the femur in Figure 2. GC is a subclass of our
method since we are able to model objects with overhangs as the
femur in Figure 2. Furthermore, skinning introduces oscillations
on the B-spline, which is amplified when dealing with volumes, as
in our case. And, in our framework, once a certain stage of the pro-
cess is reached, the rest proceeds automatically without further user
input.

Harmonic volumetric mappings between two solid objects with the
same topology have been used in a variety of instances. Using re-
lated techniques, [Wang et al. 2004] and [Li et al. 2007] are per-
forming a 3D time-variant harmonic deformation from one volume
to another volume with the same topology. In a diffeomorphic way,
[Wang et al. 2004] applies this method to brain data.

In [Verroust and Lazarus 2000] a method is proposed, to construct
skeleton curves from an unorganized collection of scattered points
lying on a surface which can have a “tree-like” structure. They cal-
culate a geodesic graph over the point set. Using that graph, they
extract level sets, closed and piecewise linear. The centroids of all
the level sets form the skeleton. When level sets are not convex
the centroid may lie outside the objects. Furthermore, the skeleton
may have loops if the centroid of a given level set a lies above the
centroid of the level set b lying above a. We require the skeleton to
have no loops and to be inside the geometric object. In our method
we guarantee that. Similarly, [Lazarus and Verroust 1999] explic-
itly establishes a scalar function, similar to a harmonic function,
over a triangle mesh. By choosing a source vertex, for every vertex
on the triangle mesh, shortest distances are calculated which estab-
lish a parameterization in one parameter. The skeleton is calculated
as in [Verroust and Lazarus 2000] and therefore cannot guarantee
whether it lies within the triangle mesh.

3 Preliminaries and Notation

In this work we define volumetric harmonic functions over an input
triangular boundary or tetrahedral mesh and generate a volumetric
parameterization of the model. Then, a trivariate B-spline is fit to
the data with parameters that measure error. The following sections
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Figure 2: A femur consists of two materials: The outer solid part, or cortical bone, represented by the volume between the input triangle
meshes; and the inner soft part, or trabecular bone, represented by the volume of interior triangle mesh (red). These volumes are pa-
rameterized (middle) and a single trivariate tensor product B-spline is fitted against it (right), respecting the input triangle meshes in its
parameterization. This makes it easier to specify respective material properties. Black isolines represent knotlines in the trivariate parame-
terization.

briefly recall B-spline definitions and properties of harmonic func-
tions and ways to solve them over a triangle and tetrahedral mesh.

3.1 Tensor-Product B-splines

A B-spline volume, or a trivariate tensor-product B-spline volume
is a mapping V : [0, 1]3 → P

3 that can be formulated as

V (u, v, w) =

n0,n1,n2X

i0,i1,i2=0

Pi0,i1,i2Bi0,p0
(u)Bi1,p1

(v)Bi2,p2
(w).

where the Pi0,i1,i2 ∈ R
3 are the control points of the (n0 + 1) ×

(n1 + 1) × (n2 + 1) control mesh, having basis functions Bij ,pj

(defined in [Cohen et al. 2001]) of degree pj with knot vectors T j =

{tj
i}

nj+pj

i=0 for j = 0, 1, 2.

3.2 Discrete Harmonic Functions

Given a domain Ω ∈ R
n, where in our case n = 2 and n = 3, a

harmonic function is a function u ∈ C2(Ω), u : Ω → R, satisfying
Laplace’s equation, that is

∇2
u = 0, (1)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

Harmonic functions satisfy the maximum principle, namely they
have no local minima/maxima and can therefore be used as Morse
functions [Milnor 1963; Ni et al. 2004]. Also, this property makes
them suitable to create a tensor-product style parameterization, as
done in [Tong et al. 2006] for surfaces. In this paper harmonic
functions are utilized in order to fit a trivariate tensor product B-
spline to a tetrahedral mesh generated from a set of triangulated
isosurfaces.

We describe a tetrahedral mesh by the tuple (H, T ,V, C) over the
domain Ω. H is the set of tetrahedra and T is the set of faces of
the tetrahedra in H. V is the set of vertices, ν = (xν , yν , zν) ∈
V ⊂ R

3 of the tetrahedra in H, and C specifies the connectivity

of the mesh (the adjacency of vertices, edges, triangular faces and
tetrahedra). Furthermore, TB is the subset of T whose elements
are faces of exactly one tetrahedron. The elements of TB form the
original exterior triangle mesh for the object. VB ⊂ V is the set of
vertices defining the triangles in TB .

Solving equations for any but the simplest geometries requires a
numerical approximation. We use mean-value coordinates [Floater
2003] to solve Equation 1 on TB . Refer to [Ni et al. 2004] which
discusses in more detail how to set up the appropriate linear system.
The Finite Element Method (FEM) [Hughes 2000] is used to solve
Equation 1 on H. The set V is decomposed into two disjoint sets,
VC and VI , representing vertices that lie on the Dirichlet boundary
(and hence denote positions at which the potential u is known) and
vertices for which the solution is sought, respectively.

Then, in the case of finite elements, solutions are of the form:

u(x, y, z) =
X

νk∈VI

bukφk(x, y, z) +
X

νk∈VC

bukφk(x, y, z),

where the sums denote the weighted degrees of freedom of the un-
known vertices, and the Dirichlet boundary condition of the solu-
tion, respectively. φi(x, y, z) are the linear hat functions, which are
1 at νi and 0 at νi’s adjacent vertices. Using the weak Galerkin for-

mulation [Hughes 2000] yields a linear system of the form S~u = ~f ,

consisting of stiffness matrix S and a right-hand-side function ~f .
Because the stiffness matrix is positive definite [Hughes 2000], the
solution of the linear system is amenable to iterative methods such
as the preconditioned conjugate gradient method [Axelsson 1994].

