
Temporally Coherent Interactive Ray Tracing

William Martin† Erik Reinhard‡ Peter Shirley†

Steven Parker† William Thompson†

†School of Computing, University of Utah

‡School of Electrical Engineering and Computer Science, University of Central Florida

Abstract

Ray tracing exhibits visible temporal aliasing artifacts in interactive viewing
of complex datasets. We present a technique to reduce scintillation in point sam-
pled imagery by targeting new rays to intersection points from previous frames.
Remaining artifacts are abated by blending between successive frames. The algo-
rithm achieves a reduction in scintillation comparable to that of supersampling, but
at a significantly lower cost. Sample animations are available online.

1 Introduction

Improvements in general-purpose computer systems have recently allowed ray tracing
to be used in interactive applications [2, 3, 6–8]. For some applications such as isosur-
face visualization [3] or rendering complex static geometry [8], ray tracing is superior
to even highly optimized conventional z-buffer methods. Nonetheless, current proces-
sors are too slow to interactively ray trace the most detailed data sets to the highest
resolution displays [2, 3, 8]. To achieve interactivity, current systems use a sparse sam-
pling of the image (approximately one ray per pixel) and relatively small image sizes,
with 512 by 512 resolutions being common. There is a continuing trend towards higher
resolution displays and more complex models, so high-resolution multisampled inter-
active ray tracing will not be feasible in the near future. Current systems would need
more than a one-thousand times increase in number of rays per frame to achieve HDTV
resolution with moderate antialiasing. In this paper we assume that we are limited to
only a few samples per pixel, and that improvements in processing power will be tar-
geted towards higher resolution rather than better antialiasing. Our application is ray
tracing scenes of high geometric or textural complexity at interactive rates.

A problem with large models is that they tend to cause sub-pixel detail in rendered
images, leading to temporal aliasing. We believe this is the dominant artifact in current
interactive ray tracing systems. If we are restricted to a few rays per pixel, spatially
filtering the scene before sampling is a common strategy. However, pre-filtering the
scene, e.g., using LOD management or MIP-mapping, may not always be possible, as
is the case for the 35 million sphere crack propagation dataset visualized via ray tracing
(Figure 1).

1

Figure 1: A 35 million sphere scientific dataset.

Our approach to reduce temporal artifacts is to revert to point sampling where sam-
ple locations in the current frame are guided by results from previous frames. Such
guidance introduces temporal coherence that will reduce scintillation and popping. It
is also computationally inexpensive, costing significantly less than adding one extra
sample to each pixel. The method is demonstrated using an interactive ray tracing
engine for complex terrain and visualization datasets.

2 Point tracking algorithm

The temporal aliasing in interactively ray traced sequences arises because each pixel
will likely correspond to different scene features from one frame to the next. This ef-
fect can be minimized by using an algorithm which tracks a consistent set of features
over the course of a number of frames. We therefore seek a method which targets scene
points sampled during previous frames. This can be accomplished by storing the inter-
section points of the primary rays with their corresponding pixels. Prior to rendering
the next frame, the camera parameters are updated, and the hit points are mapped to
new pixels via backprojection onto the image plane. This projection has been previ-
ously exploited by IBR researchers [1]. However, instead of painting the reprojected
points directly on the screen [9], which may lead to inaccuracies, this reprojection
serves the sole purpose of directing new rays towards objects that have been previously
hit.

The reprojection of the previous frame’s intersection points gives rise to one of
three possible situations: zero, one, or many points are projected to any given pixel. If
zero points are projected onto a pixel, no guidance can be provided and a new ray is
created. If one intersection point is projected onto a pixel, a new ray is sent towards
it. If two or more intersection points are projected onto a single pixel, then we use
a simple heuristic which chooses the point with the smallest distance to the camera

2

eye

eye

eye

frame (i), four pixel screen

frame (i+1), four new rays traced,
three toward hit points from frame (i)

between frames (i) and (i+1),
3D hitpoints from frame (i)
are projected toward new
eye position. In this case
three pixels contain hit points

Figure 2: Overview of the point tracking algorithm: In the top panel, rays are traced
through a four pixel screen, and the 3D hit positions are cached. In the middle panel, the
eye position changes, and the cached points are back-projected onto the new viewing
plane to associate them with screen pixels. Two of the cached points are associated with
the top right pixel, whereas no points map to the top left pixel. In the bottom panel,
a new ray is fired through each pixel, targeting cached points whenever possible. The
closest of the two hit points is targeted for the top right pixel. Lacking target points, a
new ray is randomly generated for the top left pixel.