Every point inside the tetrahedral mesh volume either lies on the
boundary or inside a tetrahedron and the point’s “û-value” is a lin-
ear combination of the vertices of the tetrahedron in which it lies.
Given a tetrahedron defined by four vertices νji , i = 1, 2, 3, 4
and the corresponding basis functions φji , the û-value of a point
ν inside a the tetrahedron, is the linear combination û(ν) =P4

i=1 ûjiφji(ν), where the ûi’s are the respective harmonic co-
efficients of the tetrahedron’s defining vertices.



The gradient ∇û over a tetrahedron is the linear combination

∇û(x, y, z) =
4X

i=1

ûji∇φji(x, y, z),

where ∇φji(x, y, z) =
“

∂φji
(x,y,z)

∂νx
,

∂φji
(x,y,z)

∂νy
,

∂φji
(x,y,z)

∂νz

”
.

Note, that ∇û is constant over a tetrahedron and its boundary so
it changes piecewise constantly over the tetrahedral mesh. In the
following, uΩ means that the harmonic function u is defined over
domain Ω, where Ω is H or TB .

4 Framework Overview

This section gives a high level overview of our proposed modeling
framework. Our framework takes as input a tetrahedral mesh H
containing, if given, interior triangle meshes such as the trabecular
bone triangle mesh illustrated in Figure 2. Given that, the following
framework steps describe the generation of the trivariate B-spline.

Step 1 The user makes an initial choice of two critical points.
These are used to establish a surface parameterization in two
variables defined by orthogonal harmonic functions uTB

and
vTB

(Section 5).

Step 2 Generate a structured quadrilateral mesh using the surface
parameterization calculated in the previous step (Section 5.1).

Step 3 In this phase we move to working with the complete tetra-
hedral mesh. Two harmonic functions are calculated over H
(Section 6):

• uH is determined by solving Equation 1 with uTB
as

the Dirichlet boundary condition.

• w is a harmonic function orthogonal to uH, having a
harmonic value of 0 on TB and 1 on an interior skeleton
generated using ∇uH. Interior boundaries have a value
between 0 and +1.

Step 4 Isoparametric paths with constant u-parameter value are
extracted using ∇w. They start at vertices defining the
quadrilateral mesh from step 2 and end at the skeleton. These
paths are used to generate a structured hexahedral mesh which
is a remesh of H (Sections 6.1, 6.2 and 6.3).

Step 5 The trivariate B-spline is generated from the hexahedral
mesh generated in step 4, by using an iterative fitting ap-
proach which avoids surface undulations in the resulting B-
spline (Section 7).

The intermediate structured meshes are constructed so that they
faithfully approximate the input data. The resulting B-spline can
therefore have a high resolution. Additional post-processing steps
include data reduction techniques to reduce complexity and to gen-
erate B-spline volumes of different resolutions.

5 Modeling the Exterior

In this section a parameterization X2 in two variables u and v de-
fined over TB is established. The choice of X2 requires the user to
choose two appropriate vertices νmin and νmax from the set of ver-
tices in VB . Then, ∇2

uTB
= 0 is solved with VC = {νmin, νmax}

as the Dirichlet boundary, where we set uTB
(νmin) = 0 and

uTB
(νmax) = 1.

The choice of these two critical vertices depends on the model and
on the simulation. As pointed out by [Dong et al. 2005], critical

vertices affect the quality of the parameterization which in our case
also affects the trivariate B-spline we are fitting. Since the user
might be aware of which regions require higher fidelity and lower
distortion in later simulations, the user can select a pair of critical
vertices to yield an appropriate parameterization. Since uTB

is de-
fined only on TB it can be computed rapidly which allows the user
to modify it if unsatisfied with the result.

max path

min pathcritical point

Figure 3: Critical paths end at the edge of a triangle, where one of
its vertices is νmin or νmax.

Once the user is satisfied with uTB
, the harmonic function vTB

is
computed so that ∇uTB

and ∇vTB
are nearly orthogonal. In order

to calculate vTB
, two seed points s0 and s1 on TB are chosen. The

first seed s0 can be chosen arbitrarily. Given s0, ∇uTB
is used to

extract an isoparametric path as in [Dong et al. 2005]. The path
is circular, i.e. it starts and ends at s0, and it has length l. s1 is
chosen on that path, so the path length between s0 and s1 is l/2.
This 50:50-heuristic has proven to be successful. Note, that uTB

and vTB
are holomorphic 1-forms as defined in [Arbarello et al.

1938] and used in [Gu and Yau 2003] to compute global conformal
parameterizations.

Starting from s0 two paths are created p+
0 and p−

0 by following
∇uTB

and −∇uTB
, respectively. They end at the edges of tri-

angles that has νmax/νmin, respectively as one of its vertices (as
shown in Figure 3). Merging p+

0 and p−
0 yields p0. Vertices

are inserted into the mesh where p0 intersects edges. Call Vmin

the set of these vertices. The same procedure is applied to deter-
mine p1 passing through s1. Vertices are inserted into the mesh
where p1 intersects edges. These vertices define Vmax. Note that
Vmin ∩ Vmax = ∅, and since, as a property of harmonic func-
tions, if there exists only one minimum (νmin) and one maximum
(νmax), no saddle points can exist [Ni et al. 2004]. Then the mesh
is retriangulated with the new vertex set.

Next, ∇2
vTB

= 0 is solved with VC = Vmin ∪ Vmax as
the Dirichlet boundary, where we set vTB

(ν)∀ν∈Vmin
= 0 and

vTB
(ν)∀ν∈Vmax = 1. Since the critical paths p0 and p1 do not

reach the extremal points νmin and νmax (see Figure 3), uTB
and

vTB
are not appropriately defined inside the ring of triangles around

νmin and νmax. Let ustart be the largest u-value of the vertices
defining the ring of νmax, and let uend be the smallest u-value
of the vertices defining the ring of νmin. Now, given u

−1
TB

and

v
−1
TB

, the inverse harmonic function X2 is constructed which maps

a parametric value in the domain [ustart,uend] × [0, 1] onto TB ,
i.e. X2 : [ustart,uend] × [0, 1] → TB .
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Figure 4: On the left: the harmonic function uTB
defined by two critical points is established over TB; middle: Based on uTB

, the orthogonal
harmonic function vTB

is calculated. At this stage uTB
and vTB

define an injective transformation; on the right: Scaling and translation
yields the parameterization X2.

X2 is not bijective yet as the figure on the right
illustrates. It shows a closed isoparametric line
in uTB

, i.e. a closed piecewise polyline where
each of its vertices has the same u-value. The
paths p0 and p1 divide the exterior surface into
two regions I and II . Let α(ν) be the part of
the harmonic v-mapping which maps a vertex ν
in region I onto [0, 1]. The corresponding func-
tion for region II is called β(ν). In order to
make X2 bijective we define a single harmonic
v-mapping

γ(ν) =

(
α(ν)/2 , ν ∈ I

1 − β(ν)/2 , ν ∈ II

Figure 4 illustrates these transformations. At this stage, every ν ∈
VB has a u- and v-parameter value. Note that v is periodic so
0 ≡ 1.

A region whose corners consists of right-angles can be parameter-
ized so that the resulting gradient fields are orthogonal [Tong et al.
2006]. However, in our case, uTB

degenerates to points (νmin

and νmax), implying that ∇uTB
and ∇vTB

are not orthogonal
near νmin and νmax. This means that a quadrangulation in this
area is of poorer quality. Note, that νmin and νmax were cho-
sen in areas which are not important in the proposed simulation.
Furthermore, in case of the femur, 98% of the gradient vectors
in ∇uTB

and ∇vTB
have an angle α between each other, where

π/2 − 0.17 < α < π/2 + 0.13.

5.1 u- and v-section Extraction

Similar to [Hormann and Greiner 2000], our goal is to extract a
set of u- and v-parameter values so that the corresponding isopara-
metric curves on the model define a structured quadrilateral mesh
which represents the exterior of the tetrahedral mesh faithfully.

Let cTB be the exterior triangle mesh inversely mapped into the
parameter space as illustrated in Figure 5 (left). We seek to
find a set U = {u0,u1, . . . ,un0

} of u-values and a set V =
{v0,v1, . . . ,vn1

} of v-values so that the collection of images of
the grid form an error bounded grid to the model. The isocurve at

a fixed ui ∈ U corresponds to the line li(v) = (ui,v) in param-
eter space, where v ∈ [0, 1], and, the isocurve at a fixed vj ∈ V

corresponds to the line blj(u) = (u,vj) in parameter space, where

u ∈ [0, 1]. li(v) and blj(u) are orthogonal. Note, that X2 maps

li(v) and blj(u) to isocurves on TB . The intersections of the lines

li(v) and blj(u) i.e. the parameter pairs (ui,vj) define a struc-
tured grid with rectangular grid cells over the parametric domain
and hence a quadrilateral mesh over TB . This quadrilateral mesh is
a remesh of TB .

Figure 5: X maps a vertical line at u0 in parameter space onto a
closed isoparametric line on TB . Accordingly, X maps a horizontal
line at v0 onto an isoparametric which starts at νmin and ends at
νmax.

Let E be the set of edges defining the triangles in cTB . U and V are
chosen so that every edge in E is intersected by at least one li(v)

and one blj(u), as shown in Figure 5 for one triangle. U and V
are calculated independently from each other. An edge e ∈ E is
defined by two points in parametric space (ue,ve) and (u′

e,v
′
e).

Based on E , we define Su to be the set of intervals defined as the
collection of intervals (ue,u

′
e) such that (ue,ve) and (u′

e,v
′
e) are

the endpoints defining an edge e ∈ E . We employ the interval
structure for stabbing queries [Edelsbrunner 1980], that takes a set
of intervals (in our case Su) and constructs an interval tree Iu in
O(n log n), where n is the number of intervals in Su. Every node
in Iu includes an interval location u ∈ [0, 1]. Iu covers every
interval → edge → triangle in TB . The u-values of the nodes in the
tree define the set U and the vertical stabbing lines li(v).



V is defined analogously, with the difference that Sv consists of
intervals defined by the segments (ve,v

′
e) for which (ue,ve) and

(u′
e,v

′
e) are the endpoints of an edge e ∈ E . Then, V consists of

the v-values defining the nodes in Iv and the horizontal stabbing

lines blj(u).

The algorithm to determine U and V guarantees that in a rect-
angle defined by the points p0 = (ui,vj), p1 = (ui+1,vj),
p2 = (ui+1,vj+1) and p3 = (ui,vj+1), where ui,ui+1 ∈ U
and vj ,vj+1 ∈ V , there is either the preimage of at most one ver-
tex of a triangle (Case 1) or none (Case 2). These two cases are
illustrated in Figure 6.

Figure 6: Either there is one vertex in the rectangle defined by the
points p0, p1, p2 and p3, or none. Crosses mark edge intersections.

We show this is true by contradiction. That is, assume that there are
two vertices in the same rectangle. Since we require that the input
mesh is a 2-manifold, there has to be a path defined by triangle
edges from one vertex to the other. However, due to the interval
tree property that every interval is cut by at least one stabbing line,
at least one isoline with fixed u-value and one isoline with fixed
v-value intersects an edge. Therefore, the two vertices must be
separated.

Now we want to ensure that the quadrilateral grid that we are
deriving is within error tolerance. Let us consider the rectangle
bRi,j defined by the points (ui,vj) and (ui+1,vj+1) (as in Figure
6). The vertices of its corresponding bilinear surface Ri,j on TB

are X2(ui,vj), X2(ui+1,vj), X2(ui+1,vj+1) and X2(ui,vj+1).
We measure how far Ri,j is away from the triangle mesh. We look
at this measurement for the two above cases separately.