3

origin. Points farther away are more likely to be occluded by intervening edges and
are therefore less suitable candidates. The ray tracing process produces shaded pixel
information for the current frame as well as a list of intersection points to be used for
the next frame. This idea is illustrated in Figure 2.

The method of tracking points across frames reduces the appearance of scintillation
in animations of ray traced scenes. However, some scintillation will remain, because
not all pixels will be associated with a unique tracked point as noted above. The ques-
tion of whether the remaining artifacts are visually objectionable depends largely on
the dataset. We have found that the visible aliasing in our scenes is typically due to
high-frequencies in the temporal dimension. It can therefore be reduced using a nar-
row temporal filter. In our case, we have chosen a box filter which spans three frames.
We extend our basic algorithm to cache the three most recent frames, each generated
using the point tracking algorithm described above. The image displayed is then the
per pixel average of the color values stored in these three frames. (The number three
is heuristic, and may need to be adjusted depending on the framerate and dataset.) Be-
cause our blend is based on frames previously rendered, the point tracking augmented
with the temporal blend is essentially no slower than the point tracking algorithm by
itself. In our system, temporal blending may be toggled off by the user if satisfac-
tory results are obtained using point tracking alone. The method of tracking points is
summarized in Algorithm 1.

Algorithm 1 Point Tracking Algorithm
for each Frame ido

Update the camera position
Reproject hit points from the Frame i-1
for each Pixel jdo

Fire ray, targeting a projected hit point when available
Cache new hit point and color with Frame i

end for
Average the colors from the last three frames to generate a screen image

end for

3 Results

To demonstrate the effectiveness of our point tracking method, we use an interactive ray
tracer to render two terrain models, which are called Hogum and Range-400 (Figure 3),
and the crack propagation dataset of Figure 1. The measurements presented in this
paper were all collected using a 32 processor SGI Origin 3800. Each processor was
an R12k running at 400 MHz. We used 30 processors for each run plus one additional
processor running the display thread. The reprojection phase was performed in parallel,
with each processor operating on a contiguous region of the image plane.

The runtime of the point tracking system is between 1.25 and 1.45 times the runtime
of conventional ray tracing for all datasets, image sizes, and camera positions we have
tested, with 1.35 times being typical. Most of this cost is due to the reprojection at
the beginning of each frame. To put this penalty in perspective, the cost of 4 times

4

Figure 3:Top: Hogum dataset with175×199 height values and a1740×1980 texture.
Bottom: Range-400 dataset with3275 × 2163 height values and a texture of the same
resolution.

supersampling is 4 times the runtime. The point tracking memory overhead is two
buffers of points and three buffers of RGB colors. Each of these buffers has the same
number of elements as the number of pixels in the image.

The point tracking algorithm is most effective if a single intersection point projects
onto a given pixel. This is when perfect frame-to-frame coherence is achieved. When
zero points project to a pixel, a ray cast for that pixel is likely to produce a contrast
change, causing scintillation. When more than one point reprojects to a single pixel,
some information will locally disappear from the next frame. This may also lead to
scintillation.

To validate our technique we have compared point tracked animations with un-
tracked animations generated by a) point sampling, b) spatial supersampling, and c)
temporal blending (each displayed pixel value is an average over three consecutive
frames). The reader is referred to the web sites listed at the end of this paper for ani-
mations demonstrating the technique. Our opinion is that the subjective effectiveness
of our approach in removing visible flicker is comparable to that of supersampling,
but without the corresponding degree of blur. This opinion is reinforced by the data
presented in Table 1. For typical interactive walkthroughs, roughly60% of the pixels
in each frame are covered by exactly one intersection point. So for a majority of the
pixels in each frame, temporal coherence is successfully exploited.

4 Discussion

The technique presented is ideally suited for scenes possessing large areas of sub-
pixel detail. In such scenes our experiments using point tracking have demonstrated
a marked reduction in scintillation. We reiterate that the technique targets temporal

5

Intersection points per pixel
Dataset 0 1 2 3 4
Hogum 21.9% 58.2% 18.2% 1.6% 0.0%
Range-400 19.6% 64.7% 14.2% 1.3% 0.1%
Spheres 20.6% 60.6% 17.1% 1.6% 0.0%

Table 1:Percentage of pixels that have 0 to 4 intersection points reproject to them. The
ideal case is where 1 intersection point projects to a pixel.

aliasing, and is not prescribed as a solution to the problem of spatial aliasing. A valid
concern is the degree to which the biased sampling induced by point tracking might
introduce artifacts. While in principle this could occur, we have not experienced sig-
nificant problems for the wide variety of scenes tested. The artifacts introduced by
point tracking are nearly identical to those introduced by jittering. Edge fidelity suffers
slightly, but no more than a pixel width. Spatial aliasing is transformed into noise.