For case 1, let (u∗,v∗) be the parameter value of the vertex lying in
bRi,j . Consider one of the triangles associated with that point, each

edge of bRi,j maybe intersected by either zero, one, or two of the
triangle’s edges. If intersections exist, we transform them with X2

onto TB and measure how far they are away from Ri,j . Further-
more, the distance between X2(u

∗,v∗) and Ri,j is determined.
Given a user-defined ǫ, if the maximum of all these distances is
smaller than ǫ/2, we have sufficient accuracy, if not, then we insert
a new u-slice between ui and ui+1 and a new v-slice between vj

and vj+1 and reexamine the newly created rectangles. Case 2 is
handled similarly to Case 1 without the projection of the interior
point.

Depending on the resolution of TB , the sets U and V may have
more parameter values than necessary. For instance, if TB is a
densely triangulated cylinder, most of the parameter values in U are
not necessary. To some extent, more isolines are needed around fea-
tures. On the other hand, isolines might also be needed in areas on
which force due to boundary conditions is applied. These regions
could have no shape features at all. After the B-spline volume is
modeled using our framework, refinement and data reduction tech-
niques are applied to yield trivariate approximations with different
resolutions. However, it still can be helpful to remesh the input
triangle meshes with a feature aware triangulator such as Afront

[Schreiner et al. 2006] which generates meshes having more trian-
gles in regions with higher curvature and fewer triangles in regions
with very low curvature.

Given an input triangle mesh, an upper bound on the error can be
determined. Since there is a guarantee that every edge is intersected
by at least one isoline with fixed u- and one isoline with fixed v-
value, the maximum error can be computed in the following way:
Given TB , we consider the ring of a vertex ν ∈ VB , where the ring
is the set of all adjacent vertices of ν being elements in VB . We
construct a bounding box where one of its axes are coincident with
the normal of ν. The height of the bounding box side coincident
with the normal of ν is the error for that ring. We compute such
a bounding box for every vertex on the exterior. The maximum
height will be the maximum error.

6 Modeling the Interior

Once the exterior parameterization is determined, the tetrahedral
mesh (H) is parameterized. Using FEM, ∇2

uH = 0 is solved,
where VB with its respective u-values is used as the Dirichlet
boundary condition. Now, all elements in V have a u-parameter
value. In the surface case, fixing a u-value gives a line in parameter
space and a closed isocurve on the surface. In the volume case, fix-
ing a u-value gives a plane in parameter space and a surface called
an isosheet in the volume. The boundary of an isosheet for a fixed
u0 is the isocurve on the surface at u0.

Now, for each boundary slice at
ui0 , it is necessary to extract its
corresponding isosheet. First how-
ever, a skeleton is created to serve
as isosheet center for all isosheets.
Then, a third function w is created
whose gradient field ∇w points to
the skeleton. ∇w is used to trace a
path starting at pi0,j = X2(ui0 ,vj)
and ending at the skeleton on the
sheet, for j = 0, . . . , n1 (see right).
∇w is constructed to be tangent to
the isosheet at a given point, so ∇uH and ∇w are orthogonal. This
guarantees that every point on the extracted w-path has the same
u-value.

The skeleton is created by tracing two paths which start at a user-
specified seed using +∇uH and −∇uH and end at νmin and
νmax, respectively. Merging these two paths yield the skeleton. By
the definition of ∇uH, the skeleton can have no loops. The skele-
ton has the properties of a Reeb Graph [Shinagawa et al. 1991],
in that its end vertices correspond to νmin and νmax. While the
Reeb graphs in [Shinagawa et al. 1991] are defined over a surface,
our Reeb graph, i.e. the skeleton, is defined over the volume. Be-
cause of the way ∇w is built, a sheet is orthogonal to the skele-
ton, which is also a property of GC. The orthogonal property of
the skeleton and ∇w is also a desirable property to attain a good
B-spline fit. The skeleton can be computed in interactive time, and
the user has flexibility in choosing the seed. In general, the seed
should be placed such that the resulting skeleton lies in the “center”
of the innermost isosurface, like the axis of a cylinder.

Just solving ∇2
w = 0 with the respective boundary conditions

does not guarantee orthogonality of ∇uH and ∇w, and if ∇uH

and ∇w are not orthogonal, there is no reason that a path will have
the same u-value throughout. This implies the w-parameter will
need further adjustment to guarantee a well behaved parameteri-
zation and so adjacent isosheets do not overlap. In order to en-
force orthogonality ∇w is constructed in the following two steps:
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Figure 7: A cross section of an object with an exterior boundary
and an interior isosurface representing geometry or attribute data.
The skeleton and boundaries were used to establish ∇w. Isolines
visualize the uw-scalar field used to trace w-paths from the exte-
rior to the skeleton.

(1) The points defining the skeleton are inserted into the tetrahe-
dral mesh and a new mesh is formed. Then, ∇2 bw = 0 is solved
over the tetrahedral mesh, subject to Dirichlet boundary conditions
defined by the set VC = VB ∪ VT1

∪ . . . ∪ VTk
∪ VS . VB con-

sists of the boundary vertices where bw(ν)∀ν∈VB
= 0, VS con-

sists of the vertices defining the skeleton where bw(ν)∀ν∈VS
= 1,

VTi is the set of vertices defining the ith of k isosurfaces where
bw(ν)∀ν∈VTi

= i/(k + 1). In the case of the femur and in Figure

7, there is one isosurface, namely the surface separating the trabec-
ular and cortical bone. In this case VC = VB ∪ VT1

∪ VS , where
bw(ν)∀ν∈VT1

= 1/2. Then in step (2), for every tetrahedron, we

project its ∇bw gradient vector onto the plane whose normal is the
corresponding ∇uH, to form ∇w.

6.1 Tracing w-paths

Flow line extraction over a closed surface triangle mesh is described
in [Dong et al. 2005]. In our case, we extract flow lines throughout
a volume. A flow line, or a w-path will start on TB , where w = 0
and traverses through H until it reaches the skeleton on which w =
1. The resulting w-path is a piecewise linear curve where every
segment belongs in a tetrahedron. The two ends of the segment lie
on faces of the respective tetrahedron and is coincident with ∇w.
Since ∇uH and ∇w are orthogonal, every point on such a segment
has a constant u-value, and therefore, the w-path has a constant
u-value.

r
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w−path
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During w-path traversal, in the regular
case, the endpoint q of the w-path will
lie on a face of a tetrahedron. The next
traversal point is determined by con-
structing a ray ~r with origin at q with
∇wH of the adjacent tetrahedron as di-
rection. ~r is then intersected with the
faces of the adjacent tetrahedron, except
the triangle on which q lies, to find the
next q. Let p be the intersection between
~r and triangle t. t is a face of two tetra-
hedra, the current and the next tetrahe-
dron. The line segment qp is added to
the current w-path, and p becomes q.

During the w-path traversal, several pathological cases can arise.
One is when the intersection point p lies on an edge e of the current
tetrahedron. Since the edge is part of two triangles, an ambiguity
exists as to which face should be chosen. Instead we consider all
tetrahedra that have e as an edge. For each of these tetrahedra we

construct a ray having its origin at p with ∇w of the tetrahedron as
its direction. If there is an intersection between a tetrahedron’s ray
and one of its faces, then we choose that face of the respective tetra-
hedron as the next triangle. Analogously, at the other degeneracy,
when p lies at a vertex of the tetrahedron, we examine every tetra-
hedron that coincides with this vertex. We choose the tetrahedron
in which we can move furthest in ∇w direction.

Another degenerate case arises when ~r does not intersect with any
triangle, edge or vertex of the current tetrahedron. This implies
that ~r points outward from the tetrahedron. When this occurs, we
construct a plane through q orthogonal to ∇uH of the current tetra-
hedron. Every point on that plane in the tetrahedron has the same
u-value. We intersect the plane with the edges of the triangle in
which q is located. In general position, there are two intersections.
We choose that intersection which has a bigger w-value as next
point on the w-path, because it lies closer to the skeleton. Since the
intersection point is a point on an edge or a vertex, the first special
case is applied.

6.2 w-path Extraction

In Section 5.1, we discussed how the Cartesian product of the sets
U and V spans over the uv-domain. X2 maps the grid point
(ui,vj) to the point pi,j in TB . The points pi,j are used as starting
points to trace w-paths, as described above in Section 6.1. Now,
X3 : [ustart,uend] × [0, 1] × [0, 1] → H is a parameterization
in three variables u, v and w, where X3(u,v, 0) ≡ X2(u,v),
X3(u,v, 1) defines the skeleton, and X3(u,v, i/(k + 1)) defines
the ith isosurface.

In this section, we want to find a set W = {w0,w1, . . . ,wn2
}

where w0 = 0 and wn2
= 1, which contains n2 parameter val-

ues. The Cartesian product U ×V ×W defines a structured grid on
[ustart,uend]×[0, 1]×[0, 1] and a structured hexahedral mesh with
points pi,j,k = X3(ui, vj , wk) in H with degeneracies only along
the skeletal axis. Note, that pi,j,k refers to the kth point on the jth
w-path on isosheet i, i.e. by fixing ui0 , the points X3(ui0 ,vj ,wk)
lie and approximate isosheet i0 and connect to a structured quadri-
lateral mesh called Si0 .

Let hi0,j0 : [0, 1] → H be the j0th w-path on Si0 , defined by the
points pi0,j0,k, where k = 0, . . . , n2. Depending on the choice of
w-values in W , points on hi0,j0 may have different u-values. This
leads to a modification of u on the interior parameterization. This
is allowed as long the u-value of these points is smaller (bigger)
than the u-value of the upper (lower) adjacent isosheet. Otherwise,
isosheets might intersect.

Originally, when a w-path is extracted as discussed above, all pa-
rameter values in [0, 1] map to points whose u-values are the same.
The reason for that is, that the line segments defining the initial w-
path all lie in tetrahedra and coincide with ∇wH of the respective
tetrahedron. Furthermore, every extracted w-path is defined ini-
tially by different sets of w-values. In order to determine W , we
have to make sure that the quadrilateral sheets Si do not intersect.

Let Wi,j = {w0,w1, . . . ,wn2i,j
}, where w0 = 0 < w1 <

. . . < wn2i,j
= 1, be the sorted set of w-parameter values for

hi0,j0 , consisting of n2i,j + 1 points. n2i,j depends on the number
of tetrahedra the path is travelling through. If the path is close to
νmin or νmax, the path is probably shorter than a path towards to
the middle of the object. A valid and common W could be found
by calculating the union of all Wi,j , where then W would contain
an unnecessarily large number of w-values. Therefore as a first step
we simplify every Wi,j by removing unnecessary w-values from it.
Let ui be the u-value of the current slice. We scan Wi,j and remove
an element wk when the u-value of the point (Pk−1 + Pk+1)/2



is in the range [(ui − ui−1)/2, (ui + ui+1)/2], where Pk is the
position in the tetrahedral mesh where wk lies. This implies that
sheet i does not intersect with one of its adjacent sheets. The Pk’s
leading to the smallest differences are removed first. This is applied
iteratively until no further points can be removed from the path.

Then, we merge the simplified sets Wi,j to get W . After merging,
elements in W may be very close to each other. We therefore re-
move elements in W , such that every pair of parameter values in
W has at least a distance (in parameter space) of ǫ between each
other. Furthermore, the parametric w-values for the isosurfaces are
added to W , too, such as 0.5 ∈ W , where X3(u,v, 0.5) represents
the inner boundary in Figure 2.

6.3 w-path Smoothing

Since there is only an exterior v-parameterization, points lying on
a w-path have a constant u-value but not a constant v-value. This
results in path wiggling as shown in Figure 8. Path wiggling means
that parts of a given path may lie closer to its adjacent path on the
left than to its adjacent path on the right.

sheet

exterior

D(p,p’)

p’’=L(p,d)

d

Figure 8: Due to the linear property of ∇u and ∇v and special
cases during w-path extraction as discussed in section 6.1, adja-
cent paths may collapse.