We have assumed that multisampled spatial filtering will not soon be practical for
interactive ray tracing. Anticipating a trend towards higher resolution display devices,
it is also likely that spatial filtering to achieve anti-aliasing will become less necessary,
because the effect of spatial aliasing will largely be masked. However, the same is
not true for the temporal aliasing artifacts which this paper addresses. Our current
implementation is not helpful for specular reflections, and handling specular surfaces
correctly would be difficult. This has not been a problem for us because our primary
applications are terrain and scientific visualization, where specular effects are rare.

We speculate that the point tracking technique may in the future be applied indepen-
dently of the reconstruction used for display. If we allow tracked points to persist even
when they co-occupy a pixel, then more sophisticated reconstruction methods could
be applied to increase point reuse, in the spirit of Simmons et al. [5] and Popescu et
al. [4]. We have not pursued this in the present work, noting that the former technique
uses sparser sample sets than we do, and the latter requires special purpose hardware.

5 Acknowledgments

The authors would like to thank Brian Smits for insightful discussions, and Richard
Coffey and Robert Cummins for their tireless technical support. This work was sup-
ported in part by the NSF Science and Technology Center for Computer Graphics and
Scientific Visualization (EIA-89-20219), and NSF grants IIS-0080999, CCR-9731859,
9977218, and 9978099. All opinions, findings, conclusions or recommendations ex-
pressed in this document are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

References

[1] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based render-
ing system. InProceedings of SIGGRAPH 95, Computer Graphics Proceedings,

6

Annual Conference Series, pages 39–46, Los Angeles, California, August 1995.
ACM SIGGRAPH / Addison Wesley. ISBN 0-201-84776-0.

[2] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter S. Shirley, Brian Smits,
and Charles Hansen. Interactive ray tracing. In1999 ACM Symposium on In-
teractive 3D Graphics, pages 119–126. ACM SIGGRAPH, April 1999. ISBN
1-58113-082-1.

[3] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen,
and Peter Shirley. Interactive ray tracing for volume visualization. InIEEE Trans-
actions on Visualization and Computer Graphics, volume 5, pages 238–250, July-
September 1999.

[4] Voicu Popescu, John Eyles, Anselmo Lastra, Joshua Steinhurst, Nick England,
and Lars Nyland. The WarpEngine: An architecture for the post-polygonal age. In
Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 433–442. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, July 2000. ISBN 1-58113-208-5.

[5] Maryann Simmons and Carlo Séquin. Tapestry: A dynamic mesh-based display
representation for interactive rendering. In B. Péroche and H. Rushmeier, editors,
Rendering Techniques 2000 (EG Workshop on Rendering 2000), pages 329–340,
Brno, Czech Republic, June 2000. Eurographics, Springer Wien.

[6] Ingo Wald and Philipp Slusallek. State of the art in interactive ray tracing. In
State of the Art Reports, EUROGRAPHICS 2001, pages 21–42. EUROGRAPH-
ICS, Manchester, United Kingdom, September 2001.

[7] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive distributed ray-
tracing of highly complex models. In S. J. Gortler and K. Myszkowski, editors,
Rendering Techniques 2001 (EG Workshop on Rendering 2001), pages 274–285,
London, United Kingdom, June 2001. Eurographics, Springer Wien.

[8] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive
rendering with coherent ray tracing.Computer Graphics Forum, 20(3):153–164,
2001.

[9] Bruce Walter, George Drettakis, and Steven Parker. Interactive rendering using the
render cache. In D. Lischinski and G. W. Larson, editors,Rendering Techniques
’99 (EG Workshop on Rendering 1999), pages 19–30, Granada, Spain, June 1999.
Eurographics, Springer Wien.

Web Information:
Animations demonstrating the technique are available via:
http://www.acm.org/jgt/papers/MartinEtAl2002
or directly on the authors’ web site at:
http://www.cs.utah.edu/˜wmartin/PointTracking .

7