Laplacian smoothing [Freitag and Plassmann 1997] is an efficient
way to smooth a mesh and remove irregularities. As pointed out
in [Freitag and Plassmann 1997], applying it to a hexahedral mesh
can lead to inconsistencies, like “tangling” of hexahedra. This espe-
cially happens in regions with overhangs, where in our case, Lapla-
cian smoothing would change the u- and w-value of a point, lead-
ing to overlapping sheets. However, Laplacian smoothing is com-
putationally efficient and we adapt it for our case in the following
way.

Let ∇vH be the cross product field between ∇uH and ∇w, i.e.
∇vH = ∇uH×∇wH. Since vj is not constant along the w-path,
during mesh smoothing, we restrict the location pi,j,k to change
only along ∇vH. Let L(p, d) be a function defined over H which
determines a point p′ along ∇vH with distance d from p. p and
p′ both lie on a piecewise linear v-path, and the v-path section
defined by p and p′ has a length of d. Since ∇uH, ∇vH and ∇w

are orthogonal vector fields, p and p′ have the same u- and w-value.
Furthermore, let D(p, q) be a function that computes the length of
the v-path section defined by p and q, requiring that p and q have
the same u- and w-value. Now, the position of the mesh point pi,j,k

is updated by

p
′
i,j,k = L(pi,j,k,

1

2
(D(pi,j,k, pi,j−1,k) + D(pi,j,k, pi,j+1,k))).

After this procedure is applied to every pi,j,k where i > 0 and i <
n0, the old positions pi,j,k are overwritten with p′

i,j,k. By repeat-
ing this procedure the mesh vertices move so that for a given pi,j,k,
the ratio D(pi,j,k, pi,j+1,k)/D(pi,j,k, pi,j−1,k) moves closer to 1,
by maintaining a constant u- and w-value. Therefore, this ap-
proach avoids isosheet intersection. The procedure terminates when
max |D(pi,j,k, pi,j+1,k)| < ǫ, where ǫ is user-defined.

7 B-spline volume fitting

In the first stages of our framework we created a structured (n0 +
1) × (n1 + 1) × (n2 + 1) hexahedral mesh with vertices pi,j,k,
from a set of unstructured triangle meshes. The hexahedral mesh
has the same tensor-product nature as a trivariate B-spline. In this
section we want to fit a trivariate B-spline to this grid. One of the
first decisions to make is to choose between an interpolation or an
approximation scheme. Our criteria include generating a consis-
tent mesh, where adjacent sheets do not overlap, and minimizing
oscillations in the B-spline volume.

The first aspect would imply an interpolation scheme: Since the
points of the hexahedral mesh lie on the resulting B-spline, the er-
ror on these points is zero. However, interpolation can cause os-
cillations and there are no guarantees that the B-spline is consis-
tent. Since the initial hexahedral mesh can have a very high resolu-
tion, solving a global interpolation problem requires additional ex-
tensive computation time. Furthermore, the input triangle meshes
were eventually acquired through segmentation of volumetric im-
age data, they approximate the original data already, especially af-
ter a triangle remesh. Interpolation of such an approximation would
not necessarily make sense. Therefore, the second aspect implies an
approximation scheme that also avoids wrinkles in the final mesh.
The question is here, what approximation error should be chosen.
This depends on the hexahedral mesh. Sheets which are bent need
an adequate number of control points so that the intersection among
adjacent sheets is avoided. The choice of an appropriate number of
control points is difficult to determine.

We therefore adopt an approach which is a mix of both, maximiz-
ing its advantages and minimizing its drawbacks. We allow the user
to control how close the B-spline is to the approximating points of
the hexahedral mesh. A consistent B-spline with as few oscillations
as possible is desirable. Our solution is to develop an approxima-
tion iteratively. The hexahedral mesh is chosen as the initial con-
trol mesh. This guarantees that the B-Spline volume lies inside the
control volume and that no further features are introduced to the B-
spline volume. Furthermore, we set degrees in the three directions
p0 = 3, p1 = 3 and p2 = 1, and use a uniform open knot vector in
u and w, and a uniform periodic knot vector in v.

For a fixed k0, let P c
i,j,k0

be the cth control mesh in an iterative
relaxation procedure, where Sc

k0
(u, v) is the B-spline surface at it-

eration c with control mesh P c
i,j,k0

. At c = 0, set P 0
i,j,k0

:= pi,j,k0
.

In the cth iteration, where c > 0, we update

P c+1
i,j,k0

= P c
i,j,k0

+ λ∆[c], (2)

where ∆[c] is a direction vector and is chosen such that Sc
k0

(u, v)
grows towards pi,j,k0

. λ ∈ (0, 1) is a user-defined scalar, in our
case λ = 0.5.

∆[c] is defined in terms of pi,j,k0
and Sc

k0
(u∗, v∗) correspond-

ing to the control point P c
i,j,k0

. u∗ and v∗ can be determined
by projecting the control point P c

i,j,k0
onto Sc

k0
. A first-order

approximation to this projection is to evaluate Sc
k0

at the appro-

priate node [Cohen et al. 2001], i.e. u∗
i =

P3
µ=1 t0i+µ/3 and

v∗
j =

P3
µ=1 t1j+µ/3. Since T 1 is uniform periodic, v∗

j = tv
j+p1−1,



where v∗ in that case is also exact and corresponds to the jth
control point. This is not true for the uniform open knot vectors
T 0. Either tu

i+2 ≤ u∗
i ≤ tu

i+3 (Case 1) or tu
i+1 ≤ u∗

i ≤ tu
i+2

(Case 2), therefore Sc
k0

(u∗
i , v∗

i ) lies only near P c
i,j,k0

. If Case
1 applies, then let i0 = i − 1, otherwise for Case 2, let i0 =
i− 2. Then, Sc

k0
(u∗

i , v∗
j ) =

Pp

k=0 (Bi0+k,p0
(u∗

i )Ci0+k,j), where
Ck,j = (P c

k,j−1,k0
+ P c

k,j+1,k0
)/6 + (2P c

k,j,k0
)/3. Note that,

Bj−1,q(v
∗
j ) = Bj+1,q(v

∗
j ) = 1/6 and Bj,q(v

∗
j ) = 2/3.

In order to define ∆[c], we ask how to change the current control
point P c

i,j,k0
such that Sc+1

k0
(u∗

i , v∗
j ) moves closer to pi,j,k0

. To
answer this, we set

Sc
k0

(u∗
i , v∗

j ) = Sc
k0

(u∗
i , v∗

j ) − 2Bi,p(u∗
i )

3
P c

i,j,k0
,

and rewrite

pi,j,k0
= Sc

k0
(u∗

i , v∗
j ) +

2Bi,p(u∗
i )

3
(P c

i,j,k0
+ ∆[c]) (3)

∆[c] =
3

2Bi,p(u∗
i )

(pi,j,k0
− Sc

k0
(u∗

i , v∗
j )). (4)

The iteration stops when ǫmax < ǫ, where ǫmax = max ||pi,j,k −
Sc

k0
(u∗

i , v∗
j )||2 for every Sc

k0
. ||.||2 is the second vector norm and ǫ

is user-defined. The resulting surfaces Sc
k0

define the final trivariate
B-spline control mesh.

(a) (b)

Figure 9: Different choices of λ achieve different qualities of ap-
proximations. For (a) λ = 0.1 and for (b) λ = 0.8 was used. In
both cases ǫ = 0.01.

The user choice of λ affects quality and running time of our pro-
posed approximation method. Choosing a λ closer to one reduces
the number of iterations but lowers the quality of the final solution.
A λ closer to zero requires more iterations but results in a higher
quality mesh. Please refer to figure 9 which shows the results for
λ = 0.1 and λ = 0.8. For λ = 0.1, 12 iterations were required;
for λ = 0.8 the algorithm terminated after three iterations. In both
cases, ǫ = 0.01. For λ = 0.8, it can be observed that the result-
ing mesh contains unpleasant wrinkles, as they typically appear in
interpolation schemes.

7.1 Convergence

The proposed method converges, when at every step the magnitude

of ∆
[c]
i gets smaller, and in the limit

lim
c→∞

||∆[c]
i ||2 = 0.

Let us consider the 2D case with a uniform periodic knot vector T .
The points pi, where i = 0, . . . , n − 1, define a closed polyline.
As above, the initial vertices which define the control polygon are

P
[0]
i := pi. We want to iteratively move the B-spline curve defined

by {P [c]
i } and T closer to the initial data points {pi}, where

P
[c+1]
i = P

[c]
i + λ∆

[c]
i .

Due to the periodic and uniform knot vector T ,

pi =
1

6

“
P

[c]
i−1 + P

[c]
i+1

”
+

2

3

“
P

[c+1]
i

”

=
1

6

“
P

[c]
i−1 + P

[c]
i+1

”
+

2

3

“
P

[c]
i + ∆

[c]
i

”
.

Solving for ∆
[c]
i yields,

∆
[c]
i =

3

2

„
pi −

„
1

6

“
P

[c]
i−1 + P

[c]
i+1

”
+

2

3
P

[c]
i

««
. (5)

In matrix notation, Equation 5 can be rewritten as

~∆[c] =
3

2

“
p − C · ~P [c]

”
, (6)

where “·” is the matrix-vector product. ~∆[c] and ~P [c] are vectors

with n components, where the ith component is ∆
[c]
i and P

[c]
i , re-

spectively, and C is a n × n circulant matrix [Davis 1979], where
row i is a circular shift of i components of the n-component row
vector [ 2

3
, 1

6
, 0, . . . , 0, 1

6
], in short

C = circ

„
2

3
,
1

6
, 0, . . . , 0,

1

6

«
.

Note, that if c = 0, then

~∆[0] =
3

2

“
~p − C · ~P [0]

”
=

3

2
~̀p − C ·~p

´
, =

3

2
(I − C) ·~p,

where I is the identity matrix.

If c = 1, then

~∆[1] =
3

2

“
~p − C · ~P [1]

”
=

„
I − 3

2
λC

«
· ~∆[0].

From that, induction is used to show that

~∆[c+1] =

„
I − 3

2
λC

«
· ~∆[c] = A

c+1 · 3

2
(I − C)~p, (7)

where

A = I − 3

2
λC = circ

„
1 − λ,−λ

4
, 0, . . . , 0,−λ

4

«
.

The magnitude of ∆[c] converges against 0, implying that our fitting
procedure converges, if

lim
c→∞

A
c = Z,

where Z is the zero matrix. This implies, according to [Davis 1979],
that the eigenvalues of A are, |λr| < 1 , r = 0, 1, . . . , n − 1.
Since A is a circulant matrix, it is diagonalizable by A = F

∗ · Λ ·
F, where Λ is a diagonal matrix, whose diagonal elements are the
eigenvalues of A, and F

∗ is the Fourier matrix with entries given
by

F
∗
jk =

1√
n
· e

2πijk
n .



F
∗ is the conjugate transpose of F. Due to the fact, that A is a

circulant matrix, its eigenvalue vector ~v can be computed by
√

n ·
F

∗ · ~vA = ~v, where

~vA = [1 − λ,−λ/4, 0, . . . , 0,−λ/4].

Applying that to our case, we get

λr = (1 − λ) − λ

4

„
cos r

2π

n
+ cos r(n − 1)

2π

n

«
,

so 1 − 3
2

λ ≤ λr ≤ 1 − λ
2

. Hence, in every step the magnitude

of ∆
[c]
i decreases which results in the convergence of our proposed

data fitting approach for uniform periodic B-spline curves.

In the case when T is uniform open, equation 7 can be rewritten by
~∆[c+1] = A

c+1 · S · (I − C) ·~p, where A = (I− λS ·C). S is a
diagonal matrix where the diagonal elements are defined by

Sii =
1

Bi,p(u∗
i )

and Cij = Bj,p(u∗
i ) which is not circulant. Therefore, the bound

on the eigenvalues given above does not apply, due to the end con-
ditions. However, we conducted experiments with different values
for λ, and the maximum eigenvalue is always less than one and
stays the same independent of the problem size n, indicating con-
vergence. For λ = 1/2, the eigenvalues of A range from 0.15 to
0.85.

In the surface case, the two curve methods are interleaved as is done
for tensor product nodal interpolation. It is guaranteed to converge
given the curve method properties.
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Figure 10: w-parameterizations using min/max points.
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Figure 11: (b)w-parameterizations using min/max paths.

7.2 Simplification

The resulting trivariate B-spline tends to have a high resolution.
Therefore, as a post-processing step we apply a data reduction al-
gorithm [Lyche and Morken 1988] to the B-spline representation
and iteratively decide how to reduce complexity on the surface or
on the attribute data in the interior, by minimizing error.

8 Framework Extension

So far we have assumed that the user chooses two min/max points
as the first step in our modeling framework. As discussed above,
those two critical points are the end points of a skeleton line through
the model. This works well when the lengths of the w-paths of a
given slice are similar in length. If isosheets are circular and the
skeleton goes through the center, the lengths of the w-paths is equal
to the radius of the isosheet. By fixing u0 and w0 the quadrilateral
qi defined by the points X3(u0,v0,w0) and X3(u0,vi+ǫ,w0+ǫ)
for a given small ǫ has the same area for any vi.

However, input models exist, where w-path lengths of a given
isosheet are different. Refer to Figure 10 for a simple example,
where the user chose νmin and νmax. For a constant u-value we
extracted the corresponding isosheet. Isosheets in that model have
a rectangular shape. For such a shape a skeletonal line is not ap-
propriate: Isoparametric lines in v towards the exterior are rectan-
gular, but change into circles when approaching the skeleton. This
results in distortion: For a given isosheet we can find the shortest
and the longest w-path. The quadrilaterals qi do not have the same
area, they are bigger around the longest path, compared to its areas
around the shortest path.

Numerical applications such as finite elements desire more uniform
element sizes. By modifying the choice of the skeleton the resulting
B-spline can be improved. Instead of choosing a single vertex as
a critical point, the user chooses a critical path as in Figure 11.
The resulting skeleton is a surface. In that case, critical paths suit
the rectangular shape better than critical points. The w-paths of a
sheet have about the same length, resulting in less stretching and
therefore more uniform quadrilaterals.

For a given input mesh, its medial axis and our choice of the skele-
ton are related. Selecting the medial axis as the skeleton leads to
difficulties since it may have small branches which would require
splitting the object up into parts which have to be glued together.
This would make modeling very difficult. The skeleton we pick
is a simplified version of the medial axis. It uses this representa-
tion’s ability to deal with overhangs and localized features in that
simplification. The skeleton we choose can be regarded as approx-
imation of the medial axis. For instance, in Figure 11, our choice
of min/max paths yields a skeleton which is a surface similar to the
medial axis of the object.

9 Experiments

Except for initial user-required choice of the critical points νmin,
νmax and the initial seed to determine the skeleton, our modeling
framework runs fully automatically. uTB

takes a few seconds to
compute, allowing the user (being aware of simulation parameters)
to try out different initial parameterizations. After that first step uH

and w are computed, paths are extracted and the trivariate B-spline
is generated from that. We implemented the proposed framework
on a 16 node cluster, reducing the modeling time for the femur in
Figure 2 to about 30 minutes.

We applied isogeometric analysis [Hughes T.J. 2005] in form of
Linear elasticity [Hughes 2000] (see Figure 12) to a data reduced
version of the resulting B-spline volume. For a more detailed dis-
cussion on simulation convergence and error measure, we refer the
reader to [Martin et al. 2008].

Isocurves of a harmonic function defined on a smooth surface con-
verge to circles when approaching a critical vertex. In case that the
harmonic values are linearly interpolated across a triangle mesh,
isocurves are nonplanar “n-gons”, where n depends on the number
of triangles the respective isocurve crosses. When approaching a
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Figure 12: Isogeometric Analysis: Elastostatics applied to the data
reduced trivariate B-spline representation of the femur. Load is
applied to the head of the femur.

critical point, isocurves are defined only by a few vertices as can
be seen in figure 3. In order to improve the parameterization in
the regions near the critical points, additional vertices are inserted
in the respective regions and retriangulation is applied in these ar-
eas. Similarly, inserting additional vertices in the region around the
skeleton can help to improve the volumetric parameterization and
therefore the quality of the initial structured hexahedral mesh.

10 Conclusion

In this paper we proposed a framework to model a single trivari-
ate B-spline from input genus-0 triangle meshes. The final B-
spline was computed using a novel iterative approximation ap-
proach, avoiding oscillations observed in B-spline interpolation.
We guarantee that the slices defining the B-spline do not overlap
and only have degeneracies only along the skeleton. Linear elastic-
ity was applied to the resulting B-spline to demonstrate its practical
use. Harmonic functions in three parameters are used to establish an
initial parameterization suitable for tensor-product B-splines. This
allows to model objects with overhangs such as the femur as in fig-
ure 2. We generalized our method to be able to work on simplified
medial axis’ which extends it to even more complex models. How-
ever, modeling B-splines from triangle meshes with a higher genus
or bifurcations require an extension of our framework. This is sub-
ject to future research, where harmonic functions over the tetrahe-
dral mesh will be used as a Morse function to decompose it into
patches where each is approximated with a B-spline. Furthermore,
especially in simulations, certain scenarios require higher resolu-
tions in certain regions of the object. Due to the tensor-product na-
ture of B-splines, refining means to increase the resolution in areas
where additional control points are not necessary. Therefore, an-
other path of investigation is to convert our resulting B-spline into a
T-Spline [Sederberg T.W. 2003] representation, which allows local
refinement.
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